See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340540442

The Bat Algorithm: An Introduction

Presentation · April 2020

CITATIONS	READS
0	91
1 author:	
Xin-She Yang	
Middlesex University, UK	
521 PUBLICATIONS 36,657 CITATIONS	
SEE PROFILE	
Some of the authors of this publication are also working on these related projects:	
Some of the autions of this publication are also working on these related projects.	
Project Mathematical Analysis of Nature-Inspired Algorithms View project	
, , , , , , , , , , , , , , , , , , , ,	

Optimisation View project

The Bat Algorithm: An Introduction

Xin-She Yang

Middlesex University London

For details, please read my book:

Nature-Inspired Optimization Algorithms, Elsevier, (2014).

Matlab codes are downloadable from https://uk.mathworks.com/matlabcentral/profile/authors/3659939-xs-yang

イロト イポト イヨト イヨト

Almost Everything is Optimization

Almost everything is optimization ... or needs optimization ...

- Maximize efficiency, accuracy, profit, performance, sustainability, ...
- $\bullet\,$ Minimize costs, wastage, energy consumption, travel distance/time, CO_2 emission, impact on environment, ...

Mathematical Optimization

Objectives: maximize or minimize $f(x) = [f_1(x), f_2(x), ..., f_m(x)],$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_D) \in \mathbb{R}^D,$$

subject to multiple equality and/or inequality design constraints:

$$h_i(\boldsymbol{x}) = 0, \quad (i = 1, 2, ..., M),$$

$$g_j(\boldsymbol{x}) \le 0, \quad (j = 1, 2, ..., N).$$

In case of m = 1, it becomes a single-objective optimization problem.

イロト イポト イヨト イヨト

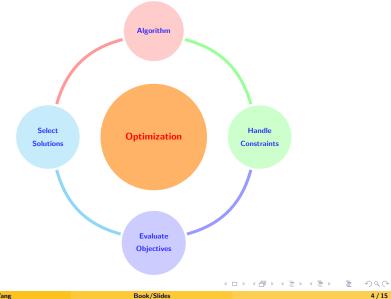
Bat Algorithm

Optimization problems can usually be very difficult to solve, especially large-scale, nonlinear, multimodal problems.

In general, we can solve only 3 types of optimization problems:

- Linear programming
- Convex optimization
- Problems that can be converted into the above two

Everything else seems difficult, especially for large-scale problems. For example, combinatorial problems tend to be really hard – NP-hard!


Deep Learning

The objective in deep nets may be convex, but the domain is not convex and it's a high-dimensional problem.

Minimize
$$E(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^{n} \left[u_i(\boldsymbol{x}_i, \boldsymbol{w}) - \bar{y}_i \right]^2$$
,

subject to various constraints.

Key Components for Optimization

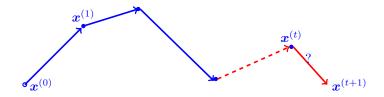
Optimization Techniques

There are a wide spectrum of optimization techniques and tools.

Traditional techniques

- Linear programming (LP) and mixed integer programming.
- Convex optimization and quadratic programming.
- Nonlinear programming: Newton's method, trust-region method, interior point method, ..., barrier Method, ... etc.

But most real-world problems are not linear or convex, thus traditional techniques often struggle to cope, or simply do not work...


New Trends – Nature-Inspired Metaheuristic Approaches

- Evolutionary algorithms (evolutionary strategy, genetic algorithms)
- Swarm intelligence (e.g., ant colony optimization, particle swarm optimization, firefly algorithm, cuckoo search, ...)
- Stochastic, population-based, nature-inspired optimization algorithms

The Essence of an Algorithm

Essence of an Optimization Algorithm

To generate a better solution point $x^{(t+1)}$ (a solution vector) from an existing solution $x^{(t)}$. That is, $x^{(t+1)} = A(x^{(t)}, \alpha)$ where α is a set of parameters.

Population-based algorithms use multiple, interacting paths.

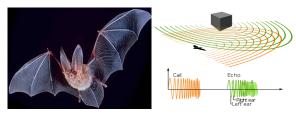
Different algorithms Different ways for generating new solutions!

◆ロト ◆聞ト ◆臣ト ◆臣ト

Main Problems with Traditional Algorithms

What's Wrong with Traditional Algorithms?

- Traditional algorithms are mostly local search, thus they cannot guarantee global optimality (except for linear and convex optimization).
- Results often depend on the initial starting points (except linear and convex problems). Methods tend to be problem-specific (e.g., *k*-opt, branch and bound).
- Struggle to cope problems with discontinuity.


Nature-Inspired Optimization Algorithms

Heuristic or metaheuristic algorithms (e.g., ant colony optimization, particle swarm optimization, firefly algorithm, bat algorithm, cuckoo search, differential evolution, flower pollination algorithm, etc) tend to be a global optimizer so as to

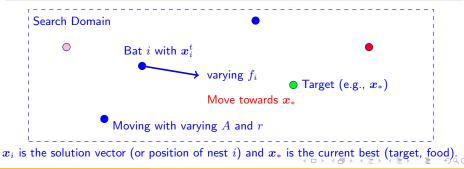
- Increase the probability of finding the global optimality (as a global optimizer)
- Solve a wider class of problems (treating them as a black-box)
- Draw inspiration from nature (e.g., swarm intelligence)

But they can be potentially more computationally expensive.

Bat Algorithm (Yang, 2010)

BBC Video at Youtube [Click to start]

Microbats use echolocation for hunting


- Ultrasonic short pulses as loud as 110dB with a short period of 5 to 20 ms. Frequencies of 25 kHz to 100 kHz.
- Bats usually speed up their pulse-emission rate and increase their loudness when homing at a prey.
- Frequencies are varied/tuned so as to increase the detection resolution (by reducing wavelengths of the signals).

Xin-She Yang, A new metaheuristic bat-inspired algorithm, Nature-Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65-74, Springer.

Sound velocity (v) = frequency (f) × wavelength (λ). So $\lambda = v/f \sim 2 \text{ mm to } 14 \text{ mm}$.

Echolocation of Microbats and Idealization (Yang, 2010)

- All bats use echolocation to sense distance, and they also "know" the direction of the food/prey.
- Bats fly randomly with velocity v_i at position x_i. They can automatically adjust the frequency (or wavelength) of their emitted pulses and adjust the rate of pulse emission r ∈ [0, 1], depending on the proximity of their target.
- Although the loudness can vary in many ways, we assume that the loudness varies from a large (positive) A_0 to a minimum value A_{\min} .

Bat Algorithm

Algorithmic equations

$$f_i = f_{\min} + (f_{\max} - f_{\min})\beta, \quad \beta \in [0, 1] \text{ (random)},$$

$$x_i^{t+1} = x_i^t + v_i^{t+1}, \quad v_i^{t+1} = v_i^t + (x_i^t - x_*) f_i.$$

If the switch condition is true (based on rand> r_i and rand< A_i), we have

 $oldsymbol{x}_{ ext{new}} = oldsymbol{x}_* + \sigma \ \epsilon_t \ \mathbb{A}^t$

Here, ϵ_t is a random number in [0,1], and σ is a scaling factor. $\boldsymbol{x}_*=$ best solution found so far. \mathbb{A}^t is the averaged loudness.

Variations of Loudness (A) and Pulse Rate (r)

$$\begin{split} A_i^{t+1} &= \alpha A_i^t, \quad \alpha \in (0,1], \\ r_i^{t+1} &= r_i^0 [1 - \exp(-\gamma t)], \quad \gamma \in (0,1). \end{split}$$

Thus, $A_i^t \to 0$ and $r_i^t \to r_0$ as $t \to \infty$.

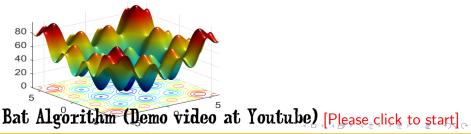
[X. S. Yang and X. He, Bat Algorithm: Literature Review and Applications, Int. J. Bio-Inspired Computation, vol.5, no. 3, 141-149 (2013).

Xin-She Yang

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト - ヨ - -

Bat Algorithm Pseudocode

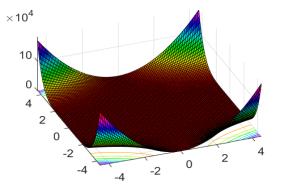
Algorithm 1: Bat algorithm.	_
Data: Objective functions $f(x)$	_
Result: Best or optimal solution	
1 Initialize the bat population $oldsymbol{x}_i$ and $oldsymbol{v}_i$ $(i=1,2,,n);$	
2 Initialize frequencies f_i , pulse rates r_i and the loudness A_i ;	
3 while ($t < Max$ number of iterations) do	
4 Generate new solutions by adjusting frequency;	
5 Update velocities and locations/solutions;	
6 if $(rand > r_i)$ then	
7 Select a solution among the best solutions;	
8 Generate a local solution around the selected best solution;	
9 end	
0 Generate a new solution by flying randomly;	
1 if $(rand < A_i \ \ \mathcal{B} f(\boldsymbol{x}_i) < f(\boldsymbol{x}_*))$ then	
2 Accept the new solutions;	
3 Increase r_i and reduce A_i ;	
4 end	
.5 Rank the bats and find the current best x_* ;	
6 end	
) 0 (


Typical Parameter Values

- Population size: n = 20 to 40 (up to 100 if necessary).
- Frequency: $f_{\min} = 0$, $f_{\max} = O(1)$ (typically $f_{\max} = 1$ or 2).
- Loudness: $A_0 = 1$, $\alpha = 0.9$ to 0.99 (typically $\alpha = 0.97$).
- Pulse emission rate: $r_0 = 1$, $\gamma = 0$ to 0.5 (typically $\gamma = 0.1$). Scaling: $\sigma = 0.5$.
- Number of iterations $t_{\rm max} = 100$ to 1000.

Demo: Eggcrate Function

$$f(x,y) = x^{2} + y^{2} + 25(\sin^{2} x + \sin^{2} y), \quad (x,y) \in [-2\pi, 2\pi]^{2}.$$


Optimal solution $f_{\min} = 0$ at (0, 0).

Beale Function

 $f(x,y) = (1.5 - x - xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2, \quad (x,y) \in [-4.5, 4.5]^2.$

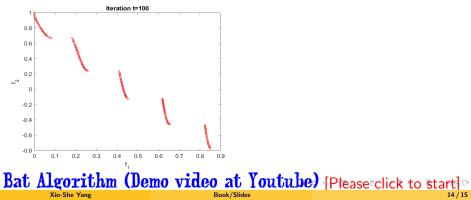
Its landscape is relatively flat with $f_{\min} = 0$ at (3,0.5).

Bat Algorithm (Demo video at Youtube) [Please click to start]

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

14/15

Multi-objective Bat Algorithm (MOBA)


For example, the so-called ZDT function with D = 30 dimensions

minimize $f_1(x) = x_1$, and $f_2(x) = g(x)h(x)$, $x \in [0, 1]^{30}$,

where

$$g(\boldsymbol{x}) = 1 + rac{9}{29} \sum_{j=2}^{D=30} x_j, \quad h(\boldsymbol{x}) = 1 - \sqrt{rac{f_1}{g}} - rac{f_1}{g} \sin(10\pi f_1),$$

has a nonconvex Pareto front in the domain $0 \le x_i \le 1$ where i = 1, 2, ..., 30.

Bat Algorithm (Demo Codes) and References

Bat Algorithm Demo Codes

- The standard BA demo in Matlab can be found at the Mathswork File Exchange https://uk.mathworks.com/matlabcentral/fileexchange/74768-the-standard-bat-algorithm-ba
- The multi-objective bat algorithm (MOBA) code is also available at https://uk.mathworks.com/matlabcentral/fileexchange/74753-multiobjective-bat-algorithm-moba

Some References

- Xin-She Yang, A new metaheuristic bat-inspired algorithm, in: Nature-Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, pp. 65–74 (2010).
- Xin-She Yang, Bat algorithm for multi-objective optimisation, Int. J. Bio-Inspired Computation, vol. 3, no. 5, 267–274 (2011).
- Xin-She Yang, Amir Gandomi, Bat algorithm: a novel approach for global engineering optimization, *Engineering Computations*, vol. 29, no. 5, 464–483 (2012).
- Xin-She Yang, Xingshi He, Bat algorithm: literature review and applications, Int. J. Bio-Inspired Computation, vol. 5, no. 3, 141–149 (2013).
- Xin-She Yang, Cuckoo Search and Firefly Algorithm: Theory and Applications, Springer, (2013).
- Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier Insights, (2014).

1

イロト (同ト (ヨト (ヨト))