See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340536239

The Firefly Algorithm: An Introduction

Presentation · April 2020

CITATIONS	READS
0	177
1 author:	
Xin-She Yang	
Middlesex University, UK	
521 PUBLICATIONS 36,630 CITATIONS	
SEE PROFILE	
Some of the authors of this publication are also working on these re	alated projects:
some of the ductions of this publication are also working on these re	
Ortimization Visuancia t	
Project Optimisation View project	

Nature-Inspired Optimization Algorithms View project

All content following this page was uploaded by Xin-She Yang on 10 April 2020.

The Firefly Algorithm: An Introduction

Xin-She Yang

Middlesex University London

For details, please read my book:

Nature-Inspired Optimization Algorithms, Elsevier, (2014).

Matlab codes are downloadable from https://uk.mathworks.com/matlabcentral/profile/authors/3659939-xs-yang

	he `	

・ロト ・ 同ト ・ ヨト ・ ヨト

Almost Everything is Optimization

Almost everything is optimization ... or needs optimization ...

- Maximize efficiency, accuracy, profit, performance, sustainability, ...
- $\bullet\,$ Minimize costs, wastage, energy consumption, travel distance/time, CO_2 emission, impact on environment, ...

Mathematical Optimization

Objectives: maximize or minimize $f(x) = [f_1(x), f_2(x), ..., f_m(x)],$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_D) \in \mathbb{R}^D,$$

subject to multiple equality and/or inequality design constraints:

$$h_i(\boldsymbol{x}) = 0, \quad (i = 1, 2, ..., M),$$

$$g_j(\boldsymbol{x}) \le 0, \quad (j = 1, 2, ..., N).$$

In case of m = 1, it becomes a single-objective optimization problem.

イロト イポト イヨト イヨト

Optimization problems can usually be very difficult to solve, especially large-scale, nonlinear, multimodal problems.

In general, we can solve only 3 types of optimization problems:

- Linear programming
- Convex optimization
- Problems that can be converted into the above two

Everything else seems difficult, especially for large-scale problems. For example, combinatorial problems tend to be really hard – NP-hard!

Deep Learning

The objective in deep nets may be convex, but the domain is not convex and it's a high-dimensional problem.

Minimize
$$E(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^{n} \left[u_i(\boldsymbol{x}_i, \boldsymbol{w}) - \bar{y}_i \right]^2$$
,

subject to various constraints.

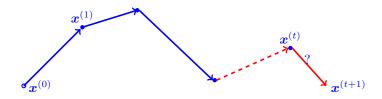
Optimization Techniques

There are a wide spectrum of optimization techniques and tools.

Traditional techniques

- Linear programming (LP) and mixed integer programming.
- Convex optimization and quadratic programming.
- Nonlinear programming: Newton's method, trust-region method, interior point method, ..., barrier Method, ... etc.

But most real-world problems are not linear or convex, thus traditional techniques often struggle to cope, or simply do not work...


New Trends – Nature-Inspired Metaheuristic Approaches

- Evolutionary algorithms (evolutionary strategy, genetic algorithms)
- Swarm intelligence (e.g., ant colony optimization, particle swarm optimization, firefly algorithm, cuckoo search, ...)
- Stochastic, population-based, nature-inspired optimization algorithms

The Essence of an Algorithm

Essence of an Optimization Algorithm

To generate a better solution point $x^{(t+1)}$ (a solution vector) from an existing solution $x^{(t)}$. That is, $x^{(t+1)} = A(x^{(t)}, \alpha)$ where α is a set of algorithm-dependent parameters.

Population-based algorithms use multiple, interacting paths.

Different algorithms				
Different ways for generati	ng new solutions!			
		<日> <四> <回> <回>	æ	୬୯୯
Xin-She Yang	Firefly Algorithm			5 / 16

Main Problems with Traditional Algorithms

What's Wrong with Traditional Algorithms?

- Traditional algorithms are mostly local search, thus they cannot guarantee global optimality (except for linear and convex optimization).
- Results often depend on the initial starting points (except linear and convex problems). Methods tend to be problem-specific (e.g., *k*-opt, branch and bound).
- Struggle to cope problems with discontinuity.

Nature-Inspired Optimization Algorithms

Heuristic or metaheuristic algorithms (such as the firefly algorithm) tend to be a global optimizer so as to

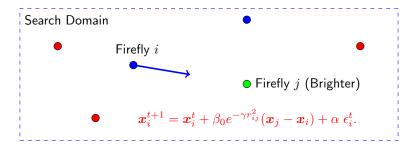
- Increase the probability of finding the global optimality (as a global optimizer)
- Solve a wider class of problems (treating them as a black-box)
- Draw inspiration from nature (e.g., swarm intelligence)

But they can be potentially more computationally expensive.

◆ロト ◆聞 と ◆注 と ◆注 と

Firefly Algorithm

The firefly algorithm (FA) was developed by Xin-She Yang in 2008.


Firefly Video (YouTube)

Fireflies in Nature

- There are about 2000 firefly species, and most fireflies produce short, rhythmic flashes by bioluminescence.
- Flashing is the signaling system for fireflies: to attract mating partners (communications) and to attract potential prey (hunting), though the true functions of such flashes are still being debated.
- Flashing rhythm and timing can vary from species to species. Synchronization can occur, leading to self-organized behaviour.
- Light can be absorbed and thus brightness varies.

Firefly Behaviour and Idealization (Yang, 2008)

- Fireflies are unisex and brightness varies with distance.
- Less bright ones will be attracted to brighter ones.
- If no brighter firefly can be seen, a firefly will move randomly.

Here, x_i is the solution vector (or position of firefly *i*) in the search space at iteration *t*. β_0 is the attractiveness at zero distance (i.e., $r_{ij} = 0$), and γ is the absorption coefficient. The random vector ϵ_i^t should be drawn from a normal distribution, and the steps are scaled by a factor α .

イロト 不得 トイヨト イヨト ニヨー

Algorithmic Equation of FA

Attractiveness

The attractiveness β of a firefly is given by

$$\beta = \beta_0 e^{-\gamma r^2},$$

where β_0 is the attractiveness at zero distance (r = 0).

Distance

The distance between any two fireflies i and j at \boldsymbol{x}_i and \boldsymbol{x}_j , respectively, is the Cartesian distance

$$r_{ij} = \|\boldsymbol{x}_i - \boldsymbol{x}_j\| = \sqrt{\sum_{k=1}^d (x_{i,k} - x_{j,k})^2},$$

where $x_{i,k}$ is the *k*th component of the spatial coordinate x_i of *i*th firefly. In the 2D case, we have

$$r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}.$$

Xin-She Yang

FA Pseudocode

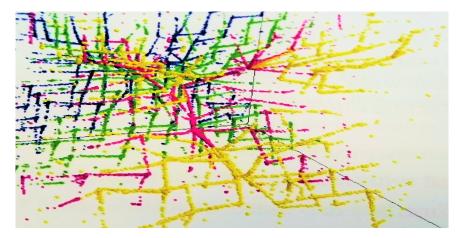
	Algorithm 1: Firefly algorithm.				
	Data: Objective functions $f(x)$				
	Result: Best or optimal solution				
1	Initialization of parameters (n , $lpha$, eta , and γ);				
2	Generate an initial population of n fireflies x_i $(i = 1, 2,, n)$;				
3	while $(t < MaxGeneration)$ do				
4	for $i = 1 : n$ (all n fireflies) do				
5	for $j = 1 : n$ (all n fireflies) (inner loop) do				
6	if $(I_i < I_j)$ then				
7	Move firefly i towards j (for maximization problems);				
8	end				
9	Vary attractiveness with distance r via $\exp[-\gamma r^2]$;				
10	Update the solution and evaluate new solutions;				
1	end				
2	end				
3	Rank the fireflies and find the current global best $m{g}_*$;				
4	end				
5	Postprocess results and visualization;				

Firefly Algorithm

- The objective landscape maps to a light-based landscape, and fireflies swarm into the brightest points/regions.
- There is no g*, therefore, there is no leader. FA as a nonlinear iterative system, the subdivision of the whole swarm into multiswarms is possible.

$$\boldsymbol{x}_i^{t+1} = \boldsymbol{x}_i^t + \beta_0 e^{-\gamma r_{ij}^2} (\boldsymbol{x}_j - \boldsymbol{x}_i) + \alpha \, \epsilon_i^t, \quad r_{ij} = \left\| \boldsymbol{x}_i^t - \boldsymbol{x}_j^t \right\|.$$

The factor in the second term is the attractiveness $\beta = \beta_0 e^{-\gamma r_{ij}^2}$, whereas the third term corresponds to perturbations/random walks.


Analysis and special cases

- If $\gamma \to 0$, the attractiveness $\beta = \beta_0 e^{-\gamma r_{ij}^2} \to \beta_0$ and fireflies are visible in the whole domain. If $\gamma \to \infty$, $\beta \to \delta(r)$ (zero visibility) and fireflies move randomly (by random walks).
- Parameter α controls the strength of random walks, which should be reduced gradually during iterations.

Therefore, $\beta = O(1)$ or $\gamma = \frac{1}{L^2}$ where L is the length scale of the problem. In addition, $\alpha = \alpha_0 \theta^t$ where $0 < \theta < 1$.

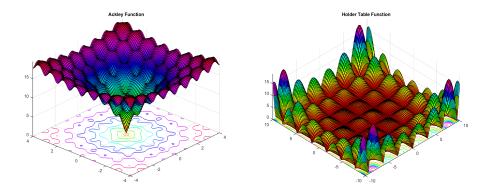
FA Demo and Advantages

Fireflies can take fractal-like search paths (sparse paths, but large coverage in the search space). E.g., 3D Rosenbrock function (Husselmann, 2014).

イロト イヨト イヨト

Why is FA so efficient?

Advantages of Firefly Algorithm over PSO


- Automatically subdivide the whole population into subgroups, and each subgroup swarms around a local mode/optimum.
- Control modes/ranges by varying γ .
- Control randomization by tuning parameters such as α .
- Suitable for multimodal, nonlinear, global optimization problems.

Typical Parameter Values

- Population size: n = 20 to 40 (up to 100 if necessary).
- $\beta_0 = 1$, $\gamma = 0.01$ to 10 (typically, $\gamma = 0.1$).
- $\alpha_0 = 1$, $\theta = 0.9$ to 0.99 (typically, $\theta = 0.97$).
- Number of iterations $t_{\rm max} = 100$ to 1000.

(日)

Subswarms and Multimodal Problems

Firefly Algorithm (Demo Video at Youtube) [Please click to start]

Firefly Algorithm is Not PSO

Main differences

- FA uses a nonlinear attraction mechanism (inverse-quare law plus exponential decay). PSO mechanism is simply linear (x^t_i g^{*}).
- The population in the FA can subdivide into subgroups and thus can form multi-swarms automatically (PSO cannot).
- The standard FA does not use g^* (though PSO uses g^*). $\boldsymbol{x}_i^{t+1} = \boldsymbol{x}_i^t + \beta_0 e^{-\gamma r_{ij}^2} (\boldsymbol{x}_i - \boldsymbol{x}_i) + \alpha \ \epsilon_i^t$.
- FA can find multiple optimal solutions simultaneously (PSO cannot).
- FA has a fractal-like search structure (PSO does not).

FA Variants for specific applications:

- Continuous optimization Mixed integer programming Discrete FA for combinatorial optimization such as TSP Multiobjective FA ...
- Chaotic FA FA for image processing, ...

Firefly Algorithm (Demo Codes) and References

FA Demo Codes

• The standard FA demo code in Matlab can be found at the Mathswork File Exchange.

https://uk.mathworks.com/matlabcentral/fileexchange/74769-the-standard-firefly-algorithm-fa

 The multi-objective firefly algorithm (MOFA) code is also available at https://uk.mathworks.com/matlabcentral/fileexchange/74755-multiobjective-firefly-algorithm-mofa

Some References

- Xin-She Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, (2008).
- Xin-She Yang, Firefly algorithm, stochastic test functions and design optimisation, *Int. J. Bio-Inspired Computation*, vol. 2, no. 2, 78–84 (2010).
- Xin-She Yang, Multiobjective firefly algorithm for continuous optimization, *Engineering with Computers*, vol. 29, no. 2, 175–184 (2013).
- Xin-She Yang, Cuckoo Search and Firefly Algorithm: Theory and Applications, Springer, (2013).
- Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier Insights, (2014).

1

イロン 不得 とくほと くほと