See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340540369

Flower Pollination Algorithm: An Introduction

Control system, Biomedical engineering, Signal processing View project

Presentation · April 2020

CITATIONS	5	READS		
0		169		
1 author	n.			
	Xin-She Yang			
	Middlesex University, UK			
	521 PUBLICATIONS 36,657 CITATIONS			
	SEE PROFILE			
Some of the authors of this publication are also working on these related projects:				
	Nature-Inspired Optimization Algorithms View project			
Project	Nature-inspired optimization Algorithms view project			

All content following this page was uploaded by Xin-She Yang on 10 April 2020.

Flower Pollination Algorithm: An Introduction

Xin-She Yang

Middlesex University London

For details, please read my book:

Nature-Inspired Optimization Algorithms, Elsevier, (2014).

Matlab codes are downloadable from https://uk.mathworks.com/matlabcentral/profile/authors/3659939-xs-yang

	rang

・ロト ・ 同ト ・ ヨト ・ ヨト

Almost Everything is Optimization

Almost everything is optimization ... or needs optimization ...

- Maximize efficiency, accuracy, profit, performance, sustainability, ...
- $\bullet\,$ Minimize costs, wastage, energy consumption, travel distance/time, CO_2 emission, impact on environment, ...

Mathematical Optimization

Objectives: maximize or minimize $f(x) = [f_1(x), f_2(x), ..., f_m(x)],$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_D) \in \mathbb{R}^D,$$

subject to multiple equality and/or inequality design constraints:

$$h_i(\boldsymbol{x}) = 0, \quad (i = 1, 2, ..., M),$$

$$g_j(\boldsymbol{x}) \le 0, \quad (j = 1, 2, ..., N).$$

In case of m = 1, it becomes a single-objective optimization problem.

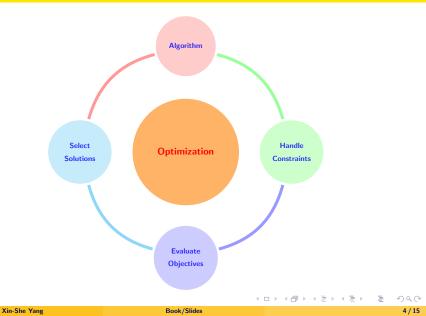
イロト イポト イヨト イヨト

Optimization problems can usually be very difficult to solve, especially large-scale, nonlinear, multimodal problems.

In general, we can solve only 3 types of optimization problems:

- Linear programming
- Convex optimization
- Problems that can be converted into the above two

Everything else seems difficult, especially for large-scale problems. For example, combinatorial problems tend to be really hard – NP-hard!


Deep Learning

The objective in deep nets may be convex, but the domain is not convex and it's a high-dimensional problem.

Minimize
$$E(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^{n} \left[u_i(\boldsymbol{x}_i, \boldsymbol{w}) - \bar{y}_i \right]^2$$
,

subject to various constraints.

Key Components for Optimization

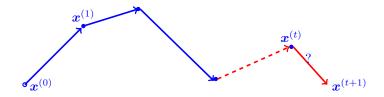
Optimization Techniques

There are a wide spectrum of optimization techniques and tools.

Traditional techniques

- Linear programming (LP) and mixed integer programming.
- Convex optimization and quadratic programming.
- Nonlinear programming: Newton's method, trust-region method, interior point method, ..., barrier Method, ... etc.

But most real-world problems are not linear or convex, thus traditional techniques often struggle to cope, or simply do not work...


New Trends – Nature-Inspired Metaheuristic Approaches

- Evolutionary algorithms (evolutionary strategy, genetic algorithms)
- Swarm intelligence (e.g., ant colony optimization, particle swarm optimization, firefly algorithm, cuckoo search, ...)
- Stochastic, population-based, nature-inspired optimization algorithms

The Essence of an Algorithm

Essence of an Optimization Algorithm

To generate a better solution point $x^{(t+1)}$ (a solution vector) from an existing solution $x^{(t)}$. That is, $x^{(t+1)} = A(x^{(t)}, \alpha)$ where α is a set of parameters.

Population-based algorithms use multiple, interacting paths.

Different algorithms Different ways for generating new solutions!

◆ロト ◆聞ト ◆臣ト ◆臣ト

Main Problems with Traditional Algorithms

What's Wrong with Traditional Algorithms?

- Traditional algorithms are mostly local search, thus they cannot guarantee global optimality (except for linear and convex optimization).
- Results often depend on the initial starting points (except linear and convex problems). Methods tend to be problem-specific (e.g., *k*-opt, branch and bound).
- Struggle to cope problems with discontinuity.

Nature-Inspired Optimization Algorithms

Heuristic or metaheuristic algorithms (e.g., ant colony optimization, particle swarm optimization, firefly algorithm, bat algorithm, cuckoo search, differential evolution, flower pollination algorithm, etc) tend to be a global optimizer so as to

- Increase the probability of finding the global optimality (as a global optimizer)
- Solve a wider class of problems (treating them as a black-box)
- Draw inspiration from nature (e.g., swarm intelligence)

But they can be potentially more computationally expensive.

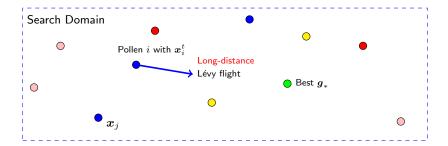
Flower Pollination Algorithm (FPA) [Yang, 2012]

Pollination Characteristics

Flowering plants have been evolving for at least 125 million years, and about 90% of flower pollination needs pollinators. There are about 200 000 varieties of pollinators such as insects and birds. **BBC Video (Flower Pollination) at Youtube** [click to start]

- Biotic pollination and cross pollination (about 90% of flowering plants) via pollinators (e.g., insects and animals). [Feature 1]
- Abiotic and self-pollination (local, winds) (about 10%). [Feature 2]
- Flower constancy (e.g., hummingbirds)/flower-pollinator co-evolution. [Feature 3]
- Pollinators can fly for a long distance (thus possible Lévy flights). [Feature 4]

Yang, X.S., Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation. Lecture Notes in Computer Science vol. 7445, 240–249, Springer, Berlin (2012).


FPA Idealization (Yang, 2010)

• Feature 1 and flower constancy (feature 3) can be represented mathematically as

 $\boldsymbol{x}_i^{t+1} = \boldsymbol{x}_i^t + \gamma L(\lambda)(\boldsymbol{g}_* - \boldsymbol{x}_i^t).$ [Direction of the search is $(\boldsymbol{g}_* - \boldsymbol{x}_i^t)$]

• Both feature 2 and feature 3 can be represented as

$$\boldsymbol{x}_i^{t+1} = \boldsymbol{x}_i^t + \epsilon \; (\boldsymbol{x}_j^t - \boldsymbol{x}_k^t).$$

Here, x_i is the solution vector (or position of nest *i*) and g_* is the current best.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Flower Pollination Algorithm

Global pollination

$$\boldsymbol{x}_{i}^{t+1} = \boldsymbol{x}_{i}^{t} + \gamma L(\lambda) \; (\boldsymbol{g}_{*} - \boldsymbol{x}_{i}^{t}), \tag{1}$$

where x = a solution vector. $g_* = best$ solution (so far). Step sizes are drawn randomly from the Lévy distribution:

$$L(\lambda) \sim \frac{\lambda \Gamma(\lambda) \sin(\pi \lambda/2)}{\pi} \frac{1}{s^{1+\lambda}},$$

Local pollination

$$\boldsymbol{x}_i^{t+1} = \boldsymbol{x}_i + \epsilon \; (\boldsymbol{x}_j^t - \boldsymbol{x}_k^t),$$

where
$$\epsilon =$$
 uniformly distributed random number.

Switching Probability p

Control which branch/equation for search.

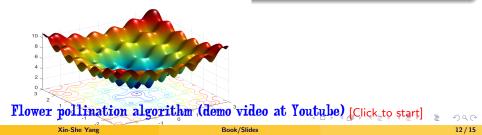
Э

(2)

FPA Pseudocode

7	Algorithm 1: Flower pollination algorithm.				
Γ	Data: Objective functions $f(x)$				
1 I	nitialize a population of n flowers/pollen gametes with random solutions;				
2 F	Find the best solution g_* in the initial population;				
3 E	B Define a switch probability $p \in [0, 1]$;				
4 v	4 while $(t < MaxGeneration)$ do				
5	5 for $i = 1 : n$ (all n flowers in the population) do				
6		if rand < p then			
7		Draw a (d-dimensional) step vector L from a Lévy distribution;			
8		Global pollination via $m{x}_i^{t+1} = m{x}_i^t + \gamma L \; (m{g}_* - m{x}_i^t);$			
9	else				
10		Draw ϵ from a uniform distribution in [0,1];			
11		Do local pollination via $m{x}_i^{t+1} = m{x}_i^t + \epsilon(m{x}_j^t - m{x}_k^t);$			
12		end			
13	Evaluate new solutions;				
14		If new solutions are better, update them in the population;			
.5	5 end				
.6	Find the current best solution g_* ;				
7 end					

The Essence of an Algorithm


Typical Parameter Values

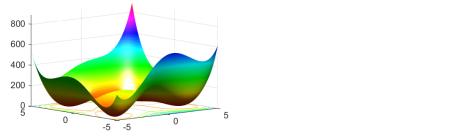
- Population size: n = 20 to 40 (up to 100 if necessary).
- Frequency: $f_{\min} = 0$, $f_{\max} = O(1)$ (typically $f_{\max} = 1$ or 2).
- Loudness: $A_0 = 1$, $\alpha = 0.9$ to 0.99 (typically $\alpha = 0.97$).
- Pulse emission rate: $r_0 = 1$, $\gamma = 0$ to 0.5 (typically $\gamma = 0.1$). Scaling: $\sigma = 0.5$.
- Number of iterations $t_{\rm max} = 100$ to 1000.

Demo: Ackley Function

$$f(x,y) = -20 \exp[-0.2\sqrt{0.5(x^2 + y^2)}] - \exp\left\{\frac{1}{2}[\cos(2\pi x) + \cos(2\pi y)]\right\} + 20 + e.$$

Optimal solution $f_{\min} = 0$ at (0, 0).

FPA demo


Himmelblau Function

$$f(x,y) = (x^{2} + y - 11)^{2} + (x + y^{2} - 7)^{2}, \quad (x,y) \in [-5,5]^{2}$$

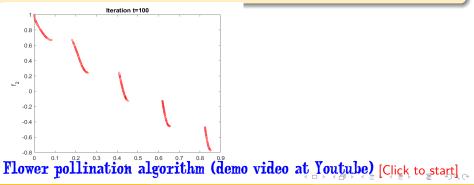
with four global minima $f_{\min} = 0$ at

$$x_1 = (3, 2),$$
 $x_2 = (-2.805118, 3.131312),$
 $x_3 = (-3.779310, -3.283186),$ $x_4 = (3.584428, -1.848126).$

FPA can find all these four minima simultaneously.

Flower pollination algorithm (demo video at Youtube) [Click_to start]

Multiobjective flower pollination algorithm (MOFPA)


The Pareto front of a 30-dimensional optimization problem with two objectives

$$f_2(x) = g \left[1 - \sqrt{\frac{f_1}{g} - \frac{f_1}{g}} \sin(10\pi f_1) \right],$$

$$g(x) = 1 + \frac{9}{d-1} \sum_{i=2}^{d} x_i,$$

 $f_1(x) = x_1,$

$$x_1 \in [0, 1], \ i = 2, ..., d, \quad d = 30.$$

FPA (Demo Codes) and References

Flower Pollination Algorithm Demo Codes

The standard FPA demo in Matlab can be found at the Mathswork File Exchange https://uk.mathworks.com/matlabcentral/fileexchange/74765-the-standard-flower-pollination-algorithm-fpa The multi-objective flower pollination algorithm (MOFPA) code is also available at https://uk.mathworks.com/matlabcentral/fileexchange/74750-multi-objective-flower-pollination-algorithmmofpa

Some References

- Xin-She Yang, Flower pollination algorithm for global optimization, in: Unconventional Computation and Natural Computation, Lecture Notes in Computer Science, vol. 7445, 240-249 (2012).
- Xin-She Yang, M. Karamanoglu, X. S. He, Multi-objective flower algorithm for optimization, *Procedia Computer Science*, vol. 18, no. 1, 861–868 (2011).
- Xin-She Yang, M. Karamanoglu, X. S. He, Flower pollination algorithm: a novel approach for multiobjective optimization, *Engineering Optimization*, vol. 46, no. 9, 1222–1237 (2013).
- Xin-She Yang, Cuckoo Search and Firefly Algorithm: Theory and Applications, Springer, (2013).
- Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier Insights, (2014).

Xin-She Yang