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Abstract. This paper proposes a novel and simple multipath search with atted-hexagon
or diamond pattern for block motion estimation to achieve adjustable speed/accuracy in
block-matching algorithm (BMA). To improve the accuracy of the fast BMA near to that
of full search (FS), the inherent problem of being trapped at the local minimum block
distortion measure (BDM) should be overcome substantially. In the proposed method,
a threshold of BDM is introduced to determine the possible-optimal search directions in
order to escape from being trapped into a local minimum BDM, followed by a atted-
hexagon or diamond search performed in these directions with a BDM below a threshold.
Then, the estimated motion vector will be re

ned at each search step until the searching process is stopped. The BDM threshold will
be adjustable for the purpose of adjusting the search speed and search accuracy speci

ed in the certain applications. Experimental results show that the proposed multipath
search algorithm can achieve an average match- ing probability up to 98% near to that of
FS and about 10 times of checking points faster than FS in most of real-world sequences.
Keywords: Motion Estimation, Block-matching Algorithm, Multipath Search, Flatted-
hexagon Search

1. Introduction. Motion estimation can make the interframe coding to achieve a very
high compression ratio, when compared to the intraframe coding, by exploiting the heavy
temporary redundancy between successive frames. Among various motion estimation
techniques, the block-matching algorithm (BMA) is the most attractive method for
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the current international video compression standards including H.261, H.263, MPEG-1,
MPEG-2 and MPEG-4 [1]-[6], because of its effectiveness and simplicity for implemen-
tations [7]. However, the matching process of finding the optimal still involves a large
amount of calculations, e.g. the full search (FS) method (i.e., the most accurate approach),
in which all candidate blocks require to be evaluated. To reduce the intensive computa-
tional complexity with a tolerable distortion, many fast block-matching algorithms were
developed [8]-[21].

Among the above suboptimal methods, both the search patterns attributes and initial
searching range always directs the developmental processes of these algorithms. By taking
advantage of the characteristics of the center-biased motion vector distribution existed in
most real-world image sequences, the new three-step search (NTSS) [9], four-step search
(4SS) [10] and block-based gradient descent search (BBGDS) [11] perform better than the
three-step search (3SS) [8], where these four search patterns are square-shaped. Based
on a practical compact-shaped pattern with fewer candidate search points per block, a
diamond-search (DS) algorithm [12][13] can not only improve the searching speed but
also reduce the chances of being trapped in local minimum block distortion measure
(BDM) points, when compared to those four algorithms. To improve the local-minimum
trapping problem in the 3SS algorithm for the estimation of small motions, an efficient
three-step search (E3SS) algorithm [14] employs a small diamond pattern in the first step
and the unrestricted search step is used to search the center area. It performs better
than DS in terms of MSE with fewer or comparable number of search points for the
sequences that contain medium to large motion, but is inferior in speed performance to
DS when searching small motion vectors. The hexagon-based search (HEXBS) algorithm
[15] utilized a hexagon-shaped pattern with only 7 checking points in the initial search
and 3 checking points in the following searches to achieve substantial speed improvement
over the DS algorithm with similar distortion performance for most high-resolution (e.g.
720 × 480) image sequences. Nevertheless, the matching-probability (i.e., the probability
of finding the true motion vector) will degenerate with the decreasing resolution of the
video format. By introducing a fast inner search into the interior of hexagonal pattern,
an enhanced hexagonal search algorithm [16] is proposed to improve HEXBS in search
accuracy. The introduction of flatted-hexagon search (FHS) pattern will make the FHS
algorithm [17] to provide a better speed-probability product than the above fast BMAs,
when both speed performance and matching probability need to be considered. The basic
idea behind the FHS algorithm is that the covering range of a search pattern should be
enlarged as horizontal as possible to find the optimal motion vector quickly because the
occurrence probability of horizontal-biased motions is larger than that of vertical-biased
motions in most of real-world image sequences. To obtain a faster searching speed than the
DS algorithm while maintaining similar search quality, the cross-diamond search (CDS)
algorithm [18] and cross-diamond-hexagonal search (CDHS) algorithm [19] employed a
cross-shaped pattern at the initial step to exploit the characteristics of the center-biased
motion vector distribution very efficient, followed by the halfway-stop technique, and
the large/small diamond or hexagon search patterns in the subsequent steps. Based
on inter-block correlations, an adaptive rood pattern search (ARPS) [20] dynamically
determines the size of the search pattern in the initial search stage in order to find a good
starting point for each macroblock. In addition, zero-motion prejudgment is incorporated
to further speed up the search, particularly beneficial to the sequences containing small
motions. By vector quantization technologies [22][23], a new approach of using predictive
fine granularity successive elimination for fast optimal block matching motion estimation is
proposed in [21]. Nevertheless, various search patterns and/or extra processes at searching
steps will make those algorithms [18]-[21] to be complicated in realization, especially
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for VLSI implementation, because of considering the regularity [24]. Without loss of
generality, a regular searching algorithm using a single search-pattern is always more
interesting in realization cost than the search algorithm using the complicated search
process or multiple various search-patterns.

Generally speaking, the common drawback of fast BMAs is that they cant almost
approach FS in search accuracy for the real-world sequences, so these algorithms are also
called suboptimal BMAs. In fact, the local-minimum trapping problem will be major
factor and may occur when there are multiple local minima existed in the search window,
especially for large motion blocks, in the real-world sequences. However, most of the
previous fast BMAs are based on the assumption that the BDM increases monotonically
as the search pattern moves away from the global minimum BDM point. Owing to using
such a monotonous searching path, those BMAs frequently suffer the local-minimum
trapping problem and hence cant have a matching probability near to FS. In theory,
to cope with the local-minimum trapping problem, the multipath search approach will
be the better method, especially for the case of multiple minimum BDM points existed.
Besides, those algorithms cant also provide an adjustable search speed and picture quality
for some specific applications. To reduce the local-minimum trapping problem, this paper
develops a multipath search algorithm that uses the dynamic BDM threshold to derive
possible directions of leading to the global minimum BDM point. The proposed search
method is dedicated to achieving high search accuracy near to FS, i.e., people cant visually
discriminate the difference of motion-compensated results using motion vectors estimated
by the both search algorithms. In the proposed multipath search scheme, many well-
known search patterns can be employed. In this paper, we propose two multipath search
algorithms: multipath flatted-hexagon search (MFHS) and multipath diamond search
(MDS), for low-resolution (e.g. CIF, 352x288 or SIF, 352x240) and high-resolution (e.g.
CCIR601, 720x480)) image sequences, respectively. The searching scheme employs the
flatted hexagonal pattern or diamond pattern to search for each possible optimal path
and is further designed for adjusting the search speed and matching probability. It also
points out that the flatted-hexagon pattern is more effective than others in the image
sequences mainly containing horizontal-biased motions for low-resolution image sequences.
For brevity, only the MFHS algorithm is discussed since MDS has the same search process
as MFHS except that the search pattern used is different from that of MFHS. The following
section describes the proposed multipath search algorithm including the analysis of search
strategy, selection of search pattern, and the search process of MFHS. Section III discusses
the simulation results of FHS, MFHS and MDS and comparisons with several reported
fast BMAs, and conclusions are made in the final section.

2. Multipath Search Algorithm.

2.1. Analysis of Search Strategy. Most conventional block motion estimation algo-
rithms are explicitly or implicitly based on the assumption: BDM increases monotonically
as the checking point moves away from the global minimum. Obviously, this assumption
essentially requires that the error surface is unimodal over the search windows. Unfor-
tunately, this is usually not true due to many reasons such as the aperture problem, the
textured (periodical) local image content, the inconsistent block segmentation of moving
object and background, the luminance change between frames, noises, and etc. As a
consequence, this may make the search easy to be trapped into a local minimum.

Recently, some pre-existing fast BMAs [14][18]-[21] employed a cross-shape search pat-
tern in the first step to possibly avoid being trapped at a local minimum BDM point. In
those methods, even all fast BMAs, the search direction for the next step is oriented by



Multipath Flatted-Hexagon Search for Block Motion Estimation 113Multipath Flatted-Hexagon Search for Block Motion Estimation 113

someone search point that has the least BDM value among points checked in the current
step. However, it may be not always true for the assumption that the search direction
oriented by the minimal BDM point at each step will be toward the final position of the
global minimum error. This may be explained by the fact that there is one local minimum
BDM point existed in the neighborhood of the point with the least BDM value and this
will lead the search to be trapped into that local minimum. Basically, the direction of
the global minimum is always oriented by the search points of low BDM value. Hence, it
implies that such low-BDM points should be considered to settle the searching direction
for the next step in order to escape from being trapped into a local minimum. In other
words, those low-BDM points will be the candidates of searching in the direction of the
global minimum. As an example, Figure1 describes a case of misleading the search direc-
tion for the next step in the DS algorithm and thus it will be likely to be trapping into
one of local minima around the point of BDM value 67, where the grayish point of BDM
value 4 indicates the global minimum. In the figure, there are two smaller BDM points of
values 67 and 73 among checking points searched in the current step. Obviously, to avoid
misleading the search direction for the next step, these two points of BDM-value 67 and
73 seem to be required for being oriented as the search directions in the following search
path to find the global minimum point. Based on the above discussions, it reveals that
the multipath search in the direction of certain low-BDM points for the following step will
be more effective to cope with the local-minimum trapping problem than the single-path
search used in those famous fast BMAs.

Figure 1. An example of false searching direction for DS.

2.2. Selection of Search Pattern. An in-depth examination of the previous researches
[8]-[20] reveals that both shape and size of a search pattern can influence the searching
speed and quality significantly. In respect to shape, the main merit of compactness is to
consider all possible searching directions for tracking the optimal motion vector that has
the least matching error. The hexagon is more compact than the diamond, as shown in
Figure 2(a) and (b), which in turn is better than the square. The patterns size will affect
the probability of the best match and also the moving speed of the search pattern. The
moving speed of a search pattern within the searching window is directly proportional to
the size of that pattern. The faster moving of a large search pattern will increase the speed
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of finding the large motion vector. As a result, a large search pattern is more suitable
for the video with large motion contents than a small pattern. Small-size pattern usually
causes the searching to be trapped into a local minimal-error point, especially for those
image sequences with large motion contents which may also implies the high-resolution
format. On the other hand, a large search pattern is most likely to result in misleading of
the searching direction that may frequently either delay the searching time or even miss
the optimal one, especially for the video with small-motion contents or low-resolution
format. Besides, the quantity of checking points required at each step will also have the
similar influence on the search speed and quality as the patterns shape and size. Basically
speaking, fewer checking points needed in every step can speed up the search but suffer
a larger distortion, and oppositely more checking points will reduce the search speed but
can provide a better quality performance of block-matching. The matching rate of a
search pattern at each step is mainly dependent on the quantity of the checked points
within all candidate search points covered by that pattern. In other words, the matching
probability will be inversely proportional to the hollowness degree, which is defined as the
ratio c/n where c is the number of unchecked points and n is the number of total points
within the search pattern, i.e., all candidate search points.

⃝: checking point; �: unchecked point

Figure 2. Shapes of various search patterns: (a) diamond pattern; (b)
hexagon pattern; (c) 5-point cross pattern; (d) flatted-hexagon pattern.

Among fast BMAs with the center-biased search, the diamond-shaped search algorithm
[12, 13] performs better than those square-shaped methods [8-11], because its medium-size
compact-shape pattern with 9 checking points can find any-size motion vectors under a
certain search speed and quality. Besides, the unrestricted search process minimizes the
distortion caused by the local-optimal trapping problem. The hexagon pattern adopted in
[15] has a more compact (i.e., circle-approximated) shape with larger size and less checking
points (7 checking points) than the diamond pattern. By using such a search pattern, the
HEXBS algorithm has a speed-up improvement over the DS algorithm mainly owing to
the contribution of less checking points. But, the combination of fewer checking points and
larger size for the search pattern will make HEXBS to suffer degradation on the probability
of finding true motion vectors. Thus, the HEXBS algorithm can maintain a matching
probability similar to that of the DS algorithm for most high-resolution image sequences
(e.g. CCIR601) or some certain low-resolution image sequences (e.g. SIF or CIF) with
a highly center-biased motion vector distribution. Basically speaking, HEXBS has a
significant degradation of matching-probability for most low-resolution image sequences
in comparison with DS. The best explanation of low matching-probability for HEXBS is
its high degree of hollowness, 10/17, existed in the search pattern, while the diamond
pattern used in DS has a lower hollowness degree of 4/13. Both DS and HEXBS adopt a
cross-pattern of five points, as shown in Figure 2(c), to recheck whether the zero motion
vector obtained by the initial search is the final solution. An initial search by using 5-point
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cross pattern will provide a very high search speed and matching probability for block
motion estimation in an image sequence containing massive quasi-zero motion vectors.
For an image sequence containing massive zero motion vectors, the HEXBS algorithm
will have a similar matching-probability but a faster search speed compared to the DS
algorithm because HEXBS can save 2 checking points than DS on the initial search.

Based on an advanced analysis on the distributions of motion vectors in the most
real-world image sequences, it is clear that the occurrence possibility of horizontal-biased
motions is significantly greater than that of vertical-biased motions. Table 1 lists the
probability distributions of horizontal-biased and vertical-biased motions in seven well-
known image sequences with various motion contents for a search window ±7. In the
table, the horizontal-biased and vertical-biased motion vectors are defined as a vector
in which the angle between the motion vector and the horizontal and vertical axis, re-
spectively, is equal or small than 30X. For the video-conferencing sequence, the Salesman
sequence bears a very high center-biased motion vector distribution, i.e., containing a
large quantity of small motions, with a low H/V (horizontal/vertical) probability ratio of
17.94/14.17. Belonging to the medium-motion sequence, Foreman has a medium H/V ra-
dio of 30.17/22.62, but the Coastguard sequence has a very high H/V radio of 81.85/3.53.
Involving complicated large-motion contents, the Football sequence and Tennis sequence
have medium H/V ratios of 27.14/17.05 and 26.07/20.50, respectively, but the Garden
sequence captured by panning the camera with translation has an extremely high H/V
ratio of 92.78/2.12.

The above analysis reveals that the covering range of a search pattern may need to
be flatted horizontally in order to find the optimal motion vector quickly. This implies
that both speed and probability performances in block-matching process will be improved
for the most of real-world sequences if the shape of a search pattern is flatted horizon-
tally. A hexagon will be the most attractive search-pattern to be flatted, since it has a
more compact form than other search patterns reported previously. Based on both hor-
izontallyVflatted and hexagonal characteristics, a flatted-hexagon search pattern used in
the block-matching algorithm for motion-vector estimation is proposed [17]. The flatted-
hexagon pattern can be viewed as that a hexagon pattern is flatted horizontally or that
both top and bottom checking points of a diamond pattern are removed. Besides, similar
to the hexagon search pattern, the flatted-hexagon search pattern is composed of seven
checking points with the center surrounded by six endpoints of the flatted hexagon, as
described in Figure 2(d). Because of its small shape, the flatted hexagon pattern has a
lower hollowness degree of 4/11 than that of the hexagon pattern used in the HEXBS
algorithm. Both features of low hollowness and horizontal-biased shape will significantly
improve the matching probability over HEXBS, and a quantity of only seven checking
points required in the pattern will provide a faster search speed than DS.

On the other hand, pre-determining an initial search point through evaluating cer-
tain highly reliable predictor sets can improve the searching efficiency substantially. The
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Table 1. Probability Distributions of Horizontal- And Vertical-Biased Motions.

Sequence Format Horizontal Probability(%) Vertical Probability(%)
Salesman CIF,80 frames 17.94 14.17
Foreman CIF,300 frames 30.17 22.62

Coastguard CIF,300 frames 81.85 3.53
Garden CIF,115 frames 92.78 2.12
Tennis CIF,67 frames 26.07 20.50

Football CIF,125 frames 27.14 17.05

*Horizontal-biased and vertical-biased motion vectors are defined as the vectors with
θv ≤ 30◦ and θh ≤ 30◦ , respectively.

search using various search pattern in different search steps [16][18][19] will also improve
the search speed and matching probability. However, in point of fact, those methods
cant completely solve the local-optimal trapping problem, especially for the situation of
multiple local-optimal points existed. Besides, using a single search pattern with a simple
monotonous searching strategy is more suitable for being employed into the multipath
search than the complicated or multi-pattern search because they will largely complicate
the realization when they are used in the multipath searching process.

Theoretically, a multi-path search can increase the matching probability by escaping
being trapped into a local minimal point, but the speed performance will be substantially
reduced owing to searching multiple paths, compared to the single-path search. So, the
search pattern used in the multi-path search should be designed with less checking points
at each step to avoid reduction in speed performance. The flatted hexagonal pattern has
only seven checking points and performs better than the above well-known search patterns
when both search speed and matching probability need to be considered concurrently.
Therefore, the flatted hexagonal search pattern will be the most suitable for the proposed
multipath search approach.

2.3. MFHS Algorithm. The basic search strategy of the flatted hexagon search pattern
is to keep advancing with the center moving to any of the six endpoints and whichever
endpoint the center of the search pattern moves to. Thus, there are always three new
endpoints introduced and the other three endpoints and the original center point are
overlapped, as shown in Figure 3. A 5-point cross pattern, as plotted in Fig. 3 (b) that
is also used in those famous BMAs, is finally used in the focused inner search. Firstly, a
minimum block distortion measure is obtained by calculating the 7 search-points of the
flatted-hexagon pattern which is located at the center of the search window, as shown in
Figure 3 (a). If the minimum BDM is found at the central checking point, the search will
switch to use the 5-point cross pattern which introduces new 4 search points around that
center for ending the search, as depicted in Figure 3 (b). Then, one with minimum BDM
among these 5 checking points will be selected as the optimal solution for motion vector
estimation. Otherwise, the flatted-hexagon pattern moves toward one endpoint with a
minimum BDM and then the search continues with the same flatted-hexagon pattern
centered at that minimum BDM point in two normal forms of Figure. 3 (c).

In essence, each search path of MFHS adopts the search process of FHS, exclusive of
determining the next search-paths. To judge which paths are required for approaching
the optimal solution, a dynamic threshold is introduced to determine the local minimum
points that may be in the direction of the global minimum. The block matching error is
based on the measurement of SAD (sum of absolute differences) and SADmin denotes the
minimum SAD value among all checking points in a search step. For every search step, if
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the absolute difference between SAD value of someone point and SADmin is smaller than
or equal to a threshold T, such a point will be regarded as a local minimum. That is,

if |SADp − SADmin| 5 T, p is a local minimum (1)

Then, the center of a new FHS needs to be moved to the local minimum point. The
local-minimum decision rule (1) is used to find the next local minimum point from those
checking points of multiple new FHSs searching patterns. Such a process will be continued
until there is no new FHS excited. Thus, the motion vector is estimated at the location
of the latest SADmin. On the other hand, if the local minimum is located at the center of
FHS, a 5-point cross search is executed for ending this search-path. But, in the first step, a
5-point cross pattern will end the MFHS process if there is only one local-minimum point
located at (0, 0). The above discussion of the proposed MFHS algorithm is summarized
in Figure 4. In Figure 5, we illustrate a search process with T = 25 for finding a motion
vector (4, -1) by using 24 checking points. In the step 1, three local-minimum points
with SAD = 50, 70, and 75 are firstly derived by the local-minimum decision rule (1)
and then the SADmin is set to 50. Thus, the following step performs three search paths
based on those three local-minimum points, in which there are two new searches of FHS
centered at points of SAD = 50 and 70 and one new 5-point cross search centered at
the point of SAD = 75. Then, the value of SADmin is updated by 20. In the step 3,
only one local-minimum point of SAD = 40 is found, so the search process is reduced
to one search-path and SADmin remains as 20. Because the local-minimum of SAD =
40 is located at the center of an FHS, a 5-point cross search is executed for ending this
search-path, as described in the step 4. Then, the value of SADmin is updated by 10
and such a point of SADmin is used to estimate a motion vector as (4, -1) with 24 ( =
7+10+3+4 ) checking points.

Figure 3. Various forms of the flatted-hexagon search pattern: (a) start-
ing search-points; (b) ending search-points; (c) search points of two normal
searches. ( • : the required checking point.)

In the proposed algorithm, a fixed T may result in different searching results for image
sequences of various contents. Therefore, an adjustable scheme is introduced to provide
an appropriate T for various image sequences, as shown in the following equation (2).

T = SADmin × β (2)

In the equation, β is a parameter of local-minimum decision and its value ranges from
0 to 1 for most of the real world sequences, and the required number of checking points is
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Figure 4. The MFHS algorithm

likely linearly proportional to β. If β = 0, T will reduce to zero and this means that only
one local-minimum point is regarded as being in the direction of the global minimum at
each step, i.e., MFHS will return to FHS. If β = 1, the matching probability will be near
to 100%, i.e., the quality performance of MFHS will approach that of FS. Generally, we
cant visually distinguish the motion-compensated result using motion vectors estimated
by MFHS from that of FS when β is above 0.5, so the value of β is usually set below
0.5. It is pointed out that the noise interference and certain motion contents will affect
the matching probability because these factors will result in more local minimum points
to be verified. For the sequence containing complicated motions or zooming-captured
motions, it needs a larger β to provide a better performance in search accuracy. Thus, by
introduction of β, the value of T will be adjustable in order to make both search speed
and matching probability to be adjustable.
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Figure 5. An example of MFHS,estimating a motion vector (4, -1) by
using 24 checking points.

3. Experimental Results and Discussions. A theoretical analysis about FHS and
has been given in the above section, but the implementation with several representative
sequences of various motion contents can provide a realistic and interesting evaluation.
The following subsections will demonstrate the simulation results of FHS, MFHS, MDS
and their comparisons with other reported search algorithms.

3.1. Simulation Results of FHS. To manifest the flatted hexagonal search pattern to
be appropriate for proposed multipath search algorithm, the simulation and comparison
with other well-known search patterns are made in this subsection. For the purpose of
comparison, three previous fast BMAs including DS, HEXBS and CDS and the proposed
FHS algorithm are simulated by using the luminance component of six popular sequences:
”Salesman” (CIF, 499 frames), ”Foreman” (CIF, 300 frames), ”Coastguard” (CIF, 300
frames), ”Garden” (SIF, 115 frames), ”Tennis” (SIF, 67 frames) and ”Football” (SIF, 125
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frames), with various motion types. For each sequence, the search is performed at a block
size of 16 × 16 within a window of size ±7. Evaluation with such six sequences in terms of
MAD (mean absolute distortion) used as the BDM, matching probability and number of
search points is described in Table 2. In addition to the above frequently-used evaluation
terms, a new measure of tradeoff between search speed and matching probability, i.e., a
product of both speed and probability, is introduced. For making a reasonable comparison
of those search algorithms, the speed-probability (SP) product is defined as follows:

SP = (NFS/Nway) × (Pway/PFS) (3)

Where NFS and Nway denote the number of search points required for the FS algo-
rithm and the compared search way, respectively, and PFS and Pway mean the matching
probabilities of FS and the compared search way, respectively. Both ratios of NFS/Nway
and Pway/PFS imply the rates of speed and probability enhancement compared to the
FS algorithm, respectively. From equation (3), it reveals that the larger the SP value is,
the more the improvement over FS can be achieved.

From Table 2, it can be observed that the FHS algorithm is superior to other three
fast BMAs, i.e., DS, HEXBS and CDS, in terms of SP improvement over FS on average.
However, in the ”Salesman” sequence with a highly center-biased motion vector distribu-
tion in which there is about 96% of the motion vectors found in the central 5-point cross
region, CDS has the lowest MAD and highest matching probability and even fewer search
points than other three fast BMAs. The major reason is that the CDS algorithm uses the
halfway-stop technique for searching within the 5-point cross area. Though, the search
speed of CDS will be largely degraded if there is no a high motion-vector distribution
over the 5-point cross region in the sequence. For image sequences with a moderate or
high probability of horizontal-biased motions, such as ”Foreman”, ”Tennis”, ”Football”,
”Coastguard” and ”Garden”, the proposed FHS algorithm always gives a larger SP value
than others.

For a fair comparison, only DS, HEXBS and FHS are considered, excluding CDS, be-
cause these three algorithms all adopt a simple monotonous searching strategy with the
unitary searching-pattern and the identical ending-pattern during the block-matching pro-
cess. In respect of application, a monotonous search algorithm is always interesting and
wide-applicable owing to its easy realization while a complicated algorithm may be not
attractive since it likely needs a high-cost realization, especially for chip implementation.
From Table 2, Table 3 particularly tabulates the average SIR (speed improvement rate),
average MAD changed, average MP (matching probability) increment and average SP
increment in percentage of the proposed FHS over DS and HEXBS. As shown in Table
II and Table 3, the proposed FHS algorithm has the better SP value and always achieves
substantial probability improvement of up to 18% over HEXBS with a slight speed degra-
dation of less than 8% and a significant speed improvement of at least 21% over DS with a
little probability decrement of less than 7%. The FHS algorithm can provide the best SP
increase, about 26% and 12%, of FHS over DS and HEXBS, respectively, for the ”Garden”
sequence. This points out that the SP improvement will be enhanced with the increasing
degree of horizontal-biased motions.

Figure 6(a) and (b) plot the average number of search points per block and the average
MAD difference per pixel from subtracting MAD of FS, respectively, in a way of frame-
by-frame comparison for the ”Garden” sequence. These curves demonstrate that the
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Table 2. Simulation results of FHS and other BMAs

Salesman 352288 449frames
BMAs MAD Probability(%) Points(%) SP

FS 2.773 100.000 204.283 1
DS 2.813 95.227 12.890 15.090

HEXBS 2.825 94.287 10.564 18.232
CDS 2.782 97.578 9.414 21.173
FHS 2.784 96.589 10.637 18.548

Foreman 352288 300frames
BMAs MAD Probability(%) Points(%) SP

FS 4.144 100.000 204.283 1
DS 4.372 87.349 17.237 10.352

HEXBS 4.617 69.329 12.956 10.931
CDS 4.389 86.138 15.929 11.046
FHS 4.552 81.890 14.036 11.918

Coastguard 352288 300frames

BMAs MAD Probability(%) Points(%) SP
FS 4.798 100.000 204.283 1
DS 4.852 98.825 16.384 12.322

HEXBS 4.900 96.601 12.822 15.389
CDS 4.854 98.771 15.713 12.841
FHS 4.884 98.359 12.994 15.462

Garden 352240 115frames
BMAs MAD Probability(%) Points(%) SP

FS 8.413 100.000 202.048 1
DS 8.656 92.894 16.712 11.230

HEXBS 9.322 81.470 13.069 12.594
CDS 8.598 93.923 15.021 12.633
FHS 8.595 93.460 13.333 14.162

Tennis 352240 67frames
BMAs MAD Probability(%) Points(%) SP

FS 4.809 100.000 202.048 1
DS 5.045 91.129 16.309 11.290

HEXBS 5.438 75.238 12.891 11.792
CDS 5.102 89.141 15.516 11.607
FHS 5.338 84.954 13.415 12.794

Football 352240 125frames
BMAs MAD Probability(%) Points(%) SP

FS 10.065 100.000 202.048 1
DS 10.513 91.307 15.968 11.552

HEXBS 10.822 79.029 12.387 12.890
CDS 10.599 89.836 14.319 2.676
FHS 10.688 87.878 13.151 13.501
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Table 3. Average SIR, MAD changed and SP increment of FHS over (a)
DS and (b) HEXBS

Salesman Foreman Coastguard Garden Tennis Football

Avg. SIR(%)
(a) 21.18 22.81 26.09 25.34 21.57 21.42
(b) -0.69 -7.69 -1.32 -1.98 -3.91 -5.81

Avg. MAD Changed(%)
(a) -1.03 4.12 0.66 -0.70 5.81 1.66
(b) -1.45 -1.41 -0.33 -7.80 -1.84 -1.24

Avg. MP Increase(%)
(a) 1.43 -6.25 -0.47 0.61 -6.78 -3.76
(b) 2.44 18.12 1.82 14.72 12.91 11.20

Avg. SP Increase(%)
(a) 22.92 15.13 25.48 26.11 13.32 16.87
(b) 1.73 9.03 0.47 12.45 8.50 4.74

proposed FHS is substantially superior to DS and CDS but similar to HEXBS in terms
of number of search points and gives a similar distortion error as both DS and CDS but
an evident improvement over HEXBS.

The above experimental results manifest the superiority of the proposed FHS algorithm
to other BMAs, when both speed and quality are considered simultaneously, for the most
real-world sequences. This reveals that the flatted hexagonal pattern is more suitable to
be a search pattern employed in the proposed multipath search algorithm.

Figure 6. Comparison of DS, HEXBS, CDS and the proposed FHS for SIF
sequence ”Garden” in terms of: (a) the average number of search points per
block and (b) the average MAD difference per pixel from subtracting MAD
of FS.
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3.2. Simulation Results of MFHS. By employing the flatted hexagonal search pat-
tern in the multipath search process, MFHS will cope with the local-minimal trapping
problem to achieve a high matching probability with a moderate number of search points
required. For comparison, FS, five previous fast BMAs including 3SS, 4SS, DS, HEXBS
and CDS, and the proposed MFHS algorithm with various values of β are simulated by
using the luminance component of five popular sequences mentioned in the above subsec-
tion: ”Salesman”, ”Coastguard”, ”Garden”, ”Tennis”, and ”Football”. Evaluation using
these such five sequences in terms of MSE (mean square error) used as the BDM, match-
ing probability and number of search points is shown in Table 4, in which the search is
performed at a block size of 16 × 16 within a window of size ±7.

Obviously, Table 4 shows that the MFHS algorithm can provide a higher matching prob-
ability than other fast BMAs with only a slight increase in checking points and approaches
FS in matching-probability but requires very less checking points, when compared to FS.
In the four sequences of ”Salesman”, ”Coastguard”, ”Garden” and ”Football”, containing
various degrees of motions, MFHS provides a higher matching probability than those fast
BMAs by using β = 0.05. For the ”Tennis” sequence, involving a stronger zooming cap-
ture, the matching-probability of MFHS is greater than other fast BMAs by increasing β
to 0.1.

Figure 7(a) and (b) plot the average number of checking points per block and the
average matching probability per block, respectively, using various values of β in the
proposed MFHS for those sequences discussed in Table 4. These curves demonstrate that
the number of checking points increases about linearly with the increasing value of β and
the increase of the matching probability will be saturated at β = 1 or so. In β = 1, the
matching probability will be very near to that of FS for all sequences except ”Tennis”.
Owing to zooming capture in the ”Tennis” sequence, it requires a greater number of
checking point but achieves a lower matching probability when comparing with the other
sequences. This is because that zooming will lead to a radiate distribution of local-
minima, which needs more search-paths and also causes more mismatches. Besides, a
sequence containing large motions will also require a greater quantity of checking points,
as illustrated in the curve of ”Football”. However, another superiority of MFHS to other
suboptimal BMAs is the adjustability in search speed and accuracy by changing β.

Figure 8 demonstrates a visual comparison of using various values of β in the 66th
frame of the SIF sequence ”Tennis” motion-compensated for: (a) the 66th frame of the
original sequence (non-compensated); (b) FS, MSE = 155.7; (c) MFHS by β = 0 (i.e.,
FHS), MSE = 233.2; (d) MFHS by β = 0.1, MSE = 198.1; (e) MFHS by β = 0.22, MSE =
178.8; (f) MFHS by β = 0.36, MSE = 163.2. It can be observed that the picture quality of
MFHS is almost identical to that of FS, when using β = 0.36. In such a case, from Table
4 it also shows that MFHS only needs about 29 checking points but 202 checking points
are required by FS, with a matching probability of 96.7% compared to 100% assumed
in FS. For averaging those simulation results in Table 4, it manifests that the proposed
MFHS algorithm can achieve an average matching probability up to 98% near to that
of FS and about 10 times of checking points faster than FS. It should be pointed out
that the search scheme with pre-determination of an initial search point is not involved
in the above comparison owing to fairness. However, the strategy of pre-determining an
initial search point can be also introduced into the MFHS algorithm to increase the search
efficiency.
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Table 4. Simulation results of MFHS and other BMAs.

Salesman, CIF, 499 frames

BMA MSE Probability Points

FS 17.965 1.000 204.283

3SS 18.850 0.946 23.212

4SS 18.704 0.953 16.144

DS 18.654 0.952 12.890

HEXBS 18.749 0.943 10.564

CDS 18.232 0.976 9.414

MFHS(β) MSE Probability Points

β=1 17.971 0.998 23.914

β=0.5 17.975 0.991 14.413

β=0.36 18.011 0.987 12.789

β=0.22 18.044 0.984 11.912

β=0.1 18.102 0.980 11.417

β=0.55 18.152 0.977 11.078

β=0 18.227 0.966 10.637

Garden, SIF, 115 frames

BMA MSE Probability Points

FS 281.781 1.000 202.048

3SS 333.443 0.834 23.204

4SS 308.586 0.868 18.696

DS 295.254 0.929 16.712

HEXBS 324.485 0.815 13.069

CDS 294.841 0.939 15.021

MFHS(β) MSE Probability Points

β=1 281.888 0.997 38.988

β=0.5 282.325 0.991 26.175

β=0.36 283.039 0.987 22.583

β=0.22 285.064 0.980 18.651

β=0.1 287.398 0.968 15.253

β=0.55 289.598 0.956 14.115

β=0 292.974 0.935 13.333

Coastguard, CIF, 300 frames

BMA MSE Probability Points

FS 63.198 1.000 204.283

3SS 67.259 0.974 23.375

4SS 66.898 0.984 18.500

DS 66.111 0.988 16.509

HEXBS 68.135 0.966 12.909

CDS 66.123 0.988 15.917

MFHS(β) MSE Probability Points

β=1 281.888 0.999 28.473

β=0.5 282.325 0.998 18.026

β=0.36 283.039 0.997 16.441

β=0.22 285.064 0.995 15.047

β=0.1 287.398 0.992 13.972

β=0.55 289.598 0.989 13.512

β=0 292.974 0.984 13.075

Football, SIF, 125 frames

BMA MSE Probability Points

FS 372.692 1.000 202.048

3SS 411.197 0.886 23.104

4SS 413.459 0.897 18.097

DS 416.761 0.913 15.968

HEXBS 437.712 0.790 12.387

CDS 425.528 0.898 14.319

MFHS(β) MSE Probability Points

β=1 372.893 0.998 68.017

β=0.5 373.703 0.994 38.656

β=0.36 375.545 0.989 31.568

β=0.22 380.985 0.981 24.091

β=0.1 394.986 0.948 17.648

β=0.55 409.136 0.920 15.128

β=0 436.618 0.879 13.151

Tennis, SIF, 67 frames

BMA MSE Probability Points

FS 116.944 1.000 202.048

3SS 116.944 0.729 23.111

4SS 139.890 0.850 18.455

DS 132.398 0.911 16.309

HEXBS 150.450 0.752 12.891

CDS 134.068 0.891 15.516

MFHS(β) MSE Probability Points

β=1 117.446 0.981 69.430

β=0.5 118.993 0.967 36.904

β=0.36 121.438 0.960 29.262

β=0.22 126.981 0.944 22.340

β=0.1 130.967 0.910 16.610

β=0.55 135.831 0.883 14.660

β=0 141.779 0.850 13.415
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Table 5. Simulation results of MDS and other BMAs.

Tennis (CCIR601)

BMA MSE Probability Points

FS 162.309 1 213.479

3SS 194.145 0.735 24.058

4SS 185.764 0.770 16.464

DS 197.392 0.711 12.853

HEXBS 191.045 0.744 14.243

CDS 199.122 0.708 13.174

MFHS(β) MSE Probability Points

β=1 162.349 0.997 98.020

β=0.5 162.758 0.988 63.384

β=0.36 163.681 0.976 51.376

β=0.22 167.035 0.947 38.077

β=0.1 173.094 0.893 24.616

β=0.55 178.263 0.840 19.701

Garden (CCIR601)

BMA MSE Probability Points

FS 142.496 1 213.479

3SS 178.941 0.763 24.161

4SS 171.145 0.860 20.582

DS 172.140 0.826 15.326

HEXBS 172.445 0.855 21.808

CDS 174.738 0.846 15.614

MFHS(β) MSE Probability Points

β=1 142.598 0.995 69.094

β=0.5 143.057 0.989 51.25

β=0.36 143.642 0.984 44.580

β=0.22 145.131 0.972 35.930

β=0.1 149.365 0.940 26.273

β=0.55 154.828 0.905 22.868

Mobile (CCIR601)

BMA MSE Probability Points

FS 39.008 1 213.479

3SS 48.668 0.827 24.065

4SS 39.610 0.931 16.431

DS 46.048 0.741 13.223

HEXBS 39.453 0.936 12.850

CDS 39.692 0.926 13.477

MFHS(β) MSE Probability Points

β=1 39.112 0.996 71.872

β=0.5 39.116 0.995 46.447

β=0.36 39.126 0.994 39.865

β=0.22 39.144 0.992 31.642

β=0.1 39.278 0.982 22.196

β=0.55 39.404 0.960 18.571

Football (CCIR601)

BMA MSE Probability Points

FS 305.439 1 213.479

3SS 332.185 0.830 24.080

4SS 339.107 0.845 18.582

DS 348.651 0.735 13.769

HEXBS 346.765 0.830 17.457

CDS 358.865 0.721 14.207

MFHS(β) MSE Probability Points

β=1 305.474 0.999 89.554

β=0.5 305.682 0.997 64.072

β=0.36 306.087 0.994 54.934

β=0.22 307.953 0.984 43.151

β=0.1 314.03 0.954 30.339

β=0.55 321.644 0.921 24.232

Susie (CCIR601)

BMA MSE Probability Points

FS 21.541 1 213.479

3SS 25.105 0.638 24.078

4SS 23.561 0.741 17.652

DS 24.332 0.595 13.501

HEXBS 23.814 0.731 16.056

CDS 24.112 0.650 14.001

MFHS(β) MSE Probability Points

β=1 21.548 0.997 121.485

β=0.5 21.613 0.991 95.049

β=0.36 21.674 0.985 84.495

β=0.22 21.829 0.971 65.528

β=0.1 22.220 0.92 35.398

β=0.55 22.646 0.851 24.186
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Figure 7. The searchspeed/accuracy performance of MFHS in various val-
ues of β for SIF sequences. (a) Average number of checking points per block.
(b) Average matching probability per block
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(a) (b)

(c) (d)

(e) (f)

Figure 8. A visual comparison of using various values of β in the SIF
sequence ”Tennis” motion-compensated for : (a) the 66th frame of the
original sequence (non-compensated) ; (b) FS, MSE = 155.7; (c) MFHS,β=0
, MSE = 233.2; (d) MFHS,β0.1 , MSE = 198.1; (e) MFHS,β=0.22 , MSE
= 178.8; (f) MFHS,β=0.36 , MSE= 163.2.
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3.3. Simulation Results of MDS. If the frame size becomes larger, like CCIR601
format (i.e., 720 × 480) or so, the search performance of MFHS will be degraded owing to
its small-size search pattern. Using such a frame size, the diamond will be the best search
pattern for the multipath search algorithm. The search accuracy of MDS is better than
MFHS but the search speed is only slightly smaller than that of MFHS in most real-world
sequences of CCIR601 format. The major reason is that the search-pattern of MDS is
bigger than that of MFHS, where a larger search-pattern is more suitable for searching in
a higher-resolution sequence.

Table 5 shows evaluations of MDS by comparing with six BMAs including FS, 3SS, DS,
HEXBS, CDS, and FHS described previously through using five sequences of CCIR601-
format: ”Susie”, ”Mobile”, ”Tennis”, ”Garden” and ”Football”, where these BMAs search
the optimal point using a block size of 16x16 within a window of size ±7. In the sequence
”Susie”, the monotonousness degree of error surface is slight and thus it results in many
local optimal points, besides, it also has a low zero motion vector distribution of about
9.22%. For this reason, using such a sequence will generate lower matching probabilities
for those fast BMAs than other sequences. Also, this makes MDS to need more checking
points because there are more candidates of the optimal path to search. Considering
the sequence ”Mobile”, there exists a large quantity of small horizontal motions, i.e.,
a high distribution of motion vectors (±1, 0), about 64.36%. Hence, those fast BMAs
with a search pattern of small c/n ratio, such as DS, CDS and FHS, achieve a higher
matching probability than using the other sequences. For the other three sequences of
”Tennis”, ”Garden”, and ”Football”, the reduction in search accuracy of FHS when using
the CCIR601 sequence is more significant than that of other fast BMAs, compared to
using the previous two sequences of ”Susie” and ”Mobile”. This is because that FHS
employs a small-size search pattern. On the other hand, DS has the best search accuracy
among those fast BMAs compared in Table 5 for all sequences and thereby the diamond
pattern is selected as the search pattern adopted in the multipath search algorithm for
using the CCIR-601 sequences. For those five sequences in Table 5, MDS provides a
greater matching probability than other fast BMAs by using β = 0.05 and approach FS
in matching probability, i.e., above 0.98, by increasing β to 0.36. Generally, people can’t
almost visually discriminate the difference between two motion-compensated results of
using motion vectors searched by FS and MDS when the matching probability is above
0.96.

Figure 9 describes the search speed/accuracy performance of MDS in various values of
β using five CCIR601 sequences, ”Susie”, ”Mobile”, ”Tennis”, ”Garden” and ”Football”,
involving different degrees of motion, where the search speed and search accuracy are
evaluated by average number of checking points per block and average matching proba-
bility per block, respectively. Like MFHS, these curves of MDS in Figure 9 shows that the
number of checking points increases about linearly with the increasing value of β, except
the curve of ”Susie”, and the increase of the matching probability will be saturated at β
= 1 or so. Owing to having only slight monotonousness of error surface in the ”Susie”
sequence, it makes MDS to require more checking points to search more possible optimal
paths, i.e., the curve has a larger slope than other curves of sequences, when β is below
0.4. The matching probability is almost identical to that of FS, i.e., above 0.99, for all
sequences when β is adjusted up to 1.
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Figure 9. The search speed/accuracy performance of MDS in various val-
ues of β for CCIR601 sequences. (a) Average number of checking points
per block. (b) Average matching probability per block.
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3.4. Discussions. From the above experimental results, the proposed multipath search
algorithm can achieve an average matching probability up to 98and about 10 times of
checking points faster than FS in most of real-world sequences. Besides, the BDM thresh-
old will be adjustable for the purpose of adjusting the search speed and search accuracy
specified in the certain applications. However, the proposed multipath search algorithm
will spend more search time when meeting a low-contrast image sequence, in which there
are more local minimum BDM points needed to be checked. In a low-contrast image
sequence, it will generate many quasi-zero motion vectors because the pixel difference is
very slight. To cope with this problem, a zero-motion prejudgment [20] may be employed
to initially find zero motion vectors to avoid further searching for the optimal point.
This is because most video compression standards only require the motion vector that is
acceptable, not the optimal.

4. Conclusions. In this paper, we have proposed a novel and simple speed/accuracy-
adjustable block-matching algorithm based on multipath search scheme. By the multipath
search strategy, it can substantially reduce the local-minimum trapping problem to achieve
a high matching probability near to FS but still obtain about ten times of search speed
faster than FS. It also provides adjustability in search speed/accuracy by a local-minimum
decision parameter. Besides, the implementation is not complex because the number of
search paths required is determined by a simple decision rule of BDM and each path is
searched by use of the identical search pattern. Furthermore, in theory any search pattern
can be also used in the proposed multipath search method for various-purpose applica-
tions. The experimental results imply that the multipath flatted-hexagon search (MFHS)
algorithm and multipath diamond search (MDS) algorithm are suitable for low-resolution
(e.g. CIF, 352x288 or SIF, 352x240) and high-resolution (e.g. CCIR601, 720x480)) image
sequences, respectively. When the search accuracy (i.e., picture quality) is considered for
approaching that of FS, the proposed multipath search algorithm will be more attractive
than other suboptimal BMAs.
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