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Abstract. In this paper, we propose a method for rapid search of adjacent commu-
nities. Our method is based on a new data structure to maintain the adjacent relation
between communities. We prove the correctness and efficiency of the method. Then, we
show how to apply the method in community discovery algorithms. In this paper, we
choose an algorithm based on vertex similarity and perform it on several famous datasets.
The experimental results show that our method not only improves the efficiency but also
the quality.
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1. Introduction.

1.1. Background. The term network is used to study the structure and dynamics of
systems across a variety of fields [1]. Each node (or vertex) of a network represents an
individual, and each edge characterizes the relations between a pair of nodes.

Recent studies [2] suggest that many networks in society and technology often exhibit
hierarchical community structure. In addition, the communities correspond to known sets
dealing with related topics, such as citation networks [3], food webs [4], and biochemical
networks [5].

Community discovery plays an important role for the demographic identification of
network components and the function of dynamical processes that operate on networks
(such as the spread of opinions and diseases) [6].

Community discovery of networks has been well studied. Traditional methods include
the Kernighan-Lin algorithm [7], spectral partitioning [8], or hierarchical clustering [9].
There are also many other kinds of methods based on different technologies such as random
walks [10] and synchronization [11]. For more details, the reader can refer to the survey
article by Fortunato [6].

This paper considers a prominent set of classical techniques named hierarchical cluster-
ing algorithms such as the linkage clustering methods used in phylogenetic biology [12].
Linkage clustering is an example of an agglomerative method, as it starts from individual
nodes and finally connects the entire network. The procedure of agglomerative methods
is as follows: Initially, each individual node forms a community. Then, the nodes are
merged sequentially into larger communities. At each step, we calculate the similarities
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(distances) between the communities including the new generated ones, and merge the
two maximally-similar (closest) communities.
Different linkage clustering methods utilize different measures of the similarity between

clusters. For instance, in average linkage clustering, the similarity of two communities
X and Y is defined as the average similarity between any pair of nodes x ∈ X and
y ∈ Y . The order of the merge operation and the hierarchical structure are illustrated
by a dendrogram whose depths indicate the steps at which two communities are joined.
More details about dendrogram are introduced in [12].

 6  7  2  5 14 15 16 17 18 19 20 21 22 27 28  3  4  8  9 10 11 12 13 23 24 25 26 29 30  1

Figure 1. An example of dendrogram.

During the sequence of merge operation, we find a problem: there are some community
pairs of which the two nodes are not adjacent with respect to the topology of the net-
work. Since the topology reveals the interaction between the nodes, these choices are not
reasonable. Hence, we wish to select the maximally-similar node pair which are adjacent.
The problem statement and previous results are given first.

1.2. Problem Statement and Preliminary. Community structure has no universal
accepted definition [2]. One widely used one is the partition of vertices into groups such
that there is a higher edge density within groups than the edge density between them.
Given network G, V and E denote the sets of its vertices and edges respectively.
A community structure is a partition P = C1, C2, . . . , Ck of network G such that

C1

∪
C2

∪
. . .

∪
Ck = V (G) and Ci

∩
Cj = ∅ for i ̸= j.

It appears that the number of the partitions of one network is numerous. One measure
is necessary for evaluating the quality of different partitions. One of the most popular
quality functions is modularity [13]. The definition of modularity states that communities
in a good partition have high intra-community edge density and less inter-community
edge density:

Q(P) =
1

2m
Σij(Aij −

kikj
2m

)δ(Ci, Cj) (1)

where Aij is the adjacency matrix, m is the total number of the edges, and ki is the
degree of vertex i. The function δ yields one if vertices i and j are in the same community
(Ci = Cj), zero otherwise.
When one partition has modularity larger than 0.3∼0.4, it can be concluded that this

partition has community structure. The larger the modularity is, the more prominent
and clear its community structure is. Community discovery algorithms are supposed to
find an optimal partition P which makes the modularity Q(P) maximum.
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We investigate on the agglomerative algorithms in this paper. Our task is to select the
community pair of which the two communities are adjacent. The adjacency of community
is given as follows: community X and community Y are said to be adjacent if there is a
node x ∈ X and a node y ∈ Y such that x and y are adjacent.

One straightforward method is to search the every node pair of two communities in
order to determine whether the node pair is adjacent. Next, we show the time complex-
ity of this method. Suppose the two communities are X and Y . Let E(X) and E(Y )
be the edge set of X and Y . Then, checking the adjacency of every node pair needs
O(min{|E(X)|, |E(Y )|}) time, which is O(|E(G)|). When a new community is gener-
ated, it is required to determine the adjacency between it and the other communities.
Since there are |V (G)| − 1 (temporary) communities generated through an agglomera-
tive algorithm, the total time for checking the adjacency is O(|E(G)| × (|V (G)| − 1)) =
O(|E(G)||V (G)|).

This paper proposes a fast algorithm for checking the adjacency between the communi-
ties, of which the time complexity is O(|V (G)|2). The remaining of our paper is organized
as follows: Section 2 proposes our algorithm. Section 3 shows the experimental results.
Conclusions are given in Section 4.

2. Algorithm Description. Firstly, we introduce the presentation of the adjacency
relation and its data structure. Some necessary notations are given, at first. Let G be the
network with vertex set V (G) and edge set E(G). Integer n = |V (G)| is the number of
the vertices of G. Adjacency list is a common data structure to represent the adjacency
between nodes or edges. The adjacency list of network G consists of n link lists. That
is, each node is associated with one adjacency list which contains the edges (nodes) that
adjacent to this node. An example is given in Fig. 2.

Figure 2. An example of graph and its adjacency list.

We introduce some necessary denotations. Let IS be the item set of one adjacency list,
and AdjHead(u) be the header of the adjacency list which is associated with node u. We
connect the items which present node v by a link list of which the header is denoted by
ItemHead(v). This link list is called the item list of node v. The headers of these link
lists are illustrated in triangles in Fig. 3.

For each item t ∈ IS, it contains the following data fields:

(I) previous pointer of adjacency list
(II) successive pointer of adjacency list
(III) successive pointer of item list

By means of the data structure above, it shows that we can search the nodes that are
adjacent to a certain node in less than |V (G)| time, and delete the related items of certain
nodes also in less than |V (G)| time.

Algorithm for Searching Adjacent Communities
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Figure 3. An example of graph and its adjacency list.

Input: a network G, pair merge update demands
Output: return the adjacent nodes required by the query
Procedure 1: Initialization
1.1) Build the adjacency list for each node of G;
1.2) Build the item list for each node of G.

Procedure 2: Update of pair merge
Suppose the pair node has been merged is (u, v), where u, v are communities;

2.1) For each item t in the adjacency list of v, if t is not in the adjacency list of
u, add t into the adjacency list of u;

2.2) Delete the items in the item list of v;
2.3) Delete the adjacency list of v.

Procedure 3: Adjacency Query
Return the adjacency list of the node related with the query.

Next, we provide the complete algorithm for hierarchical community discovery.

Algorithm for Hierarchical Community Discovery

Input: a network G and the similarity matrix SM
Output: the optimal community structure (partition)
1) Call the Procedure 1 for initialization.
2) While (there is more than one community) Do
3) Begin Merge the maximal-similarity community pair of which the communities are

adjacent; (Procedure 3 is called in this step)
4) Call Procedure 2 for update operation;
5) Calculate the modularity
6) If the current structure obtains the maximum value of modularity, record the struc-

ture;
7) End of while
8) Output the structure whose modularity is maximum.

3. Experiments. In order to perform experiments, it is required to complete our algo-
rithm for community discovery. We choose the well-known similarity measure: common
neighbor ratio, which is defined as follows. For a node u ∈ V (G), let Γ(u) be the the
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set of neighbor nodes of u. It is natural that two nodes u and v are more likely if they
share more common neighbor nodes. In addition, if the sharing neighbors take up more
proportion of all their neighbors, it also shows more similarity between these two nodes.

sCNR
uv =

|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

(2)

Note that the choice of the similarity measure determines the quality of community
discovery. We do not discuss the quality of the measure, but the improvement of the
quality caused by our algorithm.

Firstly, we show the improvement of the quality in several famous datasets. Then, we
present the reduction of the time consuming using our algorithm.

3.1. Ravasz Network. In this subsection, we will present the results working on the
hierarchical network proposed by Ravasz et al. [14]. As Ravasz et al. pointed out, con-
ventional network clustering methods are hard to discover in the hierarchical community
structure of such a network.

Figure 4. Community structure of Ravasz’s network without adjacency restrict.

Figure 4 shows the result output by the algorithm of which the pair merge is without
adjacency restrict. The network is divided into 7 communities which are (3) (8) (18) (23)
(1, 2, 4, 5, 6, 7, 9, 10) (11, 12, 13, 14, 15, 16, 17, 19) (20, 21, 22, 24, 25). The modularity
is 0.2345. It is clear that node 20 is not adjacent to the other nodes (21, 22, 24, 25) of its
community. Thus, the result is not good.

We test our algorithm in Section 2. The result is given in Fig. 5. We can see the result-
ing communities corresponding to the topology partitions which are (1,2,5,4,3) (6,9,7,10,8)
(11,12,14,15,13) (16,17,19,20,18) (21,22,24,25,23). The modularity we obtained is 0.55.

3.2. Dolphins Network. Next, we investigate the performance on the dolphin social
network, representing the social interactions of bottlenose dolphins living in Doubtful
Sound, New Zealand. The network was studied by the biologist David Lusseau [15], who
divided the dolphins into two groups according to their age.

Figure 7 presents the result output by the algorithm without adjacency restrict. It is
clear that he structure does not correspond to the situation in real world. The result of
our algorithm also contains 5 communities, and the values of modularity are the same
which is 0.5042. However, the structure is more similarity with the two communities
which is the correct partition indicating by the red line in Fig. 8.

We also test the classical social network of Zachary’s karate club [13] and American
college football [16]. Our algorithm outputs the same results as the ones produced by the
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Figure 5. Community structure output by our algorithm.

Figure 6. Dendrogram obtained by our algorithm.

Figure 7. Community structure of dolphins network without adjacency restrict.

algorithm without adjacency restrict. The community structures obtain the best partition
known by far [6]. For example, the result of karate club network is given in Fig. 9 of
which the modularity is 0.4020. For American college football network, the number of
communities is 9, and the modularity is 0.6042.
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Figure 8. Community structure of dolphins network by our algorithm.

Figure 9. Community structure of karate network by our algorithm.

Figure 10. Community structure of football network by our algorithm.

Since the adjacency restrict achieves better quality, we next to show our algorithm for
searching adjacent communities is more efficient than the algorithm developed by search-
ing the edges in one community. We denote the latter algorithm by “Edge Search(ES)”
algorithm. The procedure of ES algorithm is given as follows: given a community pair
(X, Y ), choose community which contains fewer edges. Suppose community X has fewer
edges. Then, search the edges of X to check whether community X is adjacent to Y .
Note that the ES algorithm is just searching the edges out of the community which is
more efficient than the one considers all the edges.

Finally, we show the reduction of computation time by our algorithm. We sum up
all the basic operations including visit one node or edge, visit link list item, reading or
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Table 1. Statistic data of basic operations

Ravasz dolphins karate football
ES algorithm 104 379 179 1787
Our algorithm 65 223 91 872

writing a value. From Table 1, it indicates that our algorithm reduces about 50 percent
basic operations which are used for checking adjacency.

4. Conclusions. In the agglomerative methods for community discovery, there is no
adjacency restrict when selecting the community pair to merge. This results in the situ-
ation that non-adjacent communities are chosen to be merged, which not only conflicts
to common sense but also reduces the quality of final community structure. We propose
a fast algorithm for checking the adjacency between any community pair. The experi-
ment results show that our algorithm improves quality of final discovery result, and is
more efficient than ES algorithm which is developed by searching edge connecting out of
community.
We hope that the presented algorithm will help finding communities corresponding to

the actual groups in real world.
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