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Abstract. Reconfigurable computing is emerging as the new area for satisfying the si-
multaneous demand for application performance and flexibility. The ability to customize
the architecture to match the computation and the data flow of the application has demon-
strated significant performance benefits compared to general purpose architectures. In
signal processing, multimedia, high speed communication are the major application do-
mains that have significant heterogeneity in their computation and communication struc-
ture with various advantages. The reconfigurability of the hardware permits adaptation of
the hardware for specific computations in each application to achieve higher performance
compared to software. Complex functions can be mapped onto the architecture achieving
higher silicon utilization and reducing the instruction fetch and execute bottleneck. In
this paper we proposed and implemented a high speed CODEC (for Lossless Compres-
sion) which compress the real time image for high speed communication..
Keywords: reconfigurable hardware; CODEC; lossless compressor; FPGA, Huffman
coding, CAM, Multimedia Image Compressor.

1. Introduction. The most obvious benefit of data compression is reduction in the vol-
ume of data which must be stored .This is important where the storage media itself is
costly (such as memory) or the other parameters, such as power consumption, weight or
physical volume, are critical to product feasibility. Using the data compression reduce the
total storage requirement, thus effecting the cost saving. The use of lossless data compres-
sor can bring about a number of increasingly important benefits to an electronic system.
With the audio and video compression systems (such as JPEG and MPEG) which are lossy
and hence only recreate an approximation of the original data. The push to roll out high
definition video enabled video and imaging equipment is creating numerous challenges for
video system architects. The increased image resolution brings with it higher performance
requirements for basic video data path processing and next-generation compression stan-
dards, outstripping that which standalone digital signal processors (DSPs) can provide.
In addition, the system specifications require designers to support a range of standard
and custom video interfaces and peripherals usually not supported by off-the-shelf DSPs.
While it is possible to go the route of application specific integrated circuits (ASICs) or
use application specific standard products (ASSPs), these can be difficult and expensive
alternatives that might require a compromised feature set. Furthermore, these choices
can hasten a short product life cycle and force yet another system redesign to meet varied
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and quickly changing market requirements. Field programmable gate arrays (FPGAs)
are an option that can bridge the flexibility gap in these types of designs. Additionally,
with the increasing number of embedded hard multipliers and high memory bandwidth,
the latest generation of FPGAs can enable customized designs for video systems while
offering a manifold performance improvement over the fastest available stand-alone DSPs.
Designers now have the ability with state-of-the-art FPGA co-processor design flows to
implement high-performance DSP video and image processing applications. The major
advantages to design a compressor into a FPGA, is first the device can be customized to
suit a specific application through post-fabrication, user defined programming , second
the system logic functionality and system response and execution of a particular job can
be made fast /slow depending upon the requirement. In our proposed system needs that
facility of reconfigurable computing that can vary automatically during the execution of
the system in real time processing. The impact of reconfigurable hardware on DSP more
thorough discussions of FPGAs and reconfigurable computing can be found in [1V3] and
[4].

2. The Requisite behind the Compression Technique. The following statement
(or something similar) has seen made many times over the 20-year history of image and
video compression: ‘Video compression will become redundant very soon, once transmis-
sion and storage capacities have increased to a sufficient level to cope with uncompressed
video.’ It is truth that both storage and transmission capacities continue to increase.
There is a clear gap between the high bit rates demanded by uncompressed video and
the available capacity of current networks and storage media. The purpose of video com-
pression (video coding) is to fill this gap. A video compression system aims to reduce
the amount of data required to store or transmit video while maintaining an ‘acceptable’
level of video quality. Most of the practical systems and standards for video compression
are ‘lossy’, i.e. the volume of data is reduced (compressed) at the expense of a loss of
visual quality. The quality loss depends on many factors, but in general, higher com-
pression results in a greater loss of quality. A well-designed video compression system
gives very significant performance advantages for visual communications at both low and
high transmission bandwidths. At low bandwidths, compression enables applications that
would not otherwise be possible, such as basic-quality video telephony over a standard
telephone connection. At high bandwidths, compression can support a much higher visual
quality. For example, a4 .7 Giga byte DVD can store approximately 2 hours of uncom-
pressed QCIF video (at 15 frames per second) or 2 hours of compressed ITU-R 601 video
(at 30 frames per second). Most users would prefer to see ‘television-quality’ video with
smooth motion rather than ‘postage-stamp’ video with jerky motion. Video compres-
sion and video CODECs will therefore remain a vital part of the emerging multimedia
industry for the foreseeable future, allowing designers to make the most efficient use of
available transmission or storage capacity. In this paper we proposed and implemented
an intelligent adaptive video encoder (compressor) and decoder (decompress or) using
reconfigurable hardware FPGA.

2.1. Compression Techniques. When we speak of a compression technique or a com-
pression algorithm we actually refer to two algorithms: the first one takes an input X
and generates a representation XC that requires fewer bits; the second one is a recon-
struction algorithm that operates on the compressed representation XC to generate the
reconstruction Y .In Lossless compression schemes, in which Y is identical to X, and for
lossy compression force Y to be different from X but generally provide much higher com-
pression than lossless ones. In fact Shannon showed that the best performance achievable
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by a lossless compression algorithm is to encode a stream with an average number of bits
equal to the I=N value. On the contrary lossy algorithms do not have upper bounds to
the compression ratio.

In the Lossless compression techniques it involves no loss of information. If data have
been losslessly compressed, the original data can be recovered exactly from the compressed
data. Lossless compression is generally used for discrete data, such as text, computer-
generated data and some kind of image and video information. There are many situations
that require compression where we want the reconstruction to be identical to the original.
There are also a number of situations in which it is possible to relax this requirement in
order to get more compression: in these cases lossy compression techniques have to be
used.

In the case of lossy compression techniques it involves some loss of information and
data that have been compressed using lossy techniques generally cannot be recovered
or reconstructed exactly. In return for accepting distortion in the reconstruction, we
can generally obtain much higher compression ratios than it is possible with lossless
compression. Whether the distortion introduced is acceptable or not depends on the
specific application: for instance if the input source X contains a physical information
plus noise, while the output Y contains only the physical signal, the distortion introduced
is completely acceptable.

2.2. Performance measurement of Compression Techniques. A compression al-
gorithm can be evaluated in a number of different ways. We could measure the relative
complexity of the algorithm, the memory required to implement the algorithm, how fast
the algorithm performs on a given machine or on dedicated hardware, the amount of
compression and how closely the reconstruction resembles the original.

A very logical way of measuring how well a compression algorithm compresses a given
set of data is to look at the ratio of the number of bits required to represent the data before
compression to the number of bits required to represent the data after compression. This
ratio is called compression ratio. Suppose of storing an image made up of a square array
of 256x256 8-bit pixels: it requires 64 K-Bytes. If the compressed image requires only 16
K-Bytes we would then say that the compression ratio is 4. Another way of reporting
compression performance is to provide the average number of bits required to represent a
single sample. This is generally referred to as the rate. For instance, for the same image
described above, the average number of bits per pixel in the compressed representation is
2: thus the rate is 2 bits/pixel. In lossy compression the reconstruction differs from the
original data. Therefore, in order to determine the efficiency of a compression algorithm,
we have to find some way to quantify the difference. The difference between the original
data and the reconstructed ones is often called distortion. This value is usually calculated
as a mathematical or perceptual difference among data before and after compression.

In the lossless compression algorithms, we measure the compression effect by the amount
of shrinkage of the source file in comparison to the size of the compressed version. Fol-
lowing this idea, several approaches can be easily understood by the definitions below,

Compression ratio is simply the ratio of the output to the input file size of a com-
pression algorithm, i.e. the compressed file size after the compression to the source file
size before the compression.
Compression ratio = size after compression / size before compression
Compression factor is the reverse of the Compression ratio
Compression factor = size before compression / size after compression
Saving percentage is the shrinkage as a percentage.
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Space of Memory saving (%) ≈ (size before compression - size after compres-
sion) / size before compression

2.3. Shannon’s theorem for Information Coding. Without going into details we
just want to recall Shannon’s theorem [13]. He defines the information contents of a
message in the following way: given a message which is made up of N characters in total
containing n different symbols, the information contents measured in bits of the message
is the following:

I = N
n

∑

i=1

(−pi log (pi)) (1)

Where pi is the occurrence probability of symbol i. A symbol depends on the application:
it might be an ASCII code, 16 or 32 bit words, words in a text and so on. A practical
illustration of the Shannon theorem is the following: let us assume to measure a charge or
any other physical quantity using an 8-bit digitizer. Very often measured quantities will
be distributed approximately exponentially. Let us assume that the mean value of the
statistical distribution is one tenth of the dynamic range, i.e. 25.6. Each value between 0
and 255 is regarded as a symbol. Applying the Shannon’s formula with n = 256 and with
the equation 2.we obtain a mean information content I=N of 6.11 bits per measured value
which is almost 25% less than the 8 bits we need saving the data as a sequence of bytes.
Even if we had increased the dynamic range by a factor of 4 using a 10-bit ADC, it turns
out that the mean information contents expressed as the number of bits per measurement
would have been virtually the same and hence the possible compression gain even higher
(39%). This might be surprising but considering that an exponential distribution delivers
a value beyond ten times the mean only every e10= 22026 samples.

Pi =
e
−(i+0.5)

25.6

25.6
(2)

Based upon the requirements of reconstruction, data compression schemes can be divided
into two broad classes on is lossy Compression and another one is Loss less Compression.

3. A General Compressor CODEC Architecture. A video signal consists of a se-
quence of individual frames. Each frame may be compressed individually using an image
CODEC as described above: this is described as intra Vframe coding, where each frame is
’intra’ coded without any reference to other frames. However, better compression perfor-
mance may be achieved by exploiting the temporal redundancy in a video sequence (the
similarities between successive video frames). This may be achieved by adding a ‘front
end’ to the image CODEC, with two main functions:
1. Prediction: create a prediction of the current frame based on one or more previously
transmitted frames.
2. Compensation: subtract the prediction from the current frame to produce a ‘residual
frame’

The residual frame is then processed using an ‘image CODEC’. The key to this approach
is the prediction function: if the prediction is accurate, the residual frame will contain
little data and will hence be compressed to a very small size by the image CODEC. In
order to decode the frame, the decoder must ‘reverse’ the compensation process, adding
the prediction to the decoded residual frame (reconstruction). This is inter-frame coding:
frames are coded based on some relationship with other video frames, i.e. coding exploits
the interdependencies of video frames.

A motion-compensated decoder is usually simpler than the corresponding encoder. The
decoder does not need a motion estimation function (since the motion information is
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transmitted in the coded bit stream) and it contains only a decoding path (compared
with the encoding and decoding paths in the encoder).

In this paper we also concentrate on a specific block of a proposed CODEC system .Here
we mainly discussed with a specific block implementation that is the Huffman coding with
a novel adaptive CAM based compression technique[], and we also simulated and tested
into the reconfigurable hardware.

system .Here we mainly discussed with a specific block implementation that is the 
Huffman coding with a novel adaptive CAM based compression technique[], and 
we also simulated and tested into the reconfigurable hardware.  

4. Huffman Coding 

Huffman based compression algorithm [5-7] encodes data samples in this way:  
symbols that occur more frequently (i.e. symbols having a higher probability of 
occurrence) will have shorter code words than symbols that occur less frequently. This 
leads to a variable-length coding scheme, in which each symbol can be encoded with 
a different number of bits. The choice of the code to assign to each symbol or, in other 
words, the design of the Huffman look-up table is carried out with standard criteria. 
An example can better explain this sentence. Suppose to have 5 data, a1, a2, a3, a4 
and a5, each one with a probability of occurrence, P(a1) = 0:2, P(a2) = 0:4, P(a3) = 
0:2, P(a4) = 0:1, P(a5) = 0:1; at first, in order to write down the encoding c(ai) of each 
data ai, it is necessary to order data from the higher probable to the lower probable 
one, as shown in Table. 1. The Huffman coding blocks are shown into the figure 2, 
and the simulated result shown in the figure. 4. 
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Figure 1. The general architecture of CODEC System.

4. Huffman Coding. Huffman based compression algorithm [5-7] encodes data samples
in this way: symbols that occur more frequently (i.e. symbols having a higher probability
of occurrence) will have shorter code words than symbols that occur less frequently. This
leads to a variable-length coding scheme, in which each symbol can be encoded with a
different number of bits. The choice of the code to assign to each symbol or, in other
words, the design of the Huffman look-up table is carried out with standard criteria. An
example can better explain this sentence. Suppose to have 5 data, a1, a2, a3, a4 and a5,
each one with a probability of occurrence, P(a1) = 0:2, P(a2) = 0:4, P(a3) = 0:2, P(a4)
= 0:1, P(a5) = 0:1; at first, in order to write down the encoding c(ai) of each data ai, it
is necessary to order data from the higher probable to the lower probable one, as shown
in Table. 1. The Huffman coding blocks are shown into the figure 2, and the simulated
result shown in the figure. 4.

Table 1. Final Huffman Coded Table.

Data Probability Code
a2 0.4 1
a1 0.2 01
a3 0.2 000
a4 0.1 0010
a5 0.1 0011
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has 16, 32 or 64 tuples. The n-tuple dictionary is formed by a total no of n*32 
CAM cells. Each cell stores one bit of data tuple and it can maintains its current 

Table 1: Final Huffman Coded Table  

Fig.2. Basic Flow Structure of Huffman Coding 

Codec Input 
Stream 

Symbol Model Encoder 
Output 
Stream 

Probabilities 
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5. Proposed Compressor Block with CAM and Huffman coder. There are lots
of research on CAM has been done. Classified as statistical-based or dictionary-based
algorithms [8]. Research on statistical-based compression has focused on pushing com-
pression levels to the theoretical limit via highly complex algorithms that, unfortunately,
translate to low compression processing speeds such as the prediction by partial match-
ing (PPM) class of algorithms [9V11]. In addition, the algorithmic complexity itself has
resulted in only a few relatively simple hardware implementations of statistical-based algo-
rithms [12, 13]. Conversely, dictionary-based compression has concentrated on achieving
high-throughput and good compression ratios and is based primarily around the two very
popular LZ1 and LZ2 algorithms proposed in [9] and [14].

But in our architecture we used a different dictionary based algorithm. The algorithm
uses dictionary of previously seen data and attempt to match the current data element
with an entry in the dictionary. This CAM based dictionary has 16, 32 or 64 tuples.
The n-tuple dictionary is formed by a total no of n*32 CAM cells. Each cell stores
one bit of data tuple and it can maintains its current data, or load the data present
in the cell above. The no of tuple increases the more and more possible to finding the
match into the dictionary but when it take care of the small data to compress then its
gives degraded compression because that time it use only fraction of dictionary length
available. So we have think a optimum size, that we take the width of the CAM is
4B/word. The architecture has been shown in the below figure 4. The architecture
compares the search data with the data present in the dictionary using one XOR gate
to do the comparison of each input bit plus (log2(dictionary width)) 2 input and gates
tree to obtain a single comparison bit per dictionary position. The delay of the search
operation although in principle is independent of dictionary length, in fan outs and long
wires of large dictionaries its speed considerably. An adaptation vector named move in fig
and whose length equal to dictionary length defines which cells keep its current data and
which cells load data from its north-neighboring cell. We implemented the CAM [15, 18]
in hardware by using Xilinx ISE 8.1i [17].The proposed architecture of the Huffman based
coder shown into the figure 3. In this paper we introduce a new methodology which is
CAM and the Huffman coding techniques simultaneously implemented into the CODEC
structure. The CAM implementation for data compression [18] has been introduces in
many article, but in our case the CAM (Content Addressable Memory) and the Huffman
Coder with this both compression techniques gives the better performance as well as cost
effective.

5.1. Pseudo Code of Huffman Coding.

A VHDL [18] pseudo code of the Huffman code is given below.

Define Library

entity name is

port

(

MATCH_TYPE: in bit_vector(3 down to 0);

CODE: out bit_vector(5 down to 0);
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LENGTH: out bit_vector(2 down to 0)

);

end entity ;

architecture HUFFMAN of entity is

begin

MATCH : process(MATCH_TYPE)

begin

case MATCH_TYPE is

when "0000" => CODE <= "100000"; LENGTH <= "001";

when "0001" => CODE <= "010000"; LENGTH <= "011";

when "0010" => CODE <= "001111"; LENGTH <= "110";

when "0011" => CODE <= "001000"; LENGTH <= "100";

when "0100" => CODE <= "001110"; LENGTH <= "110";

when "1000" => CODE <= "000000"; LENGTH <= "011";

when "1001" => CODE <= "001101"; LENGTH <= "110";

when "1100" => CODE <= "001100"; LENGTH <= "110";

when others => CODE <= "000000"; LENGTH <= "000";

end case;

end process ;

end architecture;

 

begin 
case MATCH_TYPE is  
    when "0000" => CODE <= "100000"; LENGTH <= "001"; 
    when "0001" => CODE <= "010000"; LENGTH <= "011"; 
    when "0010" => CODE <= "001111"; LENGTH <= "110"; 
    when "0011" => CODE <= "001000"; LENGTH <= "100"; 
    when "0100" => CODE <= "001110"; LENGTH <= "110"; 
    when "1000" => CODE <= "000000"; LENGTH <= "011"; 
    when "1001" => CODE <= "001101"; LENGTH <= "110"; 
    when "1100" => CODE <= "001100"; LENGTH <= "110"; 
    when others => CODE <= "000000"; LENGTH <= "000"; 
end case; 
end process ; 
end architecture; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

DATA IN 

D
AT

A
 O

U
T

 

 

SHIFT 
CONTROL 

LOGIC 

PHASE 
BINARY 
CODER 

 
MATCH 

DECISION 
LOGIC 

HUFFMAN 
CODER 

CODE 

ASSEMBLER 

 

 
CAM 

ARRAY 

NFL

CODEC 

Fig. 3. Compressor Coder Internal Block Diagram Figure 3. Compressor Coder Internal Block Diagram.

5.2. Implementation and Simulated Output of the Huffman Compressor Block.

5.3. Design Flow of Implementation. The Xilinx hardware description language (HDL)
design flow, illustrated in Figure 5, begins with design entry using an HDL language such
as VHDL or Verilog. Then a logic synthesizer such as Synplify Pro [Synp2000] and FPGA
Express [Syno2000] will synthesize the design into a netlist of logic gates in the EDIF
[SM89] format. Timing constraints are also generated to drive the subsequent stages of
the design flow. Then a Xilinx tool called NGD Build converts the netlist into its native
circuit description database format (NGD). Then the technology mapper (MAP) will pack
the logic gates into Configurable Logic Blocks (CLBs) and I/O Blocks (IOBs) compatible
with the target chip technology. The resulting file (NCD) can then be placed and routed
using the Xilinx Place and Route (PAR) tool. It can also be Floor planned using the
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5.2 Implementation and Simulated Output of the Huffman Compressor 
Block 
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Xilinx Floor planner, or manually edited using the Xilinx FPGA Editor. TRACE is a
timing analyzer that takes an NCD file as input. The Xilinx Description Language (XDL)
program can convert between the Xilinx proprietary NCD formats to a text based XDL
circuit description file. Synplify- Pro is an advanced synthesis tool that provides useful
features such as resource sharing, automatic pipelining and register balancing of the cir-
cuit. It has extensive knowledge of the target Xilinx chip architectures so it can produce
a highly optimized netlist for the Xilinx backend tools. The Xilinx hardware design flow
is timing-driven. With timing constraints set, each stage of the design flow will attempt
to optimize the circuit to meet the constraints. The Xilinx Floor-planner is a graphical
placement tool that controls where circuit elements get placed in the FPGA. It allows the
user to describe coarse constraints on where portions of the circuit are positioned by the
automated placement and routing software (PAR). The Floor-planner has two windows,
one showing the current placement information of the circuit on the FPGA, and the other
showing a Floor-plan, which the user can modify. Each window displays the FPGA as a
grid of CLBs, with each CLB showing its associated circuit elements including flip-flops,
look-up tables, carry elements, and tri-state buffers. The user employs a drag-and-drop
paradigm to move logical grouping of elements onto the Floor-plan (initial Floor-plan)
or modify the Floor-plan of a previously placed and routed design by dragging circuit
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elements around the Floor-plan. The Floor-planner makes use of logical information of
the circuit to present all circuit elements in a hierarchical grouping. For example, circuit
elements that belong to the same carry chain will be grouped together, so the user can
Floor-plan the whole carry chain as a group. Ungrouping and regrouping of circuit el-
ements are also allowed. Figure shows a screen capture of the Xilinx Floor-plan of our
design.
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Codec Block.

6. Conclusion. The proposed Video Design and the Verification of the many modules
has been done but many of them has not verified and implemented in to the FPGA.In
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this paper we try to complete (Design, Test, and Verification and Implementation) major
blocks of the lossless compressor .The design flow has been shown in figure 5. The test
and the verification of some block have been done. Few of the design have already tested,
verified and implemented as shown in the figure 6 (a), & (b). In our design there are
many directions of future work to explore based on this paper. Like in design aspect we
only consider the Huffman coding, it can also consider the adaptive Huffman coding, or
Wavelet based Method, it can give better result for the compression so it can proposed
as future work .The subsequent work are also been published in latter issues.
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