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Abstract. Face detection has a variety of applications, such as face recognition, face
expression analysis, and video conferencing. However, most existing methods for face
detection are sensitive to lighting variation. In this paper, a novel scheme invariant
with illumination based on adaptive switching of skin color models (ASSM) with lighting
compensation for face detection is proposed. The skin-tone pixels detected are connected
by the proposed fast 8-connected component labeling method into a more compact skin
cluster. An optimal skin color model is thus adaptively selected using a well-defined
quality measure. Possible face candidates are further validated by a cascaded AdaBoost
detector. Experimental results indicate that robust face detection can be achieved for
various lighting conditions, such as dim light, side light, and back light. A detection time
of 60 ms for each frame is achieved with the aid of the ASSM method. A detection rate
of 94.4% was obtained for a test video sequence.
Keywords: skin color model, AdaBoost, face detection

1. Introduction. Face detection is of importance in a wide variety of applications, such
as facial expression analysis [1], speaker recognition [2], VoIP (voice over IP) security [3],
and identity authentication. A significant degree of separability usually exists between
skin-tone pixels and their background. Face detection schemes often adopt the extrac-
tion of skin-tone colors [4, 5, 6] since they are invariant with scales, poses, and facial
expressions. However, it is difficult to robustly detect skin-tone pixels in the presence of
a complex background and varying illumination using color-based approaches.
Skin-tone colors are widely used as a primary feature of a face. Ishii et al. [4] extracted

face candidates from skin color parts detected using a back-propagation neural network
which learned from the YCbCr color information of face images. Since search regions are
confined within the skin color parts, the performance of face detection can be significantly
improved. Skin-color models are constructed using a large number of skin-tone pixels for
detecting possible candidates of faces. Jones et al. [5] constructed color models for skin
and non-skin classes from a dataset of nearly one billion labeled pixels using a statistical
method. The classes used to build a skin pixel detector show good separability. They

204



205 Deng-Yuan Huang, Chun-Jih Lin, Wu-Chih Hu

also found that a histogram model is superior to a mixture model in terms of accuracy
and computational cost for skin detection.

Hsu et al. [6] modeled skin color using a parametric ellipse in a 2D color space and ex-
tracted facial features by constructing feature maps for the eyes, mouth, and face bound-
ary. In their work, they proposed a lighting compensation technique that uses a reference
white to normalize the color appearance. They regarded pixels with the top 5 percent
of the luma (nonlinear gamma-corrected luminance) values in the image as the reference
white only if the number of these pixels is sufficiently large. The red (R), green (G), and
blue (B) components of a color image are adjusted so that the average gray value of these
reference white pixels is linearly scaled to 255.

Compact skin clusters can be obtained in the YCbCr color space under a wide range
of lighting variation [7, 8]. Garcia et al. [7] applied quantized skin color region merging
and wavelet packet analysis to face detection. They found that skin color pixels can
form a single but compact cluster in both the YCbCr and HSV color spaces, even though
skin-tone color distributions for human races vary widely. This result shows that the
cluster of skin color is less compact in the HSV space than it is in the YCbCr space,
and that the HSV space is more sensitive to lighting variation. Similar results have been
found elsewhere [8]. However, skin color models that use the YCbCr space frequently
misclassify non-skin pixels at low luminance as skin-tone pixels, and vice versa [6], due to
their nonlinear dependence on luma.

In general, skin-tone pixels have a distinct shape in the normalized color space (r, g).
Soriano et al. [9] used the color space (r, g) to perform face detection with high accuracy
under daylight, incandescent light, fluorescent light, and a combination of these light
sources. They applied an adaptive histogram back-projection approach, where the skin
color model is updated by pixels in the regions which fall in the so-called skin locus. In
the locus, the shape of the range of skin-tone pixels is quite different from that in the (r,
g) color space.

Bergasa et al. [10] performed a study of the distribution of human skin color in various
color spaces (RGB, normalized RGB, HSI, SCT, YQQ) and came to the conclusion that
the best space for this application is normalized RGB. In this space, the human skin color
forms a compact class; the color differences between people can be reduced by working
with chromaticity to eliminate intensity. For some lighting conditions, the skin color
distribution can be modeled by a Gaussian function in the (r, g) color space [11].

Since a single skin color model cannot deal with similar skin color pixels in the back-
ground and under a wide range of lighting conditions, several adaptive color space switch-
ing methods have been presented [12, 13]. Stern et al. [12] proposed an adaptive color
space switching method for face tracking that is a combination of color-space models
(CSMs) and color-distribution models (CDMs). In the CSMs, the color spaces of RG, rg,
HS, IQ, and CbCr are used, and in the CDMs, the probability model (Pr), the possibility
model (Ps), a Gaussian with one component (G1), a Gaussian with three components
(G3), and a Gaussian with a dynamic number of components (GD) are used. They found
that the tracking performance can be significantly enhanced by switching the color spaces
throughout the tracking sequences.

More recently, Chang et al. [13] proposed a support vector machine (SVM) based adap-
tive color switching method for a face tracking system. They used four color spaces,
i.e., YCbCr, normalized RGB, XYZ, and YIQ, and employed the Laws textures of L5E5,
R5E5, and W5W5 as discriminative features of faces to train their SVMs for each color
space. A quality measure was then presented to adaptively select an optimal color space
under varying illumination.
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Many color constancy schemes have been suggested, but so far their performance is
not satisfactory. In this paper, we propose a novel scheme based on adaptive switching
of skin color models (ASSM) with lighting compensation for face detection under un-
constrained scene conditions. Detected skin-tone pixels are connected by the proposed
fast 8-connected component labeling method into a more compact cluster, which is fur-
ther validated by the cascaded AdaBoost algorithm to determine whether it is a human
face. Extensive experiments show that the performance of face detection can be greatly
enhanced by switching the skin color models throughout the tracking sequence.
The remainder of this paper is organized as follows. In Section 2, the method of adaptive

switching for skin color models is described. Section 3 contains the detailed procedures of
the proposed fast 8-connected component labeling method. Section 4 presents the results
of face detection in a video sequence under varying illumination. The conclusion and
future work are given in Section 5.

2. Proposed face detection method. A flow chart of the proposed method for face
detection in a video sequence is shown in Figure 1. First, the input video sequence
is resized to 80×60 pixels by bilinear interpolation. Second, the skin-tone pixels are
detected by the proposed ASSM method, which includes all the possible combinations
of three skin color models (i.e., YCbCr [6, 7, 8], Soriano’s model [9], and the Gaussian
mixture model [10, 11]) and three lighting compensation models (i.e., reference white [6],
modified reference white [14], and gray world [15]). Third, detected skin-tone pixels
are connected by the proposed fast 8-connected component labeling method into a more
compact cluster. Fourth, the quality measures rk are estimated using the skin clusters
for the nine skin color models. The optimal skin color model (that with maximum rk) is
thus selected. Finally, possible face candidates are validated by the cascaded AdaBoost
algorithm to determine whether they are human faces.

Figure 1. Flow chart for proposed face detection method
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2.1. Skin color models. The three skin color models, i.e., YCbCr [6, 7, 8], Soriano’s
model [9], and the Gaussian mixture model [10, 11], used in the proposed method are
described below.

2.1.1. YCbCr skin color model. YCbCr is a family of color spaces that is used as a part
of the color image pipeline in response to increasing demand for digital approaches in
handling video information. It has become a widely used model in digital video. Since
the skin-tone color depends on luminance, a conversion of RGB to the YCbCr color space
to make the skin cluster luma-independent enables robust detection of dark and light skin-
tone colors. Therefore, the YCbCr color space leads to better performance under varying
illumination conditions when compared to the RGB color space. The corresponding skin
cluster can be determined as:

(Y, Cb, Cr) is classified as skin pixels if :
60 ≤ Y ≤ 255
100 ≤ Cb ≤ 125
135 < Cr ≤ 170

where Y, Cb, Cr ∈ [0, 255]

2.1.2. Soriano’s skin color model. Normalized RGB is easily obtained from the RGB
values by a simple normalization procedure, i.e., r=R/(R+G+B), g=G/(R+G+B), and
b=B/(R+G+B). The b component is usually ignored since it does not hold any significant
information. The remaining (r, g) components are often called “pure colors”, since the
dependence of (r, g) on the brightness of the source RGB color can be greatly reduced by
the normalization procedure. Another attractive property of normalized RGB is that for
matte surfaces (nonspecular object materials), it is invariant to changes of surface orienta-
tion relative to the light source when ignoring ambient light [17]. For Soriano’s skin color
model, the normalized RG color space is first applied, and a pair of quadratic functions
is used to define the upper and lower bounds of the skin locus [9]. To prevent grayish
and whitish pixels from being labeled as skin, pixels are excluded from skin membership
if they fall within a circle with radius 0.02 around the white point (r=g=0.33). Here, we
slightly modify this model with an additional RGB constraint, CRGB. Therefore, the skin
cluster of value S can be determined in terms of chromaticity (r, g) and the source RGB
space in Eq.(1), where the dot (·) means the logical operator ”and”.

S =

{
1, (g < gu) · (g > gd) · (RW > 0.0004) · CRGB

0, otherwise
where
gu = −1.3767r2 + 1.0743r + 0.1452
gd = −0.776r2 + 0.5601r + 0.1766

RW = (r − 0.33)2 + (g − 0.33)2

CRGB = (R > 130) · (B > 55) · (G > B) · ((R−G) > 25)

(1)

2.1.3. Gaussian mixture skin color model. The Gaussian mixture model, which is a gen-
eralization of the single Gaussian joint probability density function, is commonly used to
describe a complex-shaped distribution of skin-tone pixels. Since the Gaussian mixture
model is parametric, the representation of skin color distribution is more compact than
those of most popular histogram-based non-parametric skin color models. In addition, the
Gaussian mixture model has the ability to interpolate and generalize incomplete training
data. It is expressed by only a small number of parameters and needs very little storage
space. The Gaussian mixture model can also be viewed as a form of a generalized radial
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basis function (RBF) network. It is used to describe the skin cluster in the RGB color
space as:

p(x|skin) = 1√
2πσx

exp
[
− (x−µx)

2

2σ2
x

]
where
x ∈ {R,G} , 51 ≤ R ≤ 102, 51 ≤ G ≤ 153

(2)

where µx and σx are the mean value and standard deviation estimated from the specified
skin color regions of R and G channels, respectively. In Eq.(2), the probability of p(x|skin)
is used to measure how skin-like the color x is. Let Gmax= µG+2σG, Gmin= µG-2σG,
Rmax=µR+2σR, and Rmin = µR-2σR be the upper and lower bounds of possible skin-tone
pixels for R and G channels, respectively. The white point (R=G=84) is excluded from
the skin color membership. Thus, the corresponding skin cluster can be expressed by
Eq.(3), where the dot (·) means the logical operator ”and”.

S(R,G) =

{
1, (G ≤ Gmax) · (G ≥ Gmin) · (R ≤ Rmax) · (R ≥ Rmin) · (RW > 26)
0, otherwise

where

RW = (R− 84)2 + (G− 84)2

(3)

2.2. Lighting compensation methods. The three lighting compensation methods, i.e.,
reference white [6], modified reference white [14] and gray world [15], used in the proposed
method are described below.

2.2.1. Reference white lighting compensation. Lighting compensation is commonly used to
normalize the skin color appearance since the reflection of skin-tone color greatly depends
on the lighting conditions. Reference white, first presented by Hsu et al. [6], is the most
popular method. The method removes bias color pixels from a color image because these
pixels appear as ”real white”. In applications of face detection, reference white detects
few non-face pixels and most skin-tone facial pixels [6].
The top 5% of the luma values in the image is regarded as the reference white if the

number of these pixels is sufficiently large (>100). The R, G, and B components of a
color image are then adjusted so that the average gray value of the reference white pixels
is linearly scaled to 255. Let i ∈ [lu, 255] be the top 5% gray levels and fi be the pixel
number with gray level i in the image. Thus, the modified RGB components can be
estimated as:

Mtop =
∑255

i=lu
i · fi/

∑255
i=lu

fi
χnew = χold/Mtop × 255, where χ ∈ {R,G,B}

2.2.2. Modified reference white. This modified version of reference white was proposed by
Xu [14]. The bottom 5% gray levels are also considered. Let i ∈ [lu, 255]and i ∈ [0, ld]
be the top 5% and bottom 5% gray levels in the image, respectively. The modified RGB
components can be calculated as:

χnew = (ln (χold)− ln (ld)) / (ln (lu)− ln (ld))× 255
where χ ∈ {R,G,B}
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2.2.3. Gray world lighting compensation. White balance is a fundamental function in the
processing pipeline of a digital camera. It is usually used to correct the color of pixels un-
der varying luminous scenarios. The white balance can be set manually or automatically.
Of these two approaches, automatic white balance is more preferred for consumer digital
cameras. To set white balance automatically, the gray world assumption [15] is commonly
used. Gray world is a lighting compensation method which seeks to equalize the mean of
the R, G, and B channels. The gray world assumption is based on the observation that
for a typical scene, the average intensity of the R, G, and B channels should be equal.
Let M and N be the image height and width, respectively. The averages of RGB channels
and gray levels, χAV G and µAV G, are first calculated, respectively, as follows:

χAV G = 1
MN

∑M
x=1

∑N
y=1 Iχ(x, y), where χ ∈ {R,G,B}

µAV G = 1
3
(RAV G +GAV G +BAV G)

The scale ratios and modified pixels of the original RGB channels, Aχ and Îχ, are then
estimated, respectively.

Aχ = µAV G/χAV G, and Îχ = Aχ · Iχ(x, y)

2.3. Face detection using AdaBoost algorithm. Haar-like features (see Figure 2) are
widely used by the AdaBoost algorithm with the concept of an integral image for efficient
feature computation. AdaBoost learning selects a small number of weak classifiers which
represent the local discriminative features of faces, and then combines them into a strong
classifier to decide whether a detected cluster is a human face. AdaBoost can deal with
very large sets of weak classifiers due to its greedy characteristics. To significantly improve
computational efficiency and reduce the false positive rate (FPR), a sequence of strong
classifiers is concatenated as a so-called cascaded detector. More details of computing the
integral image and training the cascade AdaBoost detector can be found in [16].

Figure 2. Set of Haar-like features used in the AdaBoost method

To train the cascade AdaBoost detector, a training set in CBCL (Center for Biological
and Computational Learning at MIT) face database #1 [18] was used, which consists
of grayscale images of 2,429 faces and 4,548 non-faces with a size of 19×19 pixels. The
face images have various illumination conditions, facial expressions (e.g., open/closed
eyes, smiling/not smiling) and facial details (e.g., glasses/no glasses). Some typical face
and non-face examples from the CBCL face database are shown in Fig. 3(a) and 3(b),
respectively.

2.4. Quality measure. The skin-tone pixels detected by ASSM are connected by the
proposed fast 8-connected component labeling method into a more compact cluster. Only
those clusters with greater than 50 pixels are considered. Possible face regions are then
fitted with a rectangle Wr or an ellipse We, as shown in Figure 4. To evaluate the quality
measures for all the skin color models, a quality measure rk representing the kth skin color
model is proposed. It is defined as:
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Figure 3. Some typical training examples in the CBCL face database. (a)
Face images; (b) non-face images

rk = ω1r
k
1 + ω2r

k
2 (4)

where

rk1 =

NC∑
i=1

 ∑
(x,y)∈Wr

p(x, y)

/
Wr

 /NC (5)

and

rk2 =

NC∑
i=1

(
(SWe

e + SWe
p + SWe

a )/3
)
/NC (6)

where p(x, y) is a detected skin-tone pixel in Wr or We; ω1 and ω2 are weights which are
both set to 0.5 since the two models of r1 and r2 are equally important, as determined from
experiments; and NC is the total number of all the 8-connected components with skin-tone
pixels greater than 50. SWe

e , SWe
p , and SWe

a represent the sensitivity (i.e., true positive
rate=TP/(TP+FN )), the specificity (i.e., true negative rate=TN /(TN+FP)), and the
spatial accuracy (i.e., 1-(FP+FN )/(TP+FN )), respectively. These values are estimated
from the elliptical regions, We, where TP, TN, FP, and FN represent the total number
of pixels for true positive, true negative, false positive and false negative, respectively.
The quality measure (rk) is normalized with a value of 0 ≤ rk ≤ 1. A higher value of rk

implies that a more compact cluster can be achieved by its corresponding skin color model.
Figure 5 shows the results of detected skin-tone pixels for all possible combinations. An
optimal combination of YCbCr + modified reference white (rk = 0.612) is selected by the
ASSM method.
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Figure 4. Estimation of quality measure by rectangular and elliptical windows

Figure 5. Optimal skin color model selected by the ASSM method. (a)
Original image; (b) selected skin color model (k = 4) with the maximum
quality measure (rk = 0.612)

3. Proposed fast 8-connected component labeling method. To improve the per-
formance of the conventional 8-connected component labeling method, which requires
a large number of recursive procedures, a fast version that scans the whole image only
once (top to bottom and left to right) is proposed to efficiently connect the skin-tone
pixels detected by ASSM into a more compact cluster. The procedures for the proposed
fast 8-connected component labeling method are illustrated in Figure 6, where the white
pixels represent the detected skin color pixels. The procedures are basically a series of
scan-and-merge processes, as described below.

1. Scan the first two rows and merge the adjacent pixels in the same row into a block.
Then label them using consecutive numbers, as shown in Figure 6(a).

2. Merge the adjacent row blocks into a bigger one and label the lower merged block
with the same number as that for its adjacent upper one, as shown in Figure 6(b).

3. Continue to scan the next row and label the new block using the next number, as
shown in Figure 6(c).

4. Merge the new block and its adjacent upper block into a bigger one. Then label
the lower merged block using the same number as that of its adjacent upper one, as
shown in Figure 6(d). However, if another block (i.e., block #2) is next to the new
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one (i.e., block #1), then merge them into a bigger one and label block #2 using
the same number as that of block #1, as shown in Figure 6(e).

5. Repeat the steps of scan-and-merge until the whole image is completely processed.
The final results of block labeling are shown in Figure 6(f).

Figure 6. Procedures of the proposed fast 8-connected component labeling method

An artificial image created to illustrate the proposed method is shown in Figure 7(a).
The results of block labeling for all connected clusters are shown in Figure 7(b). To evalu-
ate the performance of the proposed method, four test images of size 320×240 pixels were
used, as shown in Figure 8. A comparison of the proposed method with a conventional
method was carried out. The runtimes required to complete 8-connected component la-
beling for the two methods are listed in Table 1. As indicated in the table, the proposed
method is 37.5 to 73.2 times faster than the conventional one, which is highly dependent
on the textures in the test images.

Table 1. Comparison of runtimes of 8-connected component labeling for
the two methods

Test image Runtime of conventional Rumtime of proposed Method 1/Method 2

method (Method 1) (ms) method (Method 2) (ms)
(a) 600 16 37.5
(b) 514 10 51.4
(c) 513 11 46.6
(d) 732 10 73.2

4. Experimental results and discussion. Experiments were performed on a computer
with an Intel(R) Core(TM)2 Quad Q8200 2.33 GHz processor and 3.25GB of RAM. The
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Figure 7. Illustration of the proposed fast 8-connected component label-
ing method. (a) Only the first two rows are scanned and labeled; (b) results
of block labeling using the proposed method

Figure 8. Four test images used to evaluate the performance of the pro-
posed method
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algorithm was implemented in BCB (Borland C++ Builder) 6.0. Figure 9 shows the
typical results of detected skin clusters. Some of the most important features of a human
face, i.e., eyes, may be lost due to severe lighting variations (see the red box with a size
of W×H). Therefore, to keep as many face features as possible, the width of the red box
was increased by 0.5W on both sides, and the height of the red box is was increased by
0.5H on the top. The rule of thumb for choosing the box dimension is to keep most face
features in the detected regions. Since the runntime of cascade AdaBoost is proportional
to the size of detected regions, we chose 0.5W and 0.5H, which is a compromise between
performance and detected region size. Then, the detected possible face candidates (see the
yellow box) are obtained and fed to the cascaded AdaBoost detector to further validate
whether the possible candidate regions are human faces.

Figure 9. Results of face detection. (a) Original image; (b) results of
detected skin cluster

In order to evaluate the robustness of the proposed method, a video sequence with
varying illumination, including dim light, side light, and back light, was used, as shown
in Figure 10. The results of quality measure for face detection with the application of
ASSM are shown in Figure 11. The nine combinations of skin color models are denoted
by M1 to M9, where the groups (M1, M2, M3), (M4, M5, M6), and (M7, M8, M9) use
lighting compensation methods of reference white, modified reference white, and gray
world assumption, respectively; the three models in each group use skin color models of
YCbCr, the Gaussian mixture model, and Soriano?s model, respectively. Since the values
of quality measure for models M2, M3, M6, and M8 were too low, only the results of the
remaining five models are shown in the figure. As shown in the figure, M1 and M7 were
alternately used in the period of dim light, M7 dominates the period of side light (from
left to right), and M5 is preferred in the back light situation. A single skin color model
in this experiment thus could not accommodate all the lighting variations, from dim light
to back light situations. In the period of dim light, M1, M4, and M7 were the three most
frequently used models, with M4 being less important than M1 and M7. The selection of
the lighting compensation method in this region is not very important because all three
models use the same skin color model of YCbCr, which is luma-independent, as described
earlier. This result illustrates that the influence of illumination in dim light can be greatly
reduced by the introduction of the skin color model of YCbCr. A detection time of 60
ms for each frame was achieved with the aid of the ASSM method. A detection rate of
94.4% was obtained for the test video sequence.

5. Conclusions and future work. In this paper, an adaptive switching of skin color
models (ASSM) with the cascaded AdaBoost method was proposed for face detection .
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Figure 10. Face tracking sequence with varying illumination. (a) dim
light; (b) side light; (c) back light

Figure 11. Variations of quality measure for face detection with the ASSM method

The proposed method can deal with large lighting variation, including dim light, side light,
and back light scenarios. To increase the speed of clustering the skin-tone pixels detected
by the ASSM method, a fast 8-connected component labeling method was proposed. The
proposed method is 37.5 to 73.2 times faster than the conventional recursive method. A
detection time of 60 ms for each frame was achieved with the aid of the ASSM method. A
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detection rate of 94.4% was obtained for a test video sequence. However, the view angles
of faces are constrained to within ±30o in the proposed system. Therefore, in a future
study, we will focus on increasing the view angles.
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