Journal of Information Hiding and Multimedia Signal Processing (©2012 ISSN 2073-4212
Ubiquitous International Volume 3, Number 2, April 2012

An Unsupervised Image Clustering Method Based on EEMD
Image Histogram

Stelios Krinidis', Michail Krinidis? and Vassilios Chatzis®

Information Management Department
Technological Institute of Kavala
Ag. Loukas, 65404, Kavala, Greece
Lstelios.krinidis@mycosmos.gr; >mkrinidi@gmail.com; 3chatzis@teikav.edu.gr

Received January 2012; revised April 2012

ABSTRACT. This paper presents a movel unsupervised image clustering approach based on the
image histogram, which is processed by the empirical mode decomposition (EMD). The proposed
algorithm exploits an intermediate step derived from the empirical mode decomposition, which
can decompose any nonlinear and non-stationary data into a number of intrinsic mode functions
(IMFs). The IMFs of the image histogram have interesting characteristics and provide a novel
workspace that is utilized in order to automatically detect the different clusters into the image
under examination. The proposed method was applied to several real and synthetic images and
the obtained results show good image clustering robustness.

Keywords: Clustering, unsupervised clustering, empirical mode decomposition, ensemble em-
pirical mode decomposition, intrinsic mode functions, segmentation.

1. Introduction. Clustering problem has been addressed in many contexts and in many dis-
ciplines and this is the main reason for its extensive appeal and usefulness as a primary step in
many applications. Clustering participates in pattern recognition, spatial data analysis, image
processing, image classification in world wide web and large image databases, image segmenta-
tion, document retrieval, data mining and generally in data analysis [4, 6, 10, 12, 13, 21, 22, 24,
29, 30, 31, 32, 38, 41, 43]. However, clustering is a difficult problem due to many assumptions,
different contexts and the variety of input data.

In the last few decades, there has been a growing interest in developing effective and fast
methods for detecting the different clusters into an input image. Clustering in image processing
and computer vision is a procedure for identifying groups of similar image primitives, such as
image pixels, local features, segments, objects or even complete images. The general goal in
image clustering is to classify the different image objects or patterns in such a way that samples
of the same cluster are more similar to one another than samples belonging to different clusters.

There are two main types of image clustering algorithms, the supervised and the unsupervised
methods. In the supervised image clustering algorithms, the researchers incorporate a priori
knowledge, such as the number of image clusters. The main restriction in supervised image
clustering is that human intervention is required. On the other hand, unsupervised methods
aims at providing the correct number of image clusters without any a priori information. So
far, various systems of supervised and unsupervised image clustering have been presented in the
literature. These systems can be broadly divided into three main categories:

e hierarchical approaches,

e partitioning approaches,

e overlapping approaches.
In spite of the type of the algorithm adopted to perform clustering, the goal is always the same,
i.e., the maximization of homogeneity within each cluster and the minimization of heterogeneity
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between different clusters. Additional information about the aforementioned clustering cate-
gories can be found in the excellent review publications that have appeared in the literature
[4, 10, 12, 13, 31, 41].

Hierarchical image clustering methods build a cluster hierarchy which allows exploring the in-
put data on different levels of granularity. Hierarchical image clustering methods are separated
into agglomerative and divisive methods. An agglomerative clustering algorithm starts with
clusters composed by one image pixel and recursively merges two or more appropriate image
clusters. On the other hand, a divisive clustering algorithm starts with one cluster composed
by all the image pixels and recursively splits the most appropriate clusters. The recursively
procedure, in both categories, is based on a well defined criterion, e.g. the number of image
clusters. Hierarchical clustering methods are used by many researchers to perform image clus-
tering [1, 5, 16, 19, 20].

Hierarchical image clustering methods separate gradually the input image into clusters while
partitioning image clustering algorithms learn directly the image clusters. Partitioning image
clustering algorithms construct various partitions of the input data and then evaluate them
by some criterion. The basic idea of partitioning image clustering is to select a number of
instances to represent the image clusters and all the remaining instances are assigned to their
closer center based on appropriate selected attributes. The main difficulty in this category, is
to find a distance measure that can efficiently classify the input data into different clusters.
The most famous partitioning clustering method is the k-means algorithm [23], but many other
approaches have been also introduced [9, 14, 27, 28, 34].

The aforementioned traditional clustering methods classify each point of the data set just to
one cluster. As a consequence, the results are often very crisp, i.e., in image clustering each pixel
of the image belongs just to one cluster. However, in many real situations, issues such as limited
spatial resolution, poor contrast, overlapping intensities, noise and intensity inhomogeneities
reduce the effectiveness of hard (crisp) clustering methods. Hence, a new category of image
clustering approaches has been appeared: overlapping approaches. Overlapping algorithms
produce data partitions that can be soft, i.e., objects can belong to one or more clusters [7, 33].
Fuzzy set theory [44] extends this notion to associate each pattern with every cluster using a
membership function. Fuzzy clustering, as a soft segmentation method, has been widely studied
and successfully applied in image clustering and segmentation [2, 15, 17, 18, 26, 36, 37, 42].

A novel unsupervised image clustering algorithm is presented in this paper. The proposed
algorithm provides efficiently the number of the different image clusters and the image clusters.
The proposed technique exploits an intermediate step of the Empirical Mode Decomposition
(EMD) applied to the image histogram, in order to classify the image pixels in appropriate clus-
ters. More specifically, the Ensemble Empirical Mode Decomposition (EEMD), which provides
noise resistance and assistance to data analysis, decomposes the image histogram into a number
of Intrinsic Mode Functions (IMFs). The local minima of the IMFs summation provides the
desired number of image clusters and a combination of them is used as a criterion for image
clustering.

The remainder of the paper is organized as follows. The Empirical Mode Decomposition
(EMD) with its ensemble mode (EEMD) is presented in Section 2. In Section 3, the image
clustering method is introduced. Experimental results are shown in Section 4 and conclusions
are drawn in Section 5.

2. Empirical Mode Decomposition (EMD). In this Section, the empirical mode decom-
position (EMD) and the derived intrinsic mode functions (IMFs), which are used in order to
perform image clustering, will be briefly reviewed. More details regarding the decomposition
process, its properties and all the adopted assumptions are presented in [11, 40].

The basic idea embodied in the EMD analysis is the decomposition of any complicated data set
into a finite and often small number of intrinsic mode functions, which have different frequencies,
one superimposed on the other. The main characteristic of the EMD, in contrast to almost all
previous decomposition approaches, is that EMD works directly in temporal space, rather than
in the frequency space. The EMD method, as Huang et al. pointed out [11], is direct intuitive
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and adaptive with an a-posteriori defined basis based on and derived from the data and therefore,
highly efficient. Since the decomposition of the input signal is based on the local characteristic
time scale of the data, the EMD is applicable to nonlinear and non-stationary process.

The IMF's obtained by the decomposition method, constitutes an adaptive basis, which satis-
fies the majority of properties for a decomposition method, i.e., the convergence, completeness,
orthogonality and uniqueness. Moreover, EMD algorithm copes with stationarity (or the lack
of it) by ignoring the concept and embracing non-stationarity as a practical reality [11].

The possibly non-linear signal, which may exhibit varying amplitude and local frequency
modulation, is linearly decomposed by EMD into a finite number of (zero mean) frequency and
amplitude modulated signals. The remainder signal, called as a residual function, exhibits a
single extremum and is a monotonic trend or is simply a constant.

In the EMD algorithm, the data z(t) is decomposed in terms of IMFs ¢;, as follows:

N
z(t) = ZCH-TN, (1)
i=1
where rpy is the residue of data x(t), after N number of IMFs are extracted. IMFs are simple
oscillatory functions with varying amplitude and frequency, and hence have the following basic
properties:

e Throughout the whole length of a single IMF, the number of extrema and the number of
zero-crossings must either be equal or differ at most by one (although these numbers could
differ significantly for the original data set).

e At any data location, the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero.

In practice, the EMD is implemented through a “sifting process” that uses only local extrema.
From any data r;_1, the procedure is as follows:

1. Identify all the local extrema (the combination of both maxima and minima), connect
all these local maxima (minima) with a cubic spline as the upper (lower) envelope, and
calculate the local mean m; of the two envelopes.

2. Obtain the first component h = r;_; — m; by taking the difference between the data and
the local mean of the two envelopes.

3. Treat h as the data and repeat steps 1 and 2 as many times as required until the envelopes
are symmetric with respect to zero mean under certain criteria.

The final h is designated as ¢;. The procedure can be repeatedly applied to all subsequent r;,
and the result is

x(t) — 1 = n
rn —C2 - T2 (2)
TN—1 —CN = N.

The decomposition process finally stops when the residue, ry, becomes a monotonic function
or a function with only one extremum from which no more IMF can be extracted. By summing
up equation (2), one can derive the basic decomposition equation (1). That is, a signal x(t) is
decomposed to N IMFs (¢;) and a residual ry signal.

The very first step of the sifting process is depicted in Figure 1. Figure 1(a) depicts the
original input data, while Figures 1(b) and 1(c) show the extrema (maxima and minima) of
the data with their corresponding (upper and lower) envelopes. Figure 1(d) depicts the average
of the two (upper and lower) envelopes, and Figure 1(e) illustrates the residue signal, that is
the difference between the original data and the mean envelope. This procedure is repeated, as
mentioned above, and all the IMFs are extracted from the original input signal. An example of
the EMD algorithm and the extracted IMF's for the input data shown in Figure 1(a), is presented
in Figure 2.

Based on this simple description of EMD, Flandrin et al. [8] and Wu and Huang [39] have
shown that, when the data consists of white noise, the EMD behaves as a dyadic filter bank:
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FIGURE 1. The very first step of the sifting process. (a) is the input data, (b)
identifies local mazima and plots the upper envelope, (c) identifies local minima
and plots the lower envelope, (d) plots the mean of the upper and lower envelope,
and (e) the residue, the difference between the input data and the mean of the
envelopes.

the Fourier spectra of various IMF's collapse to a single shape along the axis of logarithm of the
period or the frequency. Then the total number (N+1) of IMFs of a data set is close to logaN’,
with N’ being the number of total data points. On the other hand, when the data is not pure
noise, some scales could be missing, and as a consequence, the total number of the IMFs might
be fewer than logo N’. Additionally, the intermittency of signals in certain scale would also cause
mode mixing.

One of the major drawbacks of EMD is mode mixing. Mode mixing is defined as a single
IMF either consisting of signals with widely disparate scales or consisting of a signal with a
similar scale residing in different IMF components. Mode mixing is a consequence of signal
intermittency. The intermittency could not only cause serious aliasing in the time-frequency
distribution but could also make the individual IMF lose its physical meaning [11]. Another side
effect of mode mixing is the lack of physical uniqueness. Supposing that two observations of
the same oscillation are made simultaneously, one contains a low level of random noise and the
other does not. The EMD decompositions for the corresponding two records are significantly
different [40].

However, since the cause of the problem is due to mode mixing, one expects that the decom-
position would be reliable if the mode mixing problem is alleviated or eliminated. To achieve



155 S. Krinidis, M. Krinidis and V. Chatzis

L L L L L L L
0 100 200 300 400 500 600

FIGURE 2. The intrinsic mode functions (IMFs) of the input data displayed in
Figure 1(a).

the latter goal, i.e., to overcome the scale mixing problem, a new noise-assisted data analysis
method was proposed, named as the ensemble EMD (EEMD) [40]. The EEMD defines the true
IMF components as the mean of an ensemble of trials, each one consisting of the signal with
white noise of finite amplitude.

The ensemble EMD (EEMD) algorithm could be summarized as follows:

1. add a white noise series w(t) to the original input data z;(t) = x(t) + w;(t),
2. decompose the data with added white noise into IMF's ¢ (),
3. repeat steps 1 and 2 but with different white noise series each time, and

L—oo

L
1
4. obtain the (ensemble) means of corresponding IMFs ¢;(¢) = lim T chk(t) of the de-
k=

composition as the final result.
The critical concepts advanced in EEMD are based on the following observations:

e A collection of white noise cancels each other out in a time-space ensemble mean. Therefore,
only the true components of the input data can survive and persist in the final ensemble
mean.

e Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust
all possible solutions.

e The physically meaningful result of the EMD is not from the data without noise, but it
is designated to be the ensemble mean of a large number of EMD trials of the input data
with the added noise.

The mode mixing is largely eliminated using EEMD, and the consistency of the decomposi-
tions of slightly different pairs of data is greatly improved. Indeed, EEMD represents a major
improvement over the original EMD. Furthermore, since the level of the added noise is not of
critical importance and of finite amplitude, EEMD can be used without any significant inter-
vention. Thus, it provides a truly adaptive data analysis method. The EMD, with the ensemble
approach (EEMD), has become a more mature tool for nonlinear and non-stationary time series
(and other one dimensional data) analysis.

3. Image Clustering Based-On EEMD. In this Section, the proposed image clustering
method is introduced. This method is based on the IMFs extracted by the EEMD algorithm
applied on the histogram of the image under examination. The proposed method belongs to
the unsupervised image clustering algorithms, thus, it is assumed that the number of the image
clusters is unknown and expected to be determined by the proposed algorithm.

The histogram h(k) is computed for an input image I with k¥ = 0...G and G being the
maximum luminance value in the image I, typically equal to 255 when 8-bit quantization is
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FIGURE 3. An 8-bit image for color blindness test and its probability mass function.

assumed. Then, the probability mass function (PMF) of the image histogram is defined as the
normalized histogram by the total pixel number:

p(k) = —— (3)

where M is the total number of image pixels. An example of an 8-bit image and its normalized
histogram is depicted in Figure 3.
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FiGURE 4. The IMFs of the histogram for the image depicted in Figure 3 with a
Gaussian noise of variance 0.2 and 1000 trials are performed.

The normalized histogram p(k) of an image could provide very useful information when it is
properly analyzed. In the proposed method, the EEMD algorithm has been selected in order
to analyze the histogram into its IMFs, in order to detect the different image clusters, as well
as, the number of clusters for the image under examination. The IMFs of the histogram of the
image shown in Figure 3, are presented in Figure 4. The IMFs are produced using the EEMD
algorithm with Gaussian noise of zero mean, variance equal to 0.2 and 1000 trials are performed.
The number of the extracted IMFs (including the residue function) for a 8-bit quantized image
is log2(256) = 8.

One can easily see in Figure 4 that the first IMFs (¢; for an 8-bit image) mainly carries the
histogram “noise”, irregularities and the sharp details of the histogram, while the last IMFs (cg,
c7 and the residue R for an 8-bit image) mostly describe the trend of the histogram. On the
other hand, the intermediate IMFs (c2 to c5 for an 8-bit image) describe the initial histogram
with simple and uniform pulses. This is the main reason that the proposed method is focused
on ¢, to ¢p intermediate IMFs, where a and b define the range of IMF's under consideration. Let
us define the summation ¢, of these IMF's as follows:

b
Cab =) _Ci- 4
i=a



157 S. Krinidis, M. Krinidis and V. Chatzis

-0.011

~0.02 L L L I I
0 50 100 150 200 250

FIGURE 5. The normalized histogram of the image shown in Figure 3 (thin line)
and the summation of the ca to cs5 IMF's (fat line).

Figure 5 depicts the summation ¢, (fat line) in contrast to the initial histogram (thin line)
for the 8-bit image shown in Figure 3. One can notice that the summation ¢, describes the
main part of the histogram leaving out all its meaningless details. Those details, most of the
times, lead the histogram clustering, as well as, other algorithms based on histograms to wrong
results and conclusions.
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FIGURE 6. The produced vector cqy (Figure 5), the local minima (dots) and the
threshold produced by the proposed algorithm (dotted line).

The next step of the proposed algorithm is the determination of all local minima of the
produced vector ¢, p:

C" = { min, cos(T)}. (5)

Figure 6 depicts the local minima (fat dots) of the vector ¢, of the image histogram shown in
Figure 3. All those local minima could express image clusters, but most of them are very close to
each other and some of them lie too high to be a cluster. Thus, the proposed algorithm truncate
those local minima to the important ones, i.e., to those that could express an image cluster.
This truncation procedure is consisted by two steps. The first truncation step is the removal of
the local minima (candidate clusters) that are very high. Thus, a threshold is determined for
that purpose, which could be dynamically calculated by the average of the values of the local

minima: )
_ *
thr = SN g c, (6)
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where the ¢ denotes a local minimum belonging to the vector C* carrying all local minima and
Ng¢~ is the number of local minima belonging to C*. An example of that threshold is shown in
Figure 6 with a dotted line.

The proposed algorithm truncates all local minima (candidate clusters) that have a value
larger than the produced threshold:

C'={c}, ifcf <thrandcfeC* (7)

In Figure 6, the vector C? is consists of all local minima (candidate clusters) which are less than
the estimated threshold thr (dotted line).

The second and last truncation step of the proposed algorithm is the removal of the candidate
image clusters which are consisted of a very small number of image pixels, i.e., less than 2% of
the total number of image pixels. Thus, the proposed algorithm applies an iterative procedure
that calculates the number of image pixels belonging to each candidate image cluster and prunes
the cluster with the smallest number of image pixels and in the same time this number is below
than a predefined threshold, usually a low rate of the total image pixels:

C ={c}, ifnl<ngy, andcleC?, (8)

where the n} denotes the number of image pixels belonging to the cluster configured from the c!
and c! 41> and ngp, is the predefined threshold. The pruned candidate clusters are merged with
their closest image clusters.

FIGURE 7. (a)The final estimated clustering ranges (dots) and (b) the clustered image.

Figure 7(a) presents the remained candidate clusters of the histogram examined in Figure 6,
and Figure 7(b) illustrates the clustered image after applying the estimated cluster ranges.

The remaining vector C, not only defines the image clusters, but also determines the exact
number of image clusters. The efficiency of the proposed method will be shown in the next
Section.

Finally, the overall clustering algorithm is summarized in Figure 8.

INPUT Histogram _|EEMD on Image | Summation Cyy, Local Minima C*
image | Extraction "l Histogram "] Caleulation "l Determination
v
Definition of Cluster’s Number | Truncation of Local Minima L Removal of Very High (6)
and their ranges C h with very Small Number of Pixels C'[" Local Minima C'

FIGURE 8. Flow diagram of the proposed clustering algorithm.

4. Experimental Results. In this Section, the performance of the proposed unsupervised
image clustering method is examined by presenting numerical results using the introduced clus-
tering approach on various synthetic and real images, with different types of histograms. The
obtained results are compared with the corresponding results of a well-known unsupervised clus-
tering method [3] applied to various images. In all the experiments, the EEMD image clustering
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algorithm was used with Gaussian noise of zero mean and variance equal to 0.2 and 1000 trials
are performed. Also, the IMF's range from [a, b] = [2, 5], since in all the tested images was used
8-bit quantization.

FIGURE 9. Five images depicting real scenes (left column) and their correspond-
ing image clusters produced by the proposed method (right column,).

Figure 9 presents five real images selected randomly from the Berkeley image segmentation
database [25] and their corresponding image clusters obtained by the proposed approach. The
left column in Figure 9 shows the initial images which depict real, complex scenes, while the
right column shows the corresponding image clusters produced by the proposed algorithm. One
can clearly see that the proposed method not only can provide the image clusters, but also can
efficiently compute the number of image clusters.

In the next set of experiments, the proposed method was tested against a well known image
clustering algorithm, the ISODATA [3] image clustering algorithm. In order to evaluate the two
algorithms, ground truth data was extracted manually for the testing images. Figure 10 presents
the image clusters extracted by the two afore mentioned methods for some of the testing images.
The first column shows the initial images, the second columns depicts the ground truth data
which was manually extracted in order to calculate the numerical results depicted in Table 1.
The third column presents the image clusters produced by the proposed algorithm, while the final
column shows the image clusters acquired by the ISODATA method [3]. One can easily see that
the proposed image clustering algorithm provides better results than the other two algorithms.
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FIGURE 10. Initial images (first column), image clusters: ground truth (second
column), proposed method (third column) and ISODATA image clustering method

[3] (last column,).

TABLE 1. Error comparison based on the Tanimoto/Jacard error for the pro-

posed image clustering algorithm and the ISODATA method [3].

] Tested Images

| Proposed | ISODATA [3] |

Fig. 10(a) 0.0632 0.1730
Fig. 10(b) 0.0963 0.2436
Fig. 10(c) 0.0401 0.5057
Fig. 10(d) 0.0621 0.4174
Fig. 10(e) 0.1113 0.4250
Fig. 10(f) 0.1011 0.4875
average values of tested images | 0.1178 0.3757
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This fact, is also confirmed by Table 1 which presents the well known Tanimoto/Jacard error
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[35] measure E(-) defined as:
flo (Lm dxdy o)
f LoUIm dxdy’

where I,,, and I, are the extracted and the desired segmented images respectively. In Table 1,
the desired segmented images have been extracted manually and then, compared by equation (9)
with the acquired segmented images produced by the proposed method and ISODATA clustering
method [3]. The error for the proposed algorithm indicates very small values, which means that
the acquired results are closer to the ground truth data. On the contrary, the ISODATA method
produces lager error values, thus, the acquired image clusters differ from the ground truth data.
Furthermore, the proposed algorithm estimates the number of image clusters more efficient
(more reasonable) than the ISODATA method, which produces either overclustered images or
images with a very small number of clusters. In this set of experiments, various images with
real and synthetic scenes were used. All the images with real scenes are derived from Berkeley
database [25]. The Berkeley database which contains image segmentation ground truth data
from 30 different human subjects and can be easily used in order to identify the different image
clusters in the testing image.

E(o,m)=1-—

5. Conclusion. In this paper, a novel unsupervised image clustering method is introduced.
The proposed approach exploits ensemble empirical mode decomposition (EEMD) to analyze
the histogram of the image under examination. The EEMD algorithm can decompose any
nonlinear and non-stationary data into a number of intrinsic mode functions (IMFs). The
proposed algorithm uses only a number of the intermediate IMFs of the EEMD decomposition,
which have interesting characteristics and provide a novel workspace that is utilized in order
to automatically detect not only the different clusters, but also the number of clusters into the
image under examination. The effectiveness of the proposed image clustering method is proved
in the experimental results Section where the proposed image clustering algorithm is applied to
various images with simple and complex scenes.

Furthermore, the extension of the proposed clustering algorithm to color image clustering is
an open research topic, since there is no a systematic way to mixture color channels.
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