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Abstract. In this paper, we analyze the performance of dither modulation (DM) against
the composite attacks including valumetric scaling, additive noise and constant change.
The analyses are developed under the assumptions that the host vector and noise vector
are mutually independent and both of them have independently and identically distributed
components. We derive the general expressions of the probability density functions of
several concerned signals and the decoding error probability. The specific analytical results
are presented for the case of generalized Gaussian host signal. Numerical simulations
confirm the validity of the given theoretical analyses.
Keywords: Digital watermarking, quantization index modulation, composite attacks,
valumetric scaling, constant change

1. Introduction. Since Cox et al. pointed out that digital watermarking problem could
be viewed as a communication problem with side information [1], much attention has been
paid to the quantization-based watermarking for cancelling the host signal interference [2,
3]. One of the most important methods proposed so far is quantization index modulation
(QIM) [4]. Chen et al. [4] presented the basic QIM algorithm called dither modulation
(DM) and several variants of it, i.e., distortion compensated dither modulation (DC-DM)
and spread transform dither modulation (STDM) [4]. The theoretical performance of
QIM methods has been extensively investigated in [5, 6, 7].
In [4], Chen et al. considered the simple case where the watermark is transmitted in

an additive white Gaussian noise (AWGN) channel. They gave a relatively crude ap-
proximation to the error probability of the minimal distance detector. Eggers et al. [5]
proposed the scalar Costa scheme (SCS), approximately equivalent to DC-QIM, and an-
alyzed the decoding performance of it under the AWGN attack. The careful performance
analyses were done by Gonzàlez et al. [6] for a large class of QIM methods. They assumed
that the watermark is impaired by an additive attacker and considered the following two
cases: the channel noise follows a uniform and Gaussian distributions. Bartolini et al. [8]
concentrated on analyzing the performance of the STDM algorithm at a practical level.
By assuming the host signal is normally distributed, they derived the theoretical error
probabilities in closed form for the gain attack plus noise addition, and the quantiza-
tion attack. Boyer et al. [9] theoretically evaluated the performance of scalar DC-QIM
against AWGN from the detection viewpoint. In [10], the authors proposed an improved
DM scheme to resist linear-time-invariant filtering and provided a thorough analysis of
it, resulting in both accurate predictions and bounds on the error probability. Recently,
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a new logarithmic QIM (LQIM) was presented in [11] and its analytical performance was
obtained in the presence of AWGN.

The objective of this paper is to analyze the performance of DM against composite
attacks, which is lacking in the literature. Obviously, in watermarking applications, it
is more often that the watermark undergoes multiple attacks. Specifically, the combina-
tion of valumetric scaling, additive noise and constant change will be considered. On the
other hand, most of previous analyses are restricted to the Gaussian host, even sometime
regardless of the distribution of the host signal, which we will try to overcome. The gen-
eralized Gaussian distribution (GGD) is adopted to model the host signal in our analysis.
Since the GGD is a parametric family of distributions, we will observe how the choice of
distribution model affects the performance of DM.

The paper is organized as follows. Section 2 reviews the original DM and describes
the problem to be solved. Next, Section 3 accurately derives the general PDF models
concerned with our analysis. In Section 4, the performance of DM under the composite
attacks is mathematically analyzed by the derived PDFs. The decoding error probability
is given in closed form. Then, in Section 5, the theoretical results are confirmed by
numerical simulations. Finally, Section 6 concludes.

Notation: In the remainder of this article, we use boldface lower-case letters to denote
column vectors, e.g. x, and scalar variables are denoted by italicized lower-case letters, e.g.
x. The probability distribution function (PDF) of a random variable (r.v.) x is denoted
by pX(x), whereas if x is discrete its probability mass function (PMF) is designated by
PX(x). We write x ∼ pX(x) to indicate that a r.v. x is distributed as pX(x). pX|Y (x|y)
means the conditional probability of x given y. And the subscripts of the distribution
functions will be dropped wherever it is clear the random variable they refer to. Finally,
the mathematical expectation and standard deviation are respectively represented by µx

and σx for a r.v. x.

2. Review of DM and Problem. We will concentrate our attention on DM in this
study. The uncoded binary DM can be summarized as follows.

Let x ∈ RN be a host signal vector in which we wish to embed the watermark mes-
sage m. First, the message m is represented by a vector b with NRm binary antipodal
components, i.e., bj = ±1, j = 1, · · · , NRm, where Rm denotes the bit rate. The host sig-
nal x is then decomposed into NRm subvectors (blocks) of length L = ⌊1/Rm⌋, denoted
by x1, · · · ,xNRm . In the binary DM, two L-dimensional uniform quantizers Q−1(·) and
Q+1(·) are constructed, whose centroids are given by the lattices Λ−1 = 2∆ZL + d and
Λ+1 = 2∆ZL+d+∆a with d ∈ RL a key-dependent dithering vector and a = (1, · · · , 1)T .
Each message bit bj is hidden by using Qbj(·) on xj, resulting in the watermarked signal
y ∈ RN as

yj = Qbj(xj), j = 1, · · · , NRm (1)

The watermark detector receives a distorted, watermarked signal, z, and decodes a
message m̂ using the minimal distance decoder

b̂j = argmin
−1,1

∥Qbj(zj)− zj∥, j = 1, · · · , NRm (2)

where ∥ · ∥ stands for Euclidean (i.e., ℓ2) norm.
In practical watermarking applications, the watermarked signal might undergo com-

posite attacks. It is well known that quantization-based watermarking is vulnerable to
valumetric scaling attack. While the vector at the input of the decoder is scaled by ρj, i.e.,
zj = ρjyj, the quantization bins at the decoder are not scaled accordingly, thus producing
a mismatch between embedder and decoder that dramatically affects performance. Also,
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the original DM is not robust to constant change distortion, i.e., zj = yj + cja with cj
a constant value. No decoding error is made for |cj| < ∆/2, however, the bit error rate
(BER) is equal to 1 for ∆/2 < |cj| < 3∆/2. In this work, the two attacks are considered
together with additive noise νj, yielding the attacked signal as

zj = ρjyj + νj + cja. (3)

We will analyze the performance of DM in the case of (3). In the analysis, x, y, z and ν
are all regarded as random vectors. And we assume that both x and ν have independently
and identically distributed (i.i.d.) components and ν is independent from y. Since the
mean value of additive noise can be counted by the third term in (3), it is reasonable to
assumed that µν = 0.

3. PDF Models. Define the extracted vector r, r
△
=Qb(z) − z. Obviously, a crucial

aspect when performing a rigorous analysis lies in computing the PDF of r. Let us begin
with the issue.
A. PDF Model of the watermarked signal
We use a lower-case letter to indicate any element of the vector denoted by the boldface

one. The previously used index j is dropped for no specific values (or subverctors) are
concerned. Given x ∼ pX(x), from the relation (1), we get

pY (y|b) =
∞∑

k=−∞

δ(y − yk)

∫ yk+∆

yk−∆

pX(x)dx, (4)

where the variable yk is defined as

yk = 2k∆+ (b+ 1)∆/2 + d

and δ(·) denotes the delta function.
A few observations are in order about the PDF of y. First, for different d, the PDF

pY (y|b) is different. That means each element of y obeys different distributions by ran-
domly selecting d during embedding. However, due to the fact

PY (yk + 2∆|b) = PY (yk+1|b) (5)

exists, it is sufficient for us to consider the case d ∈ [−∆,∆). Further, if the PDF pX(x)
is symmetric, i.e., pX(x) = pX(−x), and d = −∆/2, from (4), it is easily derived that

pY (y|b = −1) = pY (−y|b = +1). (6)

But for d = 0, the PDF pY (y) satisfies

pY (y|b) = pY (−y|b). (7)

These two properties of pY (y) are exhibited in Fig. 1 and Fig. 2 respectively.
B. PDF Model of the attacked signal
Taking the equation (3) into account and using the fact that for any ρ > 0 pρY (y) =

1
ρ
pY (

y
ρ
) holds, the PDF of z can be obtained by convolution [12]

pZ(z|b) =
∞∑

k=−∞

PY (yk|b)pν(z − ρyk − c), (8)

where the convolution follows from the independence between y and ν. In (8), if the effect
of different d on PY (y) is ignored (this generally holds when the embedding distortion is
acceptable), pZ(z|b, d ̸= 0) can be approximately viewed as the translate of pZ(z|b, d = 0),
that is,

pZ(z + ρd|b, d ̸= 0) ≈ pZ(z|b, d = 0). (9)
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Figure 1. The PDF curves
of y for different values of b.
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Figure 2. The PDF curve of
y with b = −1 and d = 0.
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Figure 3. The PDF curves
of z.
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Figure 4. The empirical dis-
tribution curves of z.

Now, let us analyze the properties of pZ(z) when both y and ν are distributed symmet-
rically around the origin. In the case d = −∆/2, combining (6) and (8), we derive

pZ(z + 2c|b = 0) = pZ(−z|b = 1). (10)

But with d = 0, it results

pZ(z + 2c|b) = pZ(−z|b). (11)

Fig. 3 depicts qualitatively the PDFs of z in case of Gaussian host and noise. It
can be seen that there is a bell curve present around each discrete value of y due to
the existence of Gaussion noise, and the two adjacent ones even overlap for large noise
strength. Meanwhile, the distance between two discrete points of y is scaled by the scaling
factor ρ and pZ(z) is translated by constant value c. The corresponding empirical density
curves of Z are plotted in Fig. 4. We found the analytical PDF of z fits well with empirical
observations.

C. PDF Model of the extracted signal
With the given definition of r previously, the PDF of it is written as

pR(r|b) =


∞∑

j=−∞
pZ(zj − r|b, d), r ∈ [−∆,∆)

0, else
(12)
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Figure 5. The PDF curves
of r.
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Figure 6. The empirical dis-
tribution curves of r.

where zj has the similar definition with yk. Substituting (8) into (12) yields

pR(r|b) =

{ ∑
j

∑
k

P (yk|b)pν(µjk − r), r ∈ [−∆,∆)

0, else
(13)

with µjk = zj − ρyk − c. Obviously, once the PDFs of x and ν are given, the PDF of r is
easily computed by (13). If ignoring the effect of d on PY (y), in view of (13), we derive

pR(r − ϵd|b, d ̸= 0) ≈ pR(r|b, d = 0) (14)

with ϵ = ρ− 1. This shows that for the case d ̸= 0 pR(r|b) can be approximately obtained
by translating pR(r|b, d = 0). Moreover, while |ϵ| is small enough for neglecting the term
ϵd, (14) reduces to

pR(r|b, d ̸= 0) ≈ pR(r|b, d = 0). (15)

Thus, despite the choice of d, pR(r) approximately remains unchanged for small |ϵ|.
By assuming pX(x) and pν(ν) are symmetrical, for pR(r), we have the following prop-

erties

pR(r − 2c|b) = pR(−r|b), for d = 0 (16)

pR(r − 2c|b = 0) = pR(−r|b = 1), for d = −∆

2
(17)

which is similar to pZ(z). In particular, combining (10), (11) and (13), we derive

pR(r|b, ϵ) = pR(r|b,−ϵ) for d = 0 (18)

pR(r|b = 0, ϵ) = pR(r|b = 1,−ϵ) for d = −∆

2
. (19)

These properties of pR(r) are helpful for us to analyze the performance of DM.
Fig. 5 and Fig. 6 respectively plot the probability density curves of r and the cor-

responding empirical ones with Gaussian host and noise in use. It is shown that the
values of r are distributed around zero with higher probability for weak attacks, and the
density curve of r becomes smooth as attacks become stronger, resulting in the increase
of BER. By the scale factor ρ, the distribution curve of r is either dilated or compressed.
Simultaneously, it is approximately translated by ϵd + c. Comparison of Fig. 5 and Fig.
6 reveals the analytical PDF of r fits perfectly with its empirical distribution.
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4. Performance Analysis. As the previous literatures, the decoding bit error proba-
bility Pe is used as the final performance measurement. Applying the definition of r, it is
straightforward to write Pe as

Pe = P (∥r∥ > ∥∆a− |r|∥|b). (20)

where |r| denotes the vector of absolute values of components of r. Defining s
△
= |r|Ta,

the above expression is equivalent to

Pe =

∫ L∆

L∆/2

pS(s|b)ds. (21)

To compute Pe, we need know the PDF pS(s) of s. The exact solution for pS(s) may be
achieved by several means. One of the standard procedures is by performing multifold
integral operation, which is feasible for a small L. However, it becomes impractical as L
increases. To solve the problem, it is nature to use mathematically tractable approxima-
tions. Let us assume that all components of d are equal, so that the vector r has i.i.d
components. At this point, by the well known central limit theorem (CLT), s thus can
be approximated by a Gaussian random variable, whose mean and variance are Lµ|r| and
Lσ2

|r|. Using the derived PDF in (13), µ|r| and σ2
|r| are represented as

µ|r| =
∑
j

∑
k

P (yk|b)
∫ ∆

−∆

|r|pν(µjk − r)dr (22)

σ2
|r| =

∑
j

∑
k

P (yk|b)
∫ ∆

−∆

r2pν(µjk − r)dr − µ2
|r|. (23)

Then, the probability Pe is computed as

Pe ≈ Φ(

√
L(∆− µ|r|)

σ|r|
)− Φ(

√
L(∆/2− µ|r|)

σ|r|
), (24)

where Φ(·) stands for the cumulative distribution function (CDF) of the standard Gaussian
distribution. It should be pointed out the CLT approximation to Pe is only valid for very
large L. In reality, the condition is generally met in order to improve the watermarking
robustness.

Now, we can observe several useful properties of Pe from the previous analysis. If |ϵ| is
small enough, by the property (15), it is easily understood that Pe approximately equals
under the situations d ̸= 0 and d = 0. Therefore, without loss of generality, d is set to 0.
Furthermore, if both pX(x) and pν(ν) are symmetrical, in use of (18), Pe is symmetrical
with respect to the point β = 1 for d = 0. As a result, the symmetry of Pe also holds for
d ̸= 0 approximately.

Theoretically, Pe can be estimated only if the PDFs pX(x) and pν(ν) are given. For the
following analysis we consider a specific case where the host signal is statistically modeled
by the GGD. The GGD model is used because it includes a family of distributions and
suitable for many practical applications. The PDF p(t) of the GGD is

p(t) =
κβ

2Γ(β−1)
e−|κ(t−µ)|β , (25)

where κ = 1
σ

√
Γ(3β−1)/Γ(β−1), and Γ(u) =

∫∞
0

tu−1e−tdt is the Gamma function. Thus,
the distribution is completely specified by the mean µ, the standard deviation σ and the
shape parameter β, and is denoted as GGD(β;µ, σ). Note that Gaussian and Laplacian
distributions are just two special cases of GGD with β = 2 and β = 1, respectively.
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First, the PMF PY (y) is calculated according to the distribution model of x. Given
pX(x) ∼ GGD(βx;µx, σx), in view of (4), we immediately write

PY (yk|b) = Ψx(yk +∆)−Ψx(yk −∆), (26)

where the CDF Ψx(t) is defined as

Ψx(t) =
1

2
+ sgn(t− µx)

γ(β−1
x , |κx(t− µx)|βx)

2Γ(β−1
x )

(27)

[13], γ(s, u) =
∫ u

0
ts−1e−tdt is the lower incomplete gamma function, and sgn(t) denotes

the sign function.Then, the integration terms in (22) and (23) are derived by the PDF
pν(ν). As an example, the additive Gaussian noise is considered, i.e., pν(ν) ∼ N (0, σ2

ν).
This leads to∫ ∆

−∆

|r|pν(t− r)dr=

∫ t+∆

t

rpν(r)dr −
∫ t

t−∆

rpν(r)dr

+t(

∫ t

t−∆

pν(r)dr −
∫ t+∆

t

pν(r)dr)=
3∑

i=1

fi(t) (28)

and ∫ ∆

−∆

r2pν(t− r)dr=

∫ t+∆

t−∆

(t2 − 2tr + r2)pν(r)dr =
6∑

i=4

fi(t), (29)

where

f1(t) =
σν√
2π

(e
− t2

2σ2
ν − e

− (t+∆)2

2σ2
ν ), f2(t) = f1(−t),

f3(t) = t(2Φ(
t

σν

)− Φ(
t−∆

σν

)− Φ(
t+∆

σν

))

f4(t) = t2(Φ(
t+∆

σν

)− Φ(
t−∆

σν

)), f5(t) = 2t(f1(−t)− f1(t))

f6(t) =
σν(t−∆)√

2π
e
− (t−∆)2

2σ2
ν − σν(t+∆)√

2π
e
− (t+∆)2

2σ2
ν + σ2

ν(Φ(
t+∆

σν

)− Φ(
t−∆

σν

))

Using the above results, the mean and variance of |r| become

µ|r| =
∞∑

j=−∞

∞∑
k=−∞

3∑
i=1

P (yk|b)fi(µjk) (30)

σ2
|r| =

∞∑
j=−∞

∞∑
k=−∞

6∑
i=4

P (yk|b)fi(µjk)− µ2
|r|. (31)

Therefore, the approximated Pe is obtained for large L by computing (26), (30), and
(31), then putting them into (24). Since the calculation of pY (y) is relatively simple in
(4), the above analysis can be easily extended for other host distributions. However, the
derivation of the integration terms in (22) and (23) might become very complex for the
noise ν with other PDFs. Thus, they are computed numerically in the case.
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5. Experimental Results. In order to verify the obtained theoretical results, we first
conduct experiments on artificial signals. A set of 64000 random data, independently
drawn from the GGD, are used as the host signal. It is decomposed into 1000 subvectors,
and each one conceals one bit information. Under the composite attacks, we obtain the
empirical BER. And the theoretical values of Pe are calculated in the same cases.

Fig.7 illustrates the plots of the Pe’s versus the scaling factor ρ for several values of
σν and c. It is shown that DM is definitely very sensitive to the scaling attack. The
probability of error is unacceptably high when ρ movies beyond the range [0.98, 1.02].
The existence of noise and constant change causes the increase of Pe further. And the
effect of constant change becomes relatively distinct for strong noise. The theoretical
approximation of Pe agrees almost perfectly with the empirical results particularly in the
case of weak attacks. Fig. 7 also demonstrates that Pe is symmetrical around the point
ρ = 1. Fig. 8 shows the performance of DM against constant change attack while fixing
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ρ and σν . As can be seen, the probability of error starts to grow rapidly as long as the
absolute value of c approaches to ∆/2. The given bound is decreased due to other two
attacks. The estimated Pe’s approximately equal to the empirical ones, which proves that
our analysis is valid, but the accuracy of estimation gets worse for large c. At the same
time, Fig. 8 shows that Pe is symmetrical around c = 0. The performance of DM against
Gaussian noise attack is exhibited in Fig. 9 while fixing ρ and c. It is clear that the
the probability of error becomes larger as σν and ρ increases. The negative effect of the
constant change on Pe is observed remarkably for large σν . Similar to the previous tests,
the theoretical Pe’s fit the empirical ones very well and the maximal difference between
them is lower than 0.02.
Our analysis also leads to insights about how statistical properties of the host signal

affect the performance of DM. In Fig. 10, the theoretical performance values of DM are
shown for different values of βx together with the empirical data. In terms of scaling
attack, impressively DM manifests better performance while the host signal obeys the
GGD with a smaller value of βx. The slope of the Pe versus ρ curves become less steep
and lower values of Pe are attainable for large channel distortions as βx decreases. This
behavior can be explained as follows. For the GGD, the smaller βx is, the more impulsive
the shape, and the heavier the tails, so the lower the probabilities that the bigger values of
x present over the range of interests. As a result, the introduced distortion ϵy by scaling
attack degrades for the same value of ρ, and thus, Pe becomes smaller. We also observe
that the theoretical approximation agrees almost perfectly with the empirical results for
the cases βx = 2, 8, but does worse for βx = 1. This is because the CLT approximation
to Pe may underestimate the importance of the tails of pX(x) with βx = 1 and gives the
smaller results than the true Pe [6]. In Fig. 11, the theoretical and empirical performance
values of DM are shown for different values of σx and µx. As can be seen, for the same
quantization step, the performance of DM goes down against valumetric scaling as σx

and |µx| increase. The reason is apparent. Due to the increase of σx and |µx| the large
distortions are introduced by scaling operation. However, for both constant change and
noise cases, the performance of DM is insensitive to statistical properties of the host
signal, because the two operations are independent from the watermarked signal. Hence,
herein we just provide the results for scaling attack.



173 Xinshan Zhu and Yanming Chen

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

P
e

Lena: L=32, ∆=8, d=0, µν=0

ρ=1,σν=10−5

ρ=1.01,σν=∆/2

ρ=1.01,σν=10−5

ρ=1,σν=∆/2

Figure 13. Bit error proba-
bility versus c for different val-
ues of ρ and σν . Lines and
symbols stand for theoretical
values and empirical data, re-
spectively.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

σν

P
e

Lena: L=32, ∆=8, d=0, µν=0

ρ=1,c=0

ρ=1,c=∆/4

ρ=1.01,c=0

ρ=1.01,c=∆/4

Figure 14. Bit error prob-
ability versus σν for different
values of ρ and c. Lines and
symbols stand for theoretical
values and empirical data, re-
spectively.

Subsequently, we conduct experiments on real images. The watermark embedding is
performed in the spatial domain, which allows us to measure the performance of DM
without the impact of transform operations. Specifically, all pixels of one image are
pseudorandomized and arranged in a vector as the host signal. Each 32 pixels conceal one
bit information. The composite attacks with different values of ρ, σν and c are carried
out on the watermarked image to obtain the empirical BER. The computation of Pe need
estimate the distribution parameters of image pixels. We employ the maximum likelihood
(ML) estimator for the GGD [14].

The experimental results on Lena image are shown in Fig. 12-14. Since the PDF
of image pixels are not symmetrical, the results are slightly different from ones given by
simulation on artificial signals. Fig.12 depicts the plots of the Pe’s versus the scaling factor
ρ for several values of σν and c. As can be seen, while c ̸= 0, Pe is not symmetrical around
ρ = 1 yet. Constant change distortions transmit the performance curves of DM. The same
behavior can be also observed in Fig. 13, which illustrates the sensitivity of DM to the
addition/subtraction of a constant luminance value while fixing ρ and σν . In addition,
Fig.12 shows the additive noise attack increases BER for small scaling distortions, but
reduces BER as the scaling distortions become serious enough. The performance of DM
against Gaussian noise attack is exhibited in Fig. 14 while fixing ρ and c. From all
the tests, it is observed that the analytical prediction and empirical results for DM are
sufficiently close, which verifies the validity of the given theoretical results.

Since the performance of DM depends on the distribution of host signal, different test
results will be obtained on different images. Moreover, it is well known that there are
no statistical distributions suitable for modeling the luminance component of common
images in the spatial domain [15]. This makes that the prediction error of BER could
be very large sometime. We tested the performance of DM on ’Crowd’ and ’Mandrill’
images for comparison purpose. The two images and Lena respectively represent three
types of images: the PDF shape is very impulse for Crowd, a little flat for Mandrill and
very flat for Lena. The estimated mean, variance and shape parameter of each image are
displayed in Table. 1. The quantization step ∆ for embedding was set to 8 in all tests.
The robustness to amplitude scaling is shown in Fig. 15. We observe that DM achieves
the best performance on Crowd, which is consistent with the results in Fig. 10. On the
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Table 1. Distribution parameters.

Image µx σx βx

Crowd 85.2 50.9 1.5
Mandrill 129.1 42.4 3.3
Lena 99.1 47.9 10.6
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Figure 15. Bit error probability versus ρ for different images. Lines and
symbols stand for theoretical values and empirical data, respectively.

contrary, DM performs worse on Mandrill than Lena. The behavior can be explained
according to the obtained conclusions on artificial signals. Mandrill has smaller shape
parameter and variance than Lena, which helps reduce BER of DM. However, due to the
large mean luminance of Mandrill, not only the performance gain is canceled out but also
the BER grows up. We also note that the analytical Pe departs from the empirical data
too much on Crowd. That is mainly due to the fact that GGD is a poor model for the
Crowd image. With respect to constant change and additive noise, it has been pointed
out that the performance of DM is insensitive to the statistical properties of host signal.
We may get similar results on other images as shown in Fig. 13 and Fig. 14. Thus, they
are not provided here.

6. Conclusion. Throughout this paper, we have theoretically evaluated the performance
of DM facing the combination of valumetric scaling, additive noise and constant change.
The analyses were developed under the assumption that both the host vector and noise
vector have i.i.d components and the two vectors are independent. We accurately de-
rived the general forms of the PDFs of the watermarked signal, the attacked signal and
the extracted signal. By the derived PDFs, the decoding error probability was generally
expressed in closed form. The specific analytical results were presented for the case of
generalized Gaussian host and Gaussian noise. Moreover, the theoretical results can be
easily extended by modeling the host and noise signals with other distributions. Simu-
lations on artificial and real data show us the robustness of DM against the composite
attacks and the analytical error probability agrees with the empirical one very well. Our
analyses also discovered that DM is more robust to valumetric scaling for the impulsive
PDF shape of host signal, but performs worse with the increase of the absolute mean
value and variance of host signal. However, with respect to constant change and additive
noise distortions, DM is insensitive to the statistical properties of host signal. These can
ultimately guide the design of efficient watermarking algorithms based on DM.
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