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Abstract. We consider a scenario where an attacker is able to receive a stegosignal
only over a noisy channel under the condition that he (or she) may even know the cover
message (CM). We propose to use a spread-spectrum-signal-based stegosystem (SG) and
prove that the capacity of such SG is zero for any fixed security level. Moreover, we show
that the code rate satisfies a square root law due to Ker et al. (in reality this law can
be found in an earlier paper (2005) by the authors of the current paper). We get the
same result for a conventional SG where the CM is modeled by a Gaussian correlated
sequence with a correlation matrix unknown for the SG designer. We speculate that for
any conventional SG with noiseless attack channel but for a practical CM model, the
capacity should also be zero.
Keywords: Watermarking, stegosystem, noisy channel, blind decoder.

1. Introduction. The notion of channel capacity has been introduced by the pioneering
Shannon’s work [1] at 1948. It is determined as the maximum (or supremum in general)
information that can be transmitted over noisy channel. There are different types of noisy
channels for which the channel capacity was calculated in a closed form depending on
the channel parameters: symmetric channel without memory, z-channel, Gaussian band
limited channel, fading channel, etc [2]. Later, more “exotic” channels were investigated
in order to find their capacity. The most outstanding result has been achieved by A.
Wyner [3] in 1975 for the concept of wire-tap channel capacity that is determined as the
maximal information that can be transmitted over the channel under the condition of
zero-information leaking for the wiretapper.

The most essential significance of this notion is due to Shannon’s theorem asserting: if
the code rate R is lower than the capacity C then there exist coding and decoding algo-
rithms providing a decreasing to zero error probability as the code block length approaches
to infinity. This theorem belongs to the class of the so called existence theorems where
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encoding and decoding methods are not specified. In a post Shannon period many thou-
sands of papers were devoted to finding such methods (more generally modulation and
demodulation) which are approaching the Shannon bound.
There are several mathematical tools to prove an exponential decreasing of the error

probability as the block length approaches to infinity, and Shannon’s condition holds. But
in the case of a noisy channel model with unlimited frequency bandwidth this proof can
be given in a very simple form. We present now this proof because it will be requested in
the next Section of the current paper.
Let us consider m = 2k mutually orthogonal continuous signals, each of length T (it is

possible because, due to our assumption, our channel is frequency unlimited).
Let us use an additive bound [4] in order to get the following formula for the error

probability of an m-ary orthogonal signaling with coherent receiver [5]:

Pe ≤ (2k − 1)Q(h) (1)

where

Q(x) =
1√
2π

∫ +∞

x

e−
t2
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√
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,

PS is the power of orthogonal (indeed orthonormal) signals, and N0 is the spectral power
density of white Gaussian channel noise. Using a well known bound for Q, namely

Q(x) ≤ 1

2
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2

and substituting this inequality into (1) we get after a simple transform:
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where ν = k
T
is the code rate in bits/second.

We can see that Pe → 0 under the condition that N0, PS, ν remain constant as T → +∞
and the following condition holds

ν <
PS

(2 ln 2)N0

= 0.72
PS

N0

. (3)

The right side of (3) fixes a lower bound for the channel capacity because more precise
calculations show that in reality the channel capacity is 1.44PS

N0
(see [2]).

Although the real channel capacity is at least twice as the bound (3), it is unlikely that
if the additive bound-based capacity is zero, then the real capacity is not zero. We will
use this claim in the following Section.
There are very well known papers devoted to the investigation on stegosystems ca-

pacity [17, 11, 12, 16] but, as a rule, they execute with a description of the CM as a
Gaussian i.i.d., or as a correlated Gaussian sequence with known correlation matrices, or
even the CM is supposed given as a Markov chain with known transition matrices. All
these approaches are highly impractical. Linguistic SG and Network SG are outside of
our consideration. It is indeed quite strange to find the capacity for the ε-security SG [17]
where it is determined as normalized relative entropy (or KLD) calculated just through
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one sample. In reality this notion does not determine a reasonable SG security connected
with a pair of probabilities Pm and Pfa which depend on the blocks of length n.

In order to be successful within the risk of unknown CM statistics, we apply the concept
of noisy channel introduced in [6]. Then the attackers problem consists in a statistical
distinguishing of the CM after its passing over the noisy channel and the SG signal passing
over the same noisy channel. Since the channel noise distribution is, as a rule, known much
better (mostly it is a Gaussian one) the problem to investigate such a SG is simplified.

2. The stegosystem capacity for a noisy attack channel. Let us consider the con-
cept of a stegosystem (SG) based on a noisy attack channel proposed in [6].

This setting can be justified only if there exists in a natural manner a noisy channel
and the attacker is able to receive the stegosignal just over this channel, and nothing else.
There are a lot of examples where such a situation takes place. For the thing: slightly
noised musical files which are placed on some sites in the Internet and are free for reading,
audio and video signals in the Skype system where noises are present due to bad cameras
and microphones, speech signals within cell phone communications, etc.

Let us consider a binary linear block code V with parameters (n, k) where n is the
block length and k is the number of information bits. The embedding of a secret message
is performed in an additive manner as follows:

Cw(ℓ) = C(ℓ) + (−1)biℓσwπ(ℓ) , ℓ = 1, 2 . . . , n,

where Cw(ℓ) is the ℓ-th sample of the stegosignal, C(ℓ) is the ℓ-th sample of the cover
message (CM), biℓ is the ℓ-th bit of the i-th codeword of length n, σw ≥ 0 is the coefficient
that determines the depth of the embedding, and π is a zero-mean Gaussian pseudorandom
i.i.d. sequence with variance 1 determined by the stegokey.

After a passing of the stegosignal through the Gaussian channel we get

C ′
w(ℓ) = Cw(ℓ) + ε(ℓ) , ℓ = 1, 2 . . . , n,

where C ′
w is the signal observed by an attacker, and ε is a zero-mean Gaussian i.i.d.

sequence with variance σ2
ε .

We assume also (in favour of the attacker) that he (or she) may even know the CM,
which is unacceptable for conventional SG.

The informed legal decoder takes a decision about the embedding of the i-th codeword
by making

i = arg max
1≤i′≤2k

n∑
ℓ=1

(C ′
w(ℓ)− C(ℓ)) (−1)bi′ℓπ(ℓ). (4)

The attacker’s problem consists in statistically distinguishing the channel noise within
the sum of the channel noise and the embedded SG signal. Since the channel noise and
the stegosignal are both Gaussian zero-mean i.i.d. sequences, the attacker must perform
a testing of two hypothesis H0 and H1 regarding the variances of the sequences σ2

ε or
σ2
ε + σ2

w, respectively.
It is a very simple problem in mathematical statistics, but for our purposes it is more

convenient to use an information-theoretic measure of hypothesis testing, namely the
relative entropy D(H0∥H1) [7, 8]. It follows from Information Theory [8] that for any
hypothesis testing rule, the following inequality holds

Pm ln

(
Pm

1− Pfa

)
+ (1− Pm) ln

(
1− Pm

Pfa

)
≤ D(H0∥H1), (5)

where Pfa is the probability of false alarm (when the SG signal has not been embedded
but the detector wrongly declares its presence) and Pm is the probability of missing (when
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the SG signal has been embedded but the detector wrongly declares its absence). The
SG system is perfect or completely secure if D(H0∥H1) = 0 and then Pfa = Pm = 1

2
which is equivalent to a random guessing about the SG presence or the SG absence. If
D(H0∥H1) ̸= 0 but has an enoughly small value, then we may assume that the SG is
D-secure. If we select a proper distinguishing threshold such that Pm = 0, then it follows
from (5) that Pfa ≥ 2−D.
It has been proved in [9] that for a chosen model of two zero mean i.i.d. Gaussian

distributions with different variances σ2
ε and σ2

ε + σ2
w we get

D(H1∥H0) = 0.77n
[
ln (1 + η)−1 − (1 + η)−1] , (6)

where

η =
σ2
ε

σ2
w

is the noise-to-watermark ratio (NWR). For typically large NWR η we may approxi-
mate (6) as

D(H0∥H1) = 0.36nη−2. (7)

We get immediately from (7) that

η = 0.6

√
n

D
. (8)

Using the informed decoder rule (4) and the additive bound for the code V with minimal
code distance d we get similar to (1) and using the equation 16 from [6]:

Pe ≤ (2k − 1)Q

(√
d

η

)
.

Following the transformation technique used in (2), we get the inequality

Pe ≤ exp

(
Rn ln 2− d

2η

)
, (9)

where R = k
n
is the code rate. Substituting η from (8) into (9) and taking into account

the fact that for any (n, k)-block code, d ≤ n, we get from (9)

Pe ≤ exp

(
Rn ln 2− n

√
D

1.2
√
n

)

= exp

(
Rn ln 2− 1

1.2

√
nD

)
(10)

We can see from (10) that Pe → 0 as n → +∞ for any security level D > 0 only if

R ≤ 1.2

√
D

n
. (11)

The inequality (11) means that the capacity of the SG system for a noisy attack channel
for any given security level D is zero because there does not exist a parameter C > 0
for which Pe → 0 as n → +∞ for R < C. (We define the capacity of the SG system as
the maximum code rate for which Pe → 0 as n → +∞ for any (not necessarily perfect)
security level D.)
This result is quite reasonable and it coincides with a claim asserted in [10] that the

greater is the block length the greater is the information that can be used by an attacker
in order to distinguish the CM and the SG system.
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We can find also from (11) that the code rate obey to square root laws of steganographic
capacity [11] due to Ker [12]. (But in reality, a similar square root law has been established
for the noisy attack channel in an earlier paper [9]). It follows from (8) that in order to
provide a given constant security level D as n → +∞, the NWR should decrease to
zero and this results in an impossibility of practical implementation of such SG system
using digital CM and watermarking. In order to overskip this unfortunate situation,
the spread-time stegosystem (STS) has been proposed in [13], where the embedding of
a pseudorandom sequence (π(ℓ))nℓ=1 is performed not in every CM sample but in time
spreaded samples which are determined by a secret stegokey. But as it was shown in [13]
it is necessary to embed π(n) only in at most

√
n samples among the block length n in

order to provide the conditions estableshing constant η and D(H0∥H1). Hence a square
root law also holds. It is worth to note that no Dirty Paper Codes [14] can make the
SG capacity to be non-zero for this case, because we assume that an informed decoder
is used, hence these codes are not needed. In fact a bottleneck to our approach appears
only in the use of an additive bound for a proof of zero capacity but, as it was mentioned
in Section 1, it is very unlikely that we get a non-zero capacity using some better bound
(say, similar to Gallager exponential bound [2]).

3. Some remarks regarding capacity of conventional stegosystems. It is easy to
get a non-zero capacity of the stegosystem for artificial model of a CM, say Gaussian zero-
mean i.i.d. sequence with known variance σ2

c . Using the modified additive embedding rule
(so far for the uncoded case)

Cw(ℓ) = αC(ℓ) + (−1)bσwπ(ℓ) , ℓ = 1, 2 . . . , n, (12)

where α = 1 − B
σ2
c
, σ2

w = B
(
1− B

4σ2
c

)
, b ∈ {0, 1}, B is the CM quadratic distortion after

embedding, and π is a zero-mean Gaussian i.i.d. pseudorandom sequence with variance 1
determined by a stegokey, we get a perfect SG with D(H0∥H1) = 0 and then the capacity
of such SG, with an attack by additive noise and even blind decoder, is non-zero. But
such CM model is very far from real CM.

Let us consider the closer to practice case where the CM is also Gaussian zero-mean
but a correlated sequence determined by its correlation matrix Rcn for the n-block of
samples. If the designer of the SG would know Rcn , then he (or she) would be able to
perform the Karhunen-Loève Transform (KLT) that reduces the correlated sequence to
an i.i.d. sequence and to get thus an ideal SG, after the embedding of the secret message
b using (12) and after performing the inverse KLT [16]. But this assumption is also very
far from practice, moreover the correlation matrix Rcn may differ for different sample
n-blocks.

Therefore we may assume that Rcn is unknown for the SG designer that embeds the
message according to rule (12). In the paper [15], the Bhattacharyya coefficient (connected
directly with the Bhattacharyya distance) was proposed as a new criterion for the SG
security because sometimes it is more convenient than the relative entropy. Many years
ago, the Bhattacharyya distance has been effectively used by T. Kailath [18] as a technique
to estimate the probability of error for optimal receiver under the condition of binary
signaling over noisy channel

For any SG hypothesis testing rule, the Bayesian error probability P = 1
2
(Pm + Pfa)

(for equal prior probability of the SG presence and absence) satisfies the inequalities [15]:

1

4
ρ2 ≤ P ≤ 1

2
ρ. (13)
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For such model it has been proved in [15] that for the particular case of an exponential
correlation matrix Rcn , the square Bhattacharyya coefficient ρ can be expressed as

ρ2 ≈ (A(r, ηw))
n−1 (14)

where A(r, ηw) is some coefficient that depends on the parameter r of the correlation
matrix Rcn and on the signal-to-watermark ratio (SWR) with embedding distortion B

ηw =
σ2
c

B
.

We can see from (14) that in order to keep a constant SG security level determined by the
probability P in the left side of (13), we should increase the SWR as the block length n
is increasing. Since σ2

c is kept constant, this means that the distortion B should be given
by a decreasing function of n. It has been proved in [15] that the probability of error for
an uncoded SG with embedding given by (12) and the informed decoding rule

Λ =
n∑

ℓ=1

(C ′
w(ℓ)− αC(ℓ)) π(ℓ) ⇒ b̃ =

{
1 if Λ ≥ 0
0 if Λ < 0

where C ′
w(ℓ) = Cw(ℓ) + ε(ℓ), ε(ℓ) = N(0, σ2

ε), ε(ℓ) ∈ i.i.d., can be presented for large ηw,
as follows

Pe = Q

(√
n

η − 1

)
,

where

η =
ηw
ηa

, ηa =
σ2
c

B + σ2
c

.

Then using an additive bound and the bound for the function Q, we get, similar to (9)

Pe ≤ exp

(
Rn ln 2− d

2(η − 1)

)
.

Assuming as before that d ≤ n, for any block code we get the following inequality for the
code rate R providing an exponential decreasing of the block error probability Pe as the
block length n approaches to infinity:

R ≤ 0.72 (η − 1)−1. (15)

Because the noise power σ2
ε is constant and (as we showed before) the SNR ηw is an

increasing function with n, for small B we get

η − 1 ≈ η =
σ2
c (B + σ2

ε)

Bσ2
c

=
σ2
ε

B
. (16)

We can see from (16) that (η − 1)−1 is a monotonically decreasing function of n and
therefore it follows from (15) that the capacity of such SG is zero.
Moreover, with “the point of view of an additive bound”, any SG for which in order to

keep constant the security level with any increasing of the block length, it is required to
decrease the WNR, and hence it has zero capacity. This looks as speculation, but indeed
such property seems to be valid for any real digital SG. By the way, this fact should not
completely discourage SG designers because even in this case it is possible to embed into
CM some amount of secure bits but only at the cost to increase the length of the CM.
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4. Conclusions. The capacity of the watermarking systems (without restriction on their
detectability) is a very reasonable notion, but the capacity of stegosystems, which is deter-
mined for a given level of their security (undetectability) except for ideal (undetectable)
SG, is a very questionable notion for real SG. The notion “real SG” can be understood
as SG based on CM statistics close to real (practical) situations.

In the current paper we focus to show that the capacity of SG for noisy attack channel
is zero. This is our main contribution. Our proof is based not on a strong upper bound
for the SG capacity but on the lower union bound for the probability of block error. But
if we change an additive bound to a more precise Gallager exponent bound [2], then it
results in the same conclusion. Of course it gives also a lower bound for the capacity, but
for conventional communication channels (say discrete symmetric memory-less channels)
this bound coincides with real capacity.

We showed also that for a CM modeled by Gaussian zero-mean correlated sequences,
with correlation matrix unknown for the SG designer, the SG capacity is also zero. It
seems to be very likely that for any SG for which we have to decrease WNR with the
increasing of block length in order to keep constant a security level, the capacity is zero.
This claim is very close to the Anderson’s concept as formulated in [10].
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