Journal of Information Hiding and Multimedia Signal Processing (©2012 ISSN 2073-4212
Ubiquitous International Volume 3, Number 3, July 2012

Scheduling Optimization for Vector Graphics
Acceleration on Multiprocessor Systems

Chung-Ping Young

Department of Computer Science and Information Engineering
National Cheng Kung University
1, University Road, Tainan City, Taiwan 701
cpyoung@mail.ncku.edu.tw

Bao Rong Chang

Department of Computer Science and Information Engineering
National University of Kaohsiung
700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811
brchang@nuk.edu.tw

Zhi-Liang Qiu

Department of Computer Science and Information Engineering
National Cheng Kung University
1, University Road, Tainan City, Taiwan 701
eric.qiu09@gmail.com

Received October, 2011; revised July 2012

ABSTRACT. In recent years, the number of processor cores on one platform has largely
increased, while evenly distributing jobs to every processor becomes an important issue.
Most previously discussed scheduling situations were well defined in general cases. In this
paper, we propose an algorithm, which is modified from Heterogeneous Farliest Finished
Time (HEFT), to increase the performance of a homogeneous system. Our proposed
algorithm inherits all the advantages of HEFT such as easy implementation, low com-
plexity, high performance, and so on. In general condition, it generates less overhead for
scheduling but the output performance still approzimate to or even better than the recent
modified version of HEFT up to 7%. The multiprocessor scheduling problems are focused
on two dimenstonal vector graphics, and we will discuss how to estimate the processing
time, determine the dependency of each sub-graph, map it onto a directed acyclic graph,
and then use our proposed algorithm for vector graphics processing.

Keywords: Multiprocessor Scheduling, Parallel Processing, Load Balancing, Heteroge-
neous Earliest Finished Time (HEFT)

1. Introduction. In the new computer science algorithms, task scheduling or parallel
processing is one of the hot topics for discussion, the main spirit of these studies focus
on how to shorten the execution time of the tasks as much as possible. The papers
which discuss about the CPU scheduling usually ignore the problems that how to identify
the dependency of each task and the execution time that they cost. However, in the
real-time systems, inaccuracy assumption might lead to a bad or even a wrong result.
If the dependency is derived from the arguments passing from parent tasks to children
tasks in Directed Acyclic Graphs (DAG), it might be easier to know that all parent tasks
are finished or not during the running time, but the reason that makes two nodes have

252

253 C. P. Young, B. R. Chang, and Z. L. Qiu

precedence constraint is not always so simple. In some applications such as 2D vector
graphical accelerated programs, the precedent relation of two tasks (form by two images)
is resulted from the overlapping of physical position, although they do not have any
argument passing through. In this situation, if we use some scheduling algorithms in
order to improve the processing performance, we have to check the overlapping between
each drawing elements of the entire graph, and then map each task to a DAG, and finally
apply the scheduling algorithm to determine the execution order and assign the tasks to
the processors. Whenever a task t¢; has finished, the responsible processor has to broadcast
the result or at least one signal to inform other processors that ¢; has been finished so
that the immediate children of ¢; can be started.

For example, in a task set T = {t1,ts,t3} and a processor set P = {p1,p2}, to and t3 are
two images upper crossing over t; on some pixels, in other words, for this situation, t, and
t3 cannot start until ¢; has been finished. In each multiprocessor system, according to the
computational capability of each processor, we classify them into two kinds, homogeneous
and heterogeneous systems, both of them are known as a combination of more than
one computation unit machines. For exhaustively use the computation units at all the
time, there is a huge number of scheduling algorithms such as HEFT [1, 2] has been
studied in the world by now, although most of them had discussed about the distributed
heterogeneous systems scheduling problems. The simple reason is because we can easily
cut down some constraints from an existed heterogeneous scheduling algorithm to form
a new homogeneous one, for example, if we assign to each processor the same value for
computational capability or even assign each edge weight of DAG by zero, it implies
that we intend to use a heterogeneous algorithm for solving the homogeneous systems
scheduling problems. Those are the general cases, whereas some heterogeneous algorithms
cannot be simply migrated. There is only one thing we want to denote here is that the
algorithm HEFT we have adopted and modified is a kind of algorithm which we can use
it for the homogeneous systems.

Among of many multiprocessor system architectures, there are some systems will require
each task running inside must be finished at a fixed time stamp, they are called real-time
systems. As the previous definitions of 7" and P, let us consider on the case when the
tasks have been scheduled by a scheduling algorithm, task ¢; and ¢y may be scheduled
into the same processor p;, and t3 is assigned into the processor py after a certain time
delay waiting for ¢;, processor p, will be triggered to deal with t3 unconditionally. In
the situation that ¢; does not hit the finished time as it was estimated, the image %3
will be lying under the image ¢;. To solve this problem, we might broadcast a signal
to inform other processors that ¢; has just finished and it is ready to start its children
tasks. Although the problem is solved, this system cannot be known as a real-time system
anymore. In this study, our proposed algorithm is for both real-times and non-real-time
systems. However, the implemented sample system is only suitable for running on non-
real-time mechanism, because we cannot estimate the execution time for each task very
accurately. In this study, we will propose a new modified version of HEFT to reduce the
execution time for an entire DAG. On the other hand, we also describe our current system
architecture as well as the promotional parts which should be additionally paid a little
bit effort, in order to have more processors running synchronously.

2. Motivation. Working on the task scheduling we have to take account of the trade-off
between minimizing communication costs and maximizing the concurrency of the tasks.
In other words, besides we try to dispatch the tasks into some computation units to
shorten the total execution time as much as possible, we also have to take care of the
overhead increase by communication between each computation unit. We used to call the

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 254

total time that all the tasks in DAG have just finished as make-span [3]. Some algorithms
had tried to shorten the make-span by merge up the tasks into a cluster solving on the
same processor [4], or make a duplicate copy of ¢; on the processors which will use the
output of ¢; as an input to handle the immediate children of ¢; [5, 6, 7], that is quite useful
to reduce the communication cost of the heterogeneous systems.

The scheduling algorithms can be classified into many different types based on the
behavior that how to schedule each task to the processor. The well-known methods
are list-based scheduling [7, 8, 9, 10], clustering based scheduling [4, 11], genetic-based
scheduling [12, 13, 14].and duplication-based scheduling, although most of the recent
studies have the trends combining different technique together. Run-time scheduling
algorithms will consider the situation that the unscheduled programs are triggered while
the processors are busy serving for some running tasks. In this study, our algorithm will
not discuss about this issue but only propose a solution for the static tasks scheduling,
and hence, the processors of these systems are only responsible for preprocessing the
well scheduled tasks. Today, the scheduling algorithms become more and more powerful.
Exploiting the advantage of the old algorithm and mending the fault almost are the trends
of the current research jobs on this field, because we are almost reaching to the bottleneck
of the optimal solution. The studies in the recent years are focus on the topic how to
improve the existing methods by combining the different scheduling techniques [11, 15],
such as insertion, duplication techniques are used in combination with the fundamental
algorithms.

We have studied many articles to find out the most suitable solution for our systems, and
finally, we have found that HEFT is a fairly good algorithm by now, it does not require too
many computation resources to finish the jobs, and bring out the near optimal solution.
However, when we try to assign the properties of homogeneous system to HEFT, we found
that it does not work well as we hope for any cases. Again and again, we have tried many
different methodologies to refine this algorithm in order to inherit all its advantages and
to ride out the disadvantages as well. While we were searching for the algorithms, we
found that there are few studies talking about how to map an algorithm from theory to
a real implementation case, especially for the vector graphical parallel processing. And
hence, we think that it remains a big challenge to do so, and we also hope this study result
can help somebody who wants to solve the similar problems. In this section, we will go
through to describe about OpenVG standard and it’s opensource API [16]. However, to
strengthen the basic knowledge of 2D vector graphics, we will waste a little time to talk
about the current trend, advantage and disadvantage of them.

3. Background Knowledge.

3.1. Dependence Analysis. There are two kinds of tasks dependence: data dependence
and control dependence. Data dependence consists in two or more program parts or tasks
when they have data transfer. For instance, there is an equation shown as below:

y =222 + 3z + 3.

The above equation is an obvious example for this constraint. According to mathematical
principles in this equation, we recognize that we have to wait for the value of each term
on the right hand side of equal sign, if we want to calculate the y value. For the term
222 at right of equal sign, we calculate the power of x, multiplying the result by 2, and
then assign to a. After that, we calculate 3z and assign to b, and finally, accumulate two
previous terms with 3 to get the value y. If we map this executed order into a topology
graph, a DAG will look like in Fig. 1. In the above example, at first, we would easily
realize that a and b terms are dependent on x, and they must wait for the value of x to be

255 C. P. Young, B. R. Chang, and Z. L. Qiu

ready before they can be calculated, because both of them are immediate children of x,
while z is an immediate parent of a and b, as well as a predecessor of y , denoted pred(y),
whereas y is viewed as a successor of z, denoted succ(z). In other words, y is the last node
which have to wait for all three terms a, b and number 3 to be ready in memory, because
y is a leaf node of this graph (enter and exit are two pseudo nodes with zero weight), it
does not dominate anyone else. For each node without any parent in the graphs or their
parents have been scheduled into the processors, we call them as free nodes, because they
are free to be selected and put at any task queues after their parents’ finished time.

Y%

Ficure 1. Data dependence relation

Comparing with the data dependence, control dependence does not cause by the data
transfer among the tasks but depend on the data structure of a program. It is not easy
to be recognized in scheduling, and the following pseudo code of Fig. 2 is a typical case:

I: ifrandom() % 10 <5 then
2: call loop_5_times

3: else

4: call loop_10000_times
5: endif

F1GURE 2. Control dependence relation

In the above section of pseudo code, we cannot determine that what will do before line 1 is
executed. The result of line 1 may cause a shorter delay which only has five turns of loop,
or the longer procedure which will be involved to consume many processing resources.
From the above sample, we have understood that might have many affective conditions
while the programs are running. Random procedure, users’ inputs, system interrupts etc.,
will directly affect to the decision of the next step in a running program. And hence, that
will increase the complexity of the scheduling problem so much. Usually, two kinds of
data dependence that we have mentioned above can be fractionized into the code level,
and they are able to be solved by the complier reorganization technique at preprocessing
step.

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 256

3.2. Timing Constraint. Real-time systems are usually classified into two types ac-
cording to the level of timing constraint. If a system requires all tasks must meet the
deadline or will be thoroughly fail, because it needs a very high accuracy on its jobs, and
hence, it is called a hard real-time system. Such systems can be found at the production
line which equipped with the robotic arms or some automatic control systems. However,
in the soft real-time system, it is acceptable for the deadlines of jobs are missed. The
follow-up tasks can be postponed as far as the predecessor tasks have finished, because
the timing constraint is just a goal for the maximum performance. These systems usually
occur around us in frequently, for example, when an online TV program receiver lags of
receiving some data packages, it will not make any significant errors but only performs
the frames in a little bit worse.

3.3. System Model. The system model of distributed multiprocessor systems usually
has one global scheduler (or dispatcher) which takes charge of scheduling the tasks into
each subsystem. Each subsystem may also have its own local scheduler for receiving the
arriving tasks, and this local scheduler is responsible for rescheduling the execution order
of the tasks and assigning them to the local processors. Sometime this scheduler even
rejects the tasks if the local processors are too busy. And when a task is finished, it will
send back the result to global scheduler. This system model might look like the Fig. 3
has shown below:

Another type of multiprocessor system is a stand-alone multi-core system. It looks
like a miniature of the systems described above. Usually, the scheduler is a general
purpose processor (GPP) running for dependence analysis, besides this, it also takes the
management of tasks scheduling or even the responding to users’ requirements. Major
different from the first system model of this one is the connected media, every processors
in this model do not communicate through a network but pass the data by a high speed
BUS or shared memory as we depict at Fig. 4. The difference which affects to the
scheduling algorithms of these two system models is the first one may need consideration
on the communication cost between each subsystem whereas the second one might omit
it.

Main system

[Global scheduler J

|
X

High speed networking

Subsystem Subsystem Subsystem

[Local scheduler]

._ [PP]

4 N ' 4
— —

Localscheduler] [Localscheduler

."/"_"' r—
)

SPP] | _‘ [SPP

— ~—

\

F1GURE 3. Distributed multiprocessor system model

257 C. P. Young, B. R. Chang, and Z. L. Qiu

Stand-alone multiprocessor system

[GPP / scheduler]

@ AN
|

AMBA bus system

g i 1

SPP,] [SPP,] [SPP,

Q 4

FiGURE 4. Stand-alone multiprocessor system model

3.4. Critical Path. For any DAG, each node will be connected by at least one edge, the
number of edge pointing to a node is called in degree of that node, and the number of
outgoing edge from a node is called out degree of that node. The edges and nodes connect
together to form a path, and the longest path starts from entry node and ends at exit
node is called the critical path, the longest condition does not come from the number of
edge but define by the computation time of the nodes and the communication time of the
edges on that path. In some situations, critical path may not be unique in DAG. Two or
more critical paths having the same length can be formed at the same time by more than
one different node. Another attribute of critical path is that it always starts at an entry
node and stops at the exit node of DAG. To proof this truth, let G = (V, E, w, ¢) be a
task graph with V is a vertex set and E is edge set in G, w is computation cost of V and
¢ is communication cost of E, we can easily use the contradiction proof method:

If the first node of critical path (cp) which denote by n; is not an entry node of G,
then it must have a ng belong to predecessor set of ny, and hence, there is a edge eyl €
E, and the new length of critical path ¢ denote by length(q) should be:

length(q) = w(ng) + c(epl). (1)

When w(ng) > 0, it imply that length(q) > length(cp) — a contradiction, likewise for the
exit node so that cp is start in entry node and end in exit node of G.

3.5. Node Levels and Scheduling Priority. To determine which node is the most
important in each scheduling turn, we have to calculate the node levels that are usually
defined by one of two parts: top levels (tlevel) or bottom levels (blevel). To calculate the
tlevel of n,, again, let us assume n, € G, thus we have:

tlevel(n,) = max {tlevel(n;) + w(n;) + c(e;r)}- (2)

n;Epred(ng)

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 258

Equation (2) implies that the top level (tlevel) of n, is the longest path from the entry
node (n.ntry) to nx excluding w(n,). Opposite to top level, bottom level of n, is defined
as equation (3):

blevel(n,) = max {blevel(n;) + c(ey;)} + w(ny). (3)

n;Esuce(ng)

It is very clear, bottom level has defined the longest path from n, (include n, itself) to
exit node n.xit. For the easier illustration, we depict Fig. 5 as shown below. Summation
of the pink nodes and edges which start from n, to n.zit and follow the downward direction
is the blevel(n,), and the opposite direction including the last blue arrow on the top of
n, is tlevel(n,).

entry

Top level

Ny

/ Bottom level

exit

FiGure 5. Top level and bottom level

The algorithm to determine the rank of each node is either using tlevel or blevel, for the
blevel, it recursively bottom up summate the w(n;) and c(e, ;) from n.zit to n,, again, if
the system architecture is as Fig. 4, it remains the term w(n;) in each recursion.

4. Methods.

4.1. HEFT Algorithm. First of all, HEFT is one of the list-based scheduling algo-
rithms, because the characteristic of them is creating a priority list at the first step.
According to a sorted priority list, HEFT will assign each task to a suitable processor
such that the task can be finished as soon as possible. The following pseudo code is
quoted from the original paper of HEFT. From Fig. 6, we know that HEFT will recur-
sively try to search for local optimal in order to finally have the global optimal, and the
time complexity of HEFT is O(v? x p).

4.2. Problem in HEFT. If we assume that the processor set in homogeneous system
is, and the nodes of Fig. 7 will be sorted according to their levels as the order showing
in this set V' = {vy, vs, vg, U7, V3, Vg, Uy, Vg, Vs, V10 }. Entry and exit are pseudo nodes with
zero weight, so they will be ordered in the first and the last positions of V' respectively
(they have been omitted here). The next step of HEFT algorithm will schedule each node
in V to the processors of P, and then we will get the result as shown in Fig. 8.

259 C. P. Young, B. R. Chang, and Z. L. Qiu

1: Compute rank. for all nodes by traversing graph upward, starting from the exit node.
2: Sortthe nodes in a list by nonincreasing order of rank, values.

3: while there are unscheduled nodes in the list do

4: begin

5: Select the first task #: in the list and remove it.

6: Assign the task n; to the processor p; that minimizes the (EFT) value of n.

7: end

F1GURE 6. The HEFT algorithm

entry

exit

FIGURE 7. Sample DAG

At first, vl is scheduled in p; because all processors are idle at beginning and have
the same computation capacity, after that, vs, vg and v; are scheduled into p;, po and
ps respectively because they are dependent on v; as we have seen in Fig. 7, it means
that vs, vg and v; cannot start until v; have finished, so they can only be scheduled
later than 20" time unit, after vg and v; are scheduled, they will form two holes at two
processors from the earlier time before they can start, we used to call such a hole as
timeslot. After v7 is scheduled, v is the highest priority among the remaining nodes in
V', so it is chosen to assign to the earliest start time among three processors. Because
HEFT uses the insertion-based policy and bases on the insertion condition to determine
whether the nodes v; can be inserted to the earlier time timeslot at processor p;, it will
satisfy if the subtractive result from start time (ST) of scheduled task v,41 in processor
p; to finish time (FT) of scheduled task v,, on processor p; is greater than or equal to the
computation cost w; on p;. This condition is described as equation (4):

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 260

P, P, P,

4

0 Y Y
J &

0
R -

w b fwl]
ey Lva

60 - 1 |
llV9 Vio Ji

80 - | |
100 N |

F1GURE 8. Scheduling result of HEFT

ST<Un+17pj) - FT(UTMp]) > W - (4)

In this case, v3 holds the above condition and py is the most suitable candidate. The
remaining nodes are scheduled into each processor respectively basing on earliest start
time and insertion policy. The final make-span is dominated by p, of the sequence v3, vg
and vg which spends 72 time units. Because of the unbalance of Fig. 7, it yields an idle
timeslot of p, and ps3 in the first 20" time unit, however, this idle time usually cannot be
filled up by the later nodes. The waste of the computing resources in this situation might
become huge as the graph grows larger. The newer versions of HEFT have improved a lot
of the performance. Those new algorithms might use the duplicate technique to reduce
the communication time in the entire scheduling [6, 7, 17|, and yet, we are focus on the
algorithm which will be used for homogeneous system and without any communication
cost, so this technique is not considered in our proposed algorithm.

4.3. Improved Heterogeneous Earliest Finish Time (IHEFT). The IHEFT is con-
sidering on the phase modifying the original HEFT for using in homogeneous systems
instead of the heterogeneous system, , and hence, some of the mechanisms still inherit
from HEFT, the following sections will describe some definitions of our algorithm.

4.3.1. Definition of IHEF'T. Tasks are ordered in our algorithm using the upward ranking
which is defined recursively as below:

rank(v;) = w; + max(){blevel(vj)}. (5)
vjEsucc(v;
That is why the sorted result of set V' of Fig. 7 presents so. And the earliest finish time
(EFT) and earliest start time (EST) definitions are adopted from HEFT and they are
modified to be suitable to use in homogeneous systems as (6) and (7).

EST (vi,p;) = max{Availablep;), max (EFT(vp,pr)). (6)

Vm Epred(v;)

261 C. P. Young, B. R. Chang, and Z. L. Qiu

EFT (v, p) = w; j + EST (v;, pj). (7)

Where Availablep|j] is the earliest time which processor p; is available for task execution,
and pred(v;) is the set of immediate predecessors of task vi. The inner maz block in
the EST equation returns the time when all immediate predecessors of v; have finished,
and the outer max block will choose the latest time by comparing the available time on
p; with the latest predecessor finished time, because both of these constraints must be
satisfied to be able to put task v; on p;.

After ranking and sorting the tasks of DAG into list V', the most upper task in list is
the highest priority one, it will be popped out and scheduled to the most suitable queue
¢; € Q of processor p; € P where |)| = |P| such that the earliest start (EST) condition is
satisfied. The major different point of our algorithm from HEFT is not only checking the
idle timeslots form by the earlier scheduled nodes in ¢; and then using the insertion-based
policy to insert vi but also reschedule the later position scheduled nodes in g; if

0 < ST (vnt1,p5) — FT (v, pj) < w;. (8)

And hence, the insertion condition is not fixed for the timeslots which are larger than
or equal to w(v;) in our algorithm. Furthermore, it will continue trying to find the
EST(v;,p;) for each p; although it has already found a timeslot at previous processors.
To initial the start time (ST) of v;, it is defined as (9) below:

ST (v;) = max{mpkespan(P)} + 1. 9)

On the general occasion, both ST'(v;) and ST (v;, p;) have the same meaning, they denote
the start time of v;, but the first one does not care about what processor p; is. To search
the timeslots, we start scanning from the earliest scheduled task in ¢;, whenever a timeslot
is found or in the case we do not found any timeslot and have to put v; at the last position
of ¢;, it will record and compare the current EST with the current ST of v; to determine
which position will be the best for performance.

ST (v;) = min{ ST (v;), EST (v, p;)}. (10)

Equation (10) is used to determine the final ST of v;. To record the ST of v;, we
have to store the both index of that temporary EST as well as the processor identity for
comparing during the searching procedure and the final inserted condition.

4.3.2. Procedure of IHEFT. The procedure of IHEFT is shown below in Fig. 9.

4.3.3. Ezample for explanation. To be more clearly describing the procedure of our pro-
posed algorithm, we will use Fig. 7 as a sample, and the number of processor in set P is
three. After finish the first two steps which all the list-based scheduling algorithm might
do, we obtain a set of descending sorted tasks according to ranking values in list V' as
shown below in Table 1. The subscript numbers at V' elements are the weight of the
nodes.

At step 5 of Fig. 9, each task will be selected from the first of V', it is checking EST with
v on each processor p; at step 8, the earliest start time of current v; will be reconsidered
at step 9 if the conditions are satisfied. After all p; have been checked, in the case there
is no timeslot found at step 8 and 9, vi will be considered to put at the tail of ¢; at step
12. At step 14, we insert v; into one list of Q, at the same time, the position of v; in V
should be updated. And then we have to make sure that whether v; is inserted into a

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 262

1: compute the rank of each node in DAG by traversing graph upward (blevel)
2: sort the ranking result of the nodes by decreasing order in list V
3. whule there are unscheduled nodes 1n the list V do

4: begin

5: select each vi from the top of list V

6: for each pj in processor set P do

7: for each element vk in pj do

8: if timeslot exists at FT(v,,p;) of qj and Fr(v,,p))> EST(;,p))

9: set ST as min{FT (vy..p,). ST}

10: endif

11: end

12: set ST as min{EST(v1,q,),5T01)}

13: end

14: insert vi to ST and update the position vi at V
15: if viis inserted into a time slot and wi > timeslot = 0

16: reschedule all tasks in P later than v
17: endif
18: end

FiGure 9. IHEFT scheduling algorithm

TABLE 1. (a) Ranking value of each node and (b) Sorted nodes

Task Weight Rank List V
1 20 60 19
2 15 25 540
3 12 29 635
4 10 18 730
5 40 40 312
6 35 35 215
7 30 30 449
8 10 10 917
9 17 17 810

10 8 8 10g

timeslot and satisfy the condition at step 15 and reschedule all the nodes later than v;.
For example, after tasks vs, vg and vy have been scheduled, two timeslots appear at the
earlier time slice on p, and p3, and when v3 and v, are inserted to p, and ps respectively,
two timeslots become smaller, they do not affect the start time of later nodes vg and
vz, so we only rearrange list V' as this order v = {vy, vs, v3, Vg, Vo, U7, V4, Vg, Vs, V10 }. And
when the next element vy is inserted into po, it will postpone the start time of vg, and
hence, we have to reorder list V' for a new rescheduling. In any case, we cannot change
the topology of the DAG after reorder list V', it is always equivalent to the original one,
and hence after task v, is scheduled, we have v = {vy, vs, v3, vg, U2, U7, Uy, Vg, Us, V10 }, the
procedure will not stop until all the nodes have been scheduled. We have the final result
which is shown at Fig. 10, and the schedule steps are listed in Table 2. Make-span of this
result only spend 69 time units for entire DAG, it is fewer than HEFT algorithm 3 time
units, and the total saving time from all processors is 13 time units. The make-span of
this sample is formed by the vy, v5 and vy at ¢;.

In the above table, we have some symbols for the actions described below:

263 C. P. Young, B. R. Chang, and Z. L. Qiu

TABLE 2. Scheduling steps of sample DAG

Step Node Action Result CpU1 CPU2 CPU3
0 - - 15673249810 - - -
1 1 A 15673249810 1 - -
2 5) A 15673249810 15 - -
4 6 A 15673249810 15 6 -
5 7 A 15673249810 15 6 7
6 3 I 15367249810 15 36 7
7 2 I 15362749810 15 36 27
8 4 I 15346279810 15 346 27
9 - R 15346279810 15 36 427
10 9 I 15349627810 15 396 427
11 - R 15349627810 15 39 46
12 2 I 15349267810 15 39 426
13 - R 15349267810 15 39 426
14 7 A 15349267810 15 397 426
15 8 A 15349267810 15 3978 426
16 10 A 15349267810 15bf10 3978 426

0 i()
[ve] ()

ife—3i)

20 P vV
| I>—I

— |

4 - | i :
0 S |] e |
60 |- — —J
Vig ll Vg | | i

80 |- ! L
100 A

FiGUre 10. THEFT scheduling result

e A: append a task to the tail of one queue list

e [: insert a task into a timeslot of one queue list

e [: insert a task into a timeslot which is smaller than the weight of this task. Right
after this, it will yield a reschedule action immediately.

e R: reschedule action

5. Implementation.

5.1. System Architecture. Our system is designed as Fig. 11 shown below. Accord-
ing to the processing procedure, we separate this system into two parts hardware and
software models, the software part is responsible for allocating the resources, preparing
the tasks to the memory and also working for some graphical processing. In our later

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 264

assumption for the algorithm using, all graphical processing is fully support by hardware,
software only works as a scheduler. Our system is constructed by one ARM9 GPP and
one FPGA accelerated graphical processing circuit. The GPP is the computation resource
for software, and the FPGA circuit is for hardware. In general, the processing speeds of
hardware are much faster than software, and hence, software usually prepares amount
of tasks at once and send to hardware to make more time in the next turn of preparing
the jobs. After receiving the tasks, hardware starts to solve them one by one, in this
duration, the hardware cannot be interrupted. And hence, the execution time of these
tasks should be estimated as accurate as possible. To reduce the developed time, flash
player is modified from an open source project Gnash, and the aim of this part is for
converting the swift binary instruction to OpenVG commands.

Software

‘ Flash player

i

' Modified OpenVG AP|

I

Device Driver

g

‘. Embedded Linux ‘
‘_ Memory
U
| AHB BUS | H
i
{ FPGA (SPP) ARM9 (GPP)
Hardware

FIGURE 11. Software and hardware architecture

5.2. Hardware Developed Environment. The following image is fetch from the Socle
CDK training document, it depict the detail function of each component on the board.
This platform has two cores, one ARM9 GPP and one programmable FPGA, they com-
municate through the AHB BUS by storing the information at some specify areas in
memory. The frequency of FPGA core is fixed at 40MHz, and the frequency of ARM9
has to be slower than FPGA if we intend to have they work synchronously. The memory
provides by this platform is about 64MB SDRAM and 16MB static flash memory. TFT
LCD is a 3.5 inch (320x240) touch screen; however, this board also provides a PCI slot for
plugging the external VGA card, so it is a solution for testing the high solution pattern.

5.3. Modified OpenVG API. The first step we did after fetching the OpenVG API
from the internet is trying to modify it into two types of library, Non-OS-based and OS-
based library, because many constraint such as memory allocating, system call, timing,
interrupt and job preemption can be neglected under the Non-OS-based environment, it
becomes very simple that the tasks are scheduled as an exclusive sequence working on

265 C. P. Young, B. R. Chang, and Z. L. Qiu

FPGA
Download
port

ADC Connector

Xilinx FPGA
Vertex xc3s4000
Equiv. Gate : 430K

10 Ext Slot
LA Mictor l

PCI

RS-232

\ 20
mibd L o
Power adapter -

[Mini PCI][GF’IOIIZSIIZC][LCD Connector]

F1GURE 12. Socle CDK development board

their own processor, and hence, we are willing to waste some time on developing this part
for debugging purpose although it cannot be combined into final release. The simulation
environment to launch the Non-OS library is on CodeWarrior for ARM developer suite
v1.2, and the hardware platform is CDK development board.

The second step we have to prepare for modifying the API is trying to rebuild (porting)
it into the Unix-based environment, because we will use the Unix-based API in our final
system, this is a crucial step of our project. Because the original API is written for
Macintosh and Microsoft Windows OS, and to make it work on Unix-based OS, the main
job in this step is reviewing all the codes of original API and totally replacing all ineligible
system dependent commands by the suitable one on Unix-based-OS. The result of this
step is presented in Fig. 13 a), by the way, Fig. 13 b) is the result drawing by hardware
after many efforts have made. This sample tiger is drawn by 305 paths providing by
Khronos as a bench mark for demonstration or a guideline for debugging. And the third
step of this part last long through the time for developing this system. The hardware
developers always try to save the resource of that circuit and make it work faster, so they
will get rid of some burdensome functions from that chip, and hence to coordinate with
the hardware, we have to solve those problems by software. In addition, this modified
API (MAPI) also needs to determine the processing flow for each coming task, it has
to check that whether the current task could be scheduled on hardware or it should be
redirected to the GPP.

5.4. Double Link-List and Memory Allocation. For load balancing of hardware and
software, our system is designed for running on a double-buffer scheduling list. As we have
known, the GPP works as a scheduler in this system, so it has to pass the data to the
SPP whenever a task has to accelerate by hardware. This scheduler might fall into an
idle status after it has passed the first piece of data to the RAM and triggered the GPP.
And hence, to avoid being waste the resources of GPP while the SPP is busy, the page
flipping (ping-pong buffering) scheme is using in our system. In this mechanism, there are
two chunks of memory have the same size, the active one is usually called the front buffer
and the other one is back buffer, they usually serve the different target at the same time

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 266

[Openve Tigereample(Ao0xG17) (= 5])

a) b)
F1GURE 13. Modified OpenVG API implementation result

although they might have the same purpose or even the same content. There are several
masses of memory must be allocated right after the driver is loaded. The double link-list
buffer as well as the other storing spaces is all handled by the OpenVG MAPI, there are
some safety checking mechanism and restriction to prevent the users try to allocate the
memory or modify the other program or system data illegally. In the current version,
the memory are mapping to four primary areas as Fig. 14 which highlight with different
border color, and the size of this area is depicted on the graph, most of them have a very
complex data structure, whereas some are simply reserved for the hardware temporary
buffering purpose, so they do not need to do anything but leave a start physical address
at the specific memory location for the hardware.

Image buffer Pattern buffer Bitriteslisiia, Link-list B b - Object b;
S12KB
\ \ GE data '
\
\
\
\ \ RE data '
: : |
Temporary Temporary \\
buffer A buffer B a | b, \ l Coordinate table I
468.75KB 468.75KB \
a,] b, \
b \ Command table l
\
!
Scissoringrectangle table Temporary frame-buffer
86.5KB Full-HD supportedSMB

FIGURE 14. Memory mapping

5.5. System Flow. To let the system works smoothly between hardware and software,
we must have a reasonable process arrangement. The following flow chart will describe

267 C. P. Young, B. R. Chang, and Z. L. Qiu

the current single GPP and SPP system hardware and software workflow. There are two
situations that the hardware might be triggered, the first one is when the task arrives and
the other one is when all tasks are scheduled into link-list and the program has reached
the end of it. The step with a star symbol (*) in Fig. 15 only require polling an inactive
link-list. Our system is developed under the Unix-based embedded system, to be safely
use the memory resource, prevent the illegal accessing to system and let the software
easily communicate with hardware, we must have a device driver that provides an simply
interface and also takes charge of these sensitive issues of security [18].

Initialization

Convertto VG
command

Queueto LL Polling all LL

y

No SW execution

Yes
Polling(*)
1 NOo_~End of
file
Enable HW Yes
»J« Polling all LL
Swap tonew LL

R —_—— Display

End

FIGURE 15. System workflow

5.6. The Multi SPP Model. As the current system architecture, to duplicate the more
homogeneous processors, it will need the more memories for each additional processor.
However, because we are using the link-list technique, on the other hand, the evaluation of
the execution time cannot be very accurate for all cases, the tasks might be finished sooner
or later than the estimated execution time, and hence, it is required to have a synchronize
mechanism for these individual SPPs to let them follow the preceding constraint of the
tasks. We should have a counter for each task and when the task is scheduled to its

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 268

processor, a positive initial value which represents the number of its immediate parents
is set. The counter will be countdown 1 whenever its immediate parents have done or it
will be verified to ensure that the value inside is zero before getting start the task. For
easier understanding, we only depict the relevant components with two SPPs in Fig. 16.
Two rectangles with label LL are the link-list for storing the paths information similar
to the single SPP version. The little change is only adding a serial identifier number
to a task and two extra pointers, one is pointing to a location where it stores a set of
immediate parents’ identifier of that task, and the other one is to the start address of an
array storing a counter. The purple rectangle (T'S) is prepared for counters and immediate
parents’ identifiers. The above system architecture is recommended for implementation
of a multiprocessor vector graphical processing system. With that architecture, we will
easier to use the scheduling algorithm for parallel processing. In the next chapter, we will
come back to evaluate our proposed algorithm.

‘ Scheduler ‘

TBy 4

Tasks
— status
(TS)

TB,.4
LL; 4 LL, 5
TB; g TB,g
A _ o
SPP, 1« > SPP,

Frame buffer

F1GURE 16. Multiprocessor system model

6. Experimental Results and Discussions. We will address two experimental results
focusing on the different factors that will affect to the performance of our algorithm.
These two results are from comparing with two algorithms HEFT and the later version
Look-ahead HEFT [1, 19].

6.1. Experimental Environment. For the convenience of validating our algorithm,
we have implemented a tool which provides an interface can freely change between the
different algorithms. This tool includes three parts: one setting panel, one graph drawer
as well as a timing display panel as shown in Fig. 17, 18, and 19, respectively.

The options will widely affect to the characteristic of the graph which are necessary for
analyzing and comparing an algorithm in the various factors. They are simply summarized
here:

Max. in degree: the number of incoming edge of each node, of course, they are generated
less than or equal to this number, and connected randomly to the upper level nodes.

269 C. P. Young, B. R. Chang, and Z. L. Qiu

Start ID 1
Max. indegree 3
Min. level 3
Max. level 8
Min. # of node 20
Max. # of node 40
Min. node weight |10

Max. node weight |50

of CPU 3
Build Algorithm
Load Save

FIGURE 17. Setting panel for algorithm analyzing tool

Min./Max. level: is the level (depth) of the graphs, the users are able to make the
graph looks tall and thin or short and fat according to the this option.

Min./Max. number of node: they specify the complexity of graphs, however, because
the graphs generated randomly, sometime it might have less node than this minimum
boundary.

Min./Max. node weight: this options can specify the scope of weight of the nodes,
they can make the graph become unbalance with a wide range definition.

Two other parts of this tool are for displaying the results; they are organized as the images
below:

AR AR «
CPU1 CPU2 CPU3 CPU1 CPUZ2 CPU3
2 2 il
20 — 49 5 3 20 — 49 5 .
10 1
40 |- 6 40 -
6o | 7| [9] L8 o |7 K4 |°
- - 10
13
35 35
= - 13
80 — 11 80
(] |5 -
15 12 6 15 3
00— | - 100 |— Z
120 = 120 & 17
E E 16
E 129 17z gt
136 133 133

F1GURE 18. Timing comparison panel

For easier comparing the result, the timing panel fully provides the relevant information
of the results from algorithm. The panel of graph drawer displays the graph architecture.
It denotes the node ID and weight inside each node and connects each node by arrows as
we see in Fig. 19.

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 270

Directed Acyclic Graph

FI1GURE 19. Graph drawer panel

6.2. Experiment Steps. We have implemented our algorithm as well as two others
HEFT and Look-ahead HEFT separately, of course, the algorithms in these experiments
are only using the scheduling procedure for the homogeneous systems; they do not include
any attribute of heterogeneous systems.

In these experiments, we focused on modifying three properties of the graphs to present
the behavior of our algorithm.

e The first subtest tried to understand how the increment of the number of nodes will
affect to the scheduling performance, because the fat and short graphs might have
more free nodes after each turn of scheduling than the longer, we were wondering
whether the fat graphs will have the better condition for insertion, or they will have
more chances to leave a timeslot after scheduling a high out degree node.

e The second subtest had tried to increase the level of graphs while other attributes
were kept unmodified. With the same number of nodes, the taller graph might less
parallelism capability than the short one, so what will happen with the proposed
algorithm under this condition.

e And the last subtest had a larger architecture, both dimensions (level and number
of nodes) are huge, and we had tried to solve with different number of processors.

Each turn of one subtest will randomly generate three hundred graphs according to the
attributes which are specified by setting panel of our tool.

In addition, we should mention about how to compare the output value of each exper-
iment. There are three comparing factors will be considered here:

e The times of win, lost and tie for each algorithm
e The percent of time that our algorithm has overcome the other
e The total percent of time that our algorithm has reduced from all processors

The first comparing factor had simply accumulated the turn of win, lose and tie for each
algorithm. The more detail of second and third factors are presented later with the graph.
The following Table 3 describes the setting of our algorithm compares with HEFT:

6.3. Experiment Result of IHEFT and HEFT. In Fig. 20, we found that the total
times of win grows fast when the number of nodes increase and the cases of lose are lightly
pulled down. The chance which let the case of win grow up is from reducing the case
of tie. To determine the final result of win, tie or lose, we collected the maximum value

271 C. P. Young, B. R. Chang, and Z. L. Qiu

TABLE 3. Experiment setting of IHEFT - HEFT

Options Subtest 1 Subtest 2 Subtest 3
Max. in degree 3 3 3
Min. level 3 5-9 10
Max. level 8 9-13 15
Min. number of node 20 - 60 70 400
Max. number of node 50 - 90 90 500
Min. node weight 10 100 10
Max. node weight 50 10000 20
Number of CPU 3 3 3-16

IHEFT vs. HEFT In Different Number Of Node

250 —+— Win]
—— Lose
212 —&— Tie

Times

p2 24 22
—e—____‘____em_—_ew
1 1 1 1 ! 1 1

30 35 40 45 50 55 60 65 70
MNumber of nodes

F1GURE 20. The times of win, lose or tie in different number of nodes

which were generated by three CPUs of both algorithms, and then compared them to get a
conclusion. Only collecting the maximum value is a formal way to compare two algorithm
performances in scheduling. To be more understandable about the performance of our
algorithm, we also tried to evaluate the percent of time that our algorithm has saved
against HEFT. In Fig. 21, we compared the average winning result from two algorithms
based on this formula which is denoted by a blue line:

Ynsearr maxXy ep{ FTperr(p;)}
Ynearr maXy ep{ FTraprr(p;)}

AverageSpeedup = (— 1) x 100, (11)
Eq. (11) is defined for calculating the average speedup percentage of comparing IHEFT
against other algorithms. In general, our algorithm performs better than HEFT in each
number of nodes. In this formula, n; is the turns running this experiment, F'T" is execution
finished time of algorithm running on processor p;, it includes the idle time between the
first task and the last task reside in it. The red and black lines present the win and lose
ratio of time, they are determined by the following two formulas.

. (Ymewin maxy cp{ FTpprr(p;)}
Win =

— 1) x 100, 12
Y eWIN maxp, GP{FTIHEFT(pj)}) (12

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 272

5, p{FT 4
Lose = (1 _ Zncrose A%y cpd HEFT(pJ)}) x 100, (13)

Ynerose Maxy,cpi F T inprr(p))}
By the side comparing all winning, losing or tie situation of blue line, the equation (12)

and (13) show that we only compared the win or lose rate among the win or lose result
in order to know how much of time they had got different separately.

IHEFT vs. HEFT In Different Mumber Of Nodes

al —+— Average Win % ||

—&— Win %
35 B.3833 —+— Lose %

27937

Percent %

J1.3667

+.78965
k

0.48583

05 1 1 1 1 L | |
30 35 40 45 50 55 60 65 70
Average number of nodes

FiGURE 21. Time saving in different number of nodes

Finally, we also want to know the total time that our algorithm had saved against
HEFT in this subtest, because the above evaluation is only presented the rate of time
when the last processor has finished. In the real world, the sooner finished processors
are also able to be scheduled to do something, so if an algorithm can make other sooner
finished processors idle, it should be considered as an advantage of that algorithm. In
Fig. 22, the blue line is adopted from Fig. 21, and the red line is defined by the following
equation:

Yneart{FTuerr(pj)}
EnieALL{FTIHEFT (pj)}

Summarizing of the subtest we found that our algorithm highly dependents on the shape
of the DAG, too few or too many nodes with the same level (depth) of graphs might bring
the performance down, that will approach to the performance of HEFT.

Our second subtest tried to know how the performance changes when we set the different
level to the testing patterns. In this subtest, the evaluation formulas were defined as the
first subset. And now, let us consider on the result depict here in Fig. 23, the win rate is
still high although it gets lower at the end. The cases of lose lightly grow when the level
is bigger, we believe that all lines will approach to each other because the higher level of
DAG will makes the precedent constraint between each node grows as well. It might be
no use to apply any parallel algorithm to those situations.

Again, in this subtest, we also observe to the rate of time saving comparing to HEFT
in different level. The average saving time is about 1.63% lying between 1.33% and 1.8%.
It seems quite unusual if we refer this result to the Fig. 23, because the performance of
this result keeps growing up while the tail of the previous falls down, however, it is not
impossible. There is not very much difference comparing between two total performance

AverageSpeedup = (— 1) x 100, (14)

273 C. P. Young, B. R. Chang, and Z. L. Qiu

IHEFT vs. HEFT In Different Number Of Modes

—+— Win % (Last CPU)
al —&— Win % (Al CPU) ||

1.3614 1.3362
1.2138

1.0489

P.77T9E
o
P.78965

Percent %

0.5F

53316

1 1 Il
30 35 40 45 50 55 60 65 70
Average number of nodes

FIGURE 22. Total time saving of different number of nodes

IHEFT vs. HEFT In Different Graph Level

300F

—+— Win
—>— Lose
250 P41 246 246 —6—Tie ||

223

200

150+

Times

1001

b4
50p9 38

q H1

bo 22 25
.

| | | . | |
7 75 8 8.5 9 9.5 10 105 1
Average graph level (depth)

FIGURE 23. The times of win, lose or tie in different level

and average performance, they are still growing up when the specified level is reach in
Fig. 25. We have done a further experiment for the high shape graphs about 20 levels,
and the performance has fallen down to zero, it means that there is not any parallelism
can be made, such that it can be better than HEFT.

Our final subtest focused on the various number of processor in a system. We first
generate a number of DAG, and then fed to a different number of homogeneous processor
in turn. In Fig. 26, we agree that two lines will start or stop at the same point, because
there is minor different when the number of processor is small as well, or even no different
when there is only one processor. On the other hand when the number of processor
increase to a certain number, the critical path of DAG might dominate the execution
time and it is not able to reduce any more. The cases of lose that keep growing up in this
figure will break down the advantage of our algorithm or not, let us consider on the result
depicting in Fig. 27. In that result, a conclusion we have drawn is that the performance
approaches to zero, because our algorithm is modified from HEFT, it might have the same
performance with HEFT or any other algorithm that cannot get over the critical path.

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 274

IHEFT vs. HEFT In Different Graph Level

—4— Awerage Win %
—=— Win %
—t+— Lose %
3l '2.9032

H.6991 -804

Percent %

1.833

0.99916
82853

1 1 1 1 Il 1 1
7 7.5 g 8.5 9 95 10 105 1
Awverage graph level (depth)

FIGURE 24. Time saving rate in different level

IHEFT vs. HEFT In Different Graph Level

—+— Win % (Last CPU)
—&— Win % (All CPU)

251

P.062
1.8965

15907

Percent %

1.8034

1.3304

| | | | . | |
7 75 g 8.5 9 9.5 10 105 1
Average graph level (depth)

FI1GURE 25. Total time saving in different level

However, we should take a look on the advantage that can let other processors be idle
as soon as possible. Fig. 28 presents that the time saving from other sooner finished
processors will bring us near 1.12% of total execution time.

6.4. Experiment Result of IHEFT and Look-Ahead HEFT. Here will present the
result of performance evaluation between our algorithm and Look-ahead HEFT (LA-
HEFT). The steps of this experiment are similar to the previous one, although the setting
for this experiment might have a little bit difference. The properties of DAG are shown
below:

The comparison procedures for this subtest are the same as what we have done before.
We observe that LAHEFT is far better than our algorithm if we simply take account of
the times of win, lose or tie in Fig. 29. However, if we observe Fig. 30, we find that the
performance lines of both LAHEFT and THEFT must almost twist together to form a
horizontal and slightly wavy Average Win % line, and IHEFT behaved a little better than
LAHEFT in general cases. Because Fig. 29 and Fig. 30 are from the same source, we can
give a conclusion that although LAHEFT can really shorten the make-span to get over

275 C. P. Young, B. R. Chang, and Z. L. Qiu

IHEFT vs. HEFT In Different Number Of CPU

400l —+— Win ||
—=— Lose
150 | —&—Tie ||
300} 278 278 283 289 284 oop
262

Times

Mumber Of CPU
FIGURE 26. The times of each case in different number of CPU

IHEFT vs. HEFT In Different Number Of CPU

—+— Average Win %
3r —&— Win %

—+— Lose %

12232

J1.721

Percent %

7 D273
P.1230 0330.093 0.126

! 1 1 1
4 6 8 10 12 14
Number Of CPU

FiGURE 27. Time saving in different number of CPU

TABLE 4. Experiment setting of IHEFT - Look-ahead HEFT

Options Subtest 1 Subtest 2 Subtest 3

Max. in degree 3 3 3
Min. level 3 5-9 10
Max. level 8 9-13 15
Min. number of node 20 - 60 70 400
Max. number of node 40 - 80 90 500
Min. node weight 10 100 10
Max. node weight 50 10000 20

Number of CPU 3 3 3-20

the other algorithms in general cases, but it cannot bring a very good accomplishment
in final. Furthermore, in this subtest, let us take a look at Fig. 31, we even find that in
the segment 50 - 60 nodes per graph, the total time saving percent of all CPU is positive,

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 276

IHEFT vs. HEFT In Different Number Of CPU

—+— Win % (Last CPU)
—&— Win % (All CPU)

20362043

Percent %

4 6 8 10 12 14 16
MNumber Of CPU

F1cURE 28. Total time saving in different number of CPU

although it is a negative value which only comparing the latest CPU. It means that if
today we are focusing on the issues such as power consumption, processors idling overhead
or parallel capability, we have not found any outstanding behavior are from LAHEFT.

IHEFT vs. Look-ahead HEFT In Different Number Of Mode

240F

—+— Win
220 —&— Lose []
o3 —&— Tie

Times

1 1 1 1
30 35 40 45 50 55 60 65 70
Mumber of nodes

F1GURE 29. The times of win, lose or tie in difference number of nodes

The next subtest will take account of the affection of the changing of level. According
to the times of win, lose and tie, we cannot recognize that what is the better, it just
denote that what shape of the graphs might bring us the better result. We should be
aware of the number of nodes in each level of this subtest is larger than the previous
subtest, that might be the reason why the win ratio is larger than lose. However, the
point which we are aiming at is the average winning percent at Fig. 33. It shows that the
proposed algorithm is slightly better than LAHEFT. Actually, we do not care to save this
so negligible time, but we will explain why our proposed algorithm is more reasonable
choice in later section. Again, looking at the winning percent of all CPU at Fig. 34 can
estimate the total average time that the proposed algorithm will save.

Finally, we have evaluated the change to performance of proposed algorithm against
LAHEFT in different number of CPU. As shown in Fig. 35, according to the size of DAG,

277 C. P. Young, B. R. Chang, and Z. L. Qiu

IHEFT vs. Look-ahead HEFT In Different Number Of Nodes
T T T T

T T T
3l —#— Average Win % -
—— Win %
25p 28 Lose %

11 1.06

Percent %

0.88

b -0.07 0.07 iy

05F

'1 C 1 1 1 1 Il 1
30 35 40 45 50 55 60 65 70
Average number of nodes

F1cURE 30. Time saving in different number of nodes

IHEFT vs. Look-ahead HEFT In Different Number Of Nodes

—+— Win % (Last CPU)
—&— Win % (All CPU)

Percent %

08 013 0.07

-0.07 -0.07

D5}

1 1 1 1 L 1 1 1
30 35 40 45 50 55 60 65 70
Average number of nodes

FiGure 31. Total time saving of different number of nodes

when the CPU increase to a certain quantity, the times of win will be the largest, and it
will fall down after that, and the times of tie keeps growing up later. This curve is what
we can anticipate. For the average performance of our algorithm against LAHEFT, that
might be the true colors of it, Fig. 36. Both algorithms start from zero (single processor),
and LAHEFT performs a little bit better in a short moment after start and before end.

However, the total time of saving by proposed algorithm is growing up dramatically in
Fig. 37.

6.5. Summary. We have had a global view of our proposed algorithm after a series of
comparing with HEFT and LAHEFT, and we found that it performs quite well in most
of the cases. Because LAHEFT already performs very well in homogeneous systems, the
ratio of speed up comparing with LAHEFT becomes not very obvious. On the other
hand, in many different conditions that we have tested, the proposed algorithm always
performs better than HEFT and almost approaches to optimal solutions when we observe
the result at timing panel by naked eye.

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems 278

IHEFT vs. Look-ahead HEFT In Different Graph Level

—+— Win
250+ —&— Lose
—&— Tie

2

Times

1 Il 1
7 7.5 g 8.5 9 95 10 105 1
Awverage graph level (depth)

F1GURE 32. The times of win, lose or tie in different level

IHEFT vs. Look-ahead HEFT In Different Graph Level

2l —+— Average Win % ||
—&=— Win %
—+— Lose %

Percent %

05} 4

1 1 L 1 1
7 75 8 8.5 9 9.5 10 105 1
Awverage graph level (depth)

FicUure 33. Time saving rate in different level

To boost up the performance for our algorithm, we have considered on involving the
look-ahead technique to determine the best choice of processor (horizontally search) and
the best inserted position (vertically search) for each node [19], but the algorithm pro-
cedure is very complex or even cannot be realized. The look-ahead technique cannot
reduce the idle time during processing but search for the better solution by testing each
processor, it might reduce the lose cases in our algorithm to minimize the make-span if
we can combine these two ideas together.

When the tasks are required to be rescheduling after one node v; has been inserted in
front of node v; in a queue, and the node v; is possible to be reinserted again to the front
of v;, if this step takes place forever and ever, the system will halt. And hence, to avoid
this ambiguous condition, we can set v; as an immediate parent of v;, such that v; will
never be rescheduled again in front of v;, however, sometime it will make v; cannot be
rescheduled to the sooner time slot at another queue as well, so it performs worse in our
experiments. By the way, the worst thing will happened if we try to recalculate the blevel
and execution order of the nodes after assigning v; as a parent of v;, because that new
edge might prolong the critical path of the graph accidentally. The recommended solution

279 C. P. Young, B. R. Chang, and Z. L. Qiu

IHEFT vs. Look-ahead HEFT In Different Graph Level

2t —+— Win % (Last CPU) H
—&— Win % (All CPU)

118

Percent %

D5}

1 1 Il 1
7 75 8 8.5 9 95 10 105 1
Average graph level (depth)

FiGURE 34. Total time saving in different level

IHEFT vs. Look-ahead HEFT In Different Mumber Of CPU

—+— Win
350 + —&— Lose H
—&— Tie

300+

250 F

200°F

Times

150+

100+

1 1
4 6 8 10 12 14 16 18 20
Number Of CPU

FIGURE 35. The times of each case in different number of CPU

is to keep using the first blevel and execution order for scheduling, and only rearrange
the nodes if they really need. And finally, we have taken account of these constraints and
brought out a solution for this problem, that is only trying to avoid v; to be reinserted
again before v; by adding v; to the list of sibling of v;, because we assume that v; found
a better position after it had been inserted to the front of v;.

7. Conclusions. In this paper, we have proposed a homogeneous multiprocessor system
algorithm which is modified from HEFT. The main idea of this algorithm is trying to
shorten the make-span by filling up all the timeslots of HEFT as much as possible, the
supposed environment for running this algorithm is standalone homogeneous systems, and
the communication cost is negligible or merge into the computation cost. On the other
hand, we also discuss about the concept that how to parallel the vector graphics processing
on a multiprocessor system, on this issue, we have provided the detail of the architecture
of our system (single processor) as a sample for considering on the multiprocessor version.

Although our algorithm performs well in most cases comparing with HEFT and LA-
HEFT, we still have to find out the better performance than look-ahead technique, and

Scheduling Optimization for Vector Graphics Acceleration on Multiprocessor Systems

Percent %

—4— Awerage Win %
251 —&— Win % i
—t+— Lose %
21 173
15}
1 L
05k
f =¥ B
0 40-+08718) 3,024
0.070.060 0 012
05F
1 1 1 1 1 1 1 1
4 6 8 10 12 14 16 18

IHEFT vs. Look-ahead HEFT In Different Mumber Of CPU

.61

1.44

MNumber Of CPU

F1GURE 36. Time saving in different number of CPU

Percent %

IHEFT vs. Look-ahead HEFT In Different Number Of CPU

0.2
_oloz0.060.00-11

—4— Win % (Last CPU) | 7,

—&— Win % (All CPU)

0.740.730.85
052
40.39

4

1 1
6 8 10 12 14 16 18
Number Of CPU

Ficure 37. Total time saving in different number of CPU

280

also shorten the current execution time as well. We have not found a formal equation
standing for the best performance of our algorithm if a DAG falls in this region, although
we have compared a lot with HEFT and LAHEFT in this paper. In the most cases,
our proposed algorithm behaves well for the homogeneous systems. We are wondering

whether it is good for the heterogeneous systems as well, and what we should modify back
to make it to be suitable to heterogeneous systems.

REFERENCES

[1] H. Topcuoglu, S. Hariri, and M. Y. Wu, Performance-effective and low-complexity task scheduling for

heterogeneous computing, IEEFE Trans. Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-274,

[2] H. Topcuoglu, S. Hariri, and M. Y. Wu, Task scheduling algorithms for heterogeneous processors,

[

Proc. of Fighth Heterogeneous Computing Workshop, pp. 3-14, 1999.
3] O. Sinnen, Task Scheduling For Parallel Systems, Canada, John Wiley & Sons, 2007.

[4] T. Yang and A. Gerasoulis, DSC: Scheduling parallel tasks on an unbounded number of processors,

IEEE Trans. on Parallel and Distributed Systems, vol. 5, no. 9, pp. 951-967, 1994.

281
[5]

[6]

C. P. Young, B. R. Chang, and Z. L. Qiu

I. Ahmad and Y. K. Kwok, On exploiting task duplication in parallel program scheduling, IFEFE
Trans. Parallel and Distributed Systems, vol. 9, no. 9, pp. 872-892, 1998.

S. Ranaweera and D. P. Agrawal, A task duplication based scheduling algorithm for heterogeneous
systems, Proc. of Parallel and Distributed Processing Symposium, pp. 445-450, 2000.

X. Tang, K. Li, G. Liao, and R. Li, List scheduling with duplication for heterogeneous computing
systems, Journal of Parallel and Distributed Computing, vol. 70, no. 4, pp. 323-329, 2010.

G. Q. Liu, K. L. Poh, and M. Xie, Iterative list scheduling for heterogeneous computing, Journal of
Parallel and Distributed Computing, vol. 65, no. 5, pp. 654-665, 2005.

T. L. Adam, K. M. Chandy, and J. R. Dickson, A comparison of list schedules for parallel processing
systems Communications of the ACM, vol. 17, no. 12, pp. 685-690, 1974.

Y. K. Kwok and I. Ahmad, Benchmarking and comparison of the task graph scheduling algorithms,
Journal of Parallel and Distributed Computing, vol. 59, no. 3, pp. 381-422, 1999.

M. A. Palis, J. C. Liou, and D. S. L. Wei, Task clustering and scheduling for distributed memory
parallel architectures, IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 1, pp. 46-55, 1996.
R. C. Correa, A. Ferreira, and P. Rebreyend, Scheduling multiprocessor tasks with genetic algorithms,
IEEE Trans. Parallel and Distributed Systems, vol. 10, no. 8, pp. 825-837, 1999.

A. S. Wu, H. Yu, S. Jin, K. C. Lin,and and G. Schiavone, An Incremental Genetic Algorithm
Approach to Multiprocessor Scheduling, IEEE Trans. Parallel and Distributed Systems, vol. 15, no.
9, pp. 824-834, 2004.

L. Wang, H. J. Siegel, V. P. Roychowdhury, et al., Task matching and scheduling in heteroge-
neous computing environments using a genetic-algorithm-based approach, Journal of Parallel and
Distributed Computing, vol. 47, no. 1, pp. 8-22, 1997.

O. Sinnen and L. Sousa, List scheduling: extension for contention awareness and evaluation of node
priorities for heterogeneous cluster architectures, Journal of Parallel Computing, vol. 30, no. 1, pp.
81-101, 2004.

D. Rice, Google Inc. , R. J. Simpson, AMD, et al., OpenVG Specification Version 1.1, The Khronos
Group Inc., 2008.

T. Hagras and J. Janecek, A High Performance, A high performance, low complexity algorithm
for compile-time task scheduling in heterogeneous systems, Proc. of 18th International Parallel and
Distributed Processing Symposium, vol. 31, no. 7, pp. 653-670, 2005.

J. Corbet, A. Rubini, and K. H. Greg, Linux Device Driver third edition, O’Reilly Media, 2005.

L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira, DAG scheduling using a lookahead variant
of the heterogeneous earliest finish time algorithm, Proc. of 18th Furomicro International Conference
on Parallel, Distributed and Network-Based Processing, pp. 27-34, 2010.

