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Abstract. This paper introduces a distance metric between two distributions that we
call the Deformation Distance (DeD). The DeD is based on the “energy” that must be
paid to deform one distribution into the other, presenting a perceptual similarity match
better than other distribution distances. The DeD relies on the distribution’s frequency-
based features. The frequency-based features are extracted by a physics-based deformable
model that parameterizes the distribution. The DeD was evaluated on a variety of random
as well as real distributions. Also, DeD was evaluated on image clustering and compared
to other distances. The experimental results demonstrate the efficiency of the proposed
distance metric.
Keywords: Deformable model, modal analysis, finite element method, deformable
curves, distance metric, multidimensional distribution.

1. Introduction. Image segmentation is one of the first and most important tasks in im-
age analysis and computer vision. In the literature, various methods have been proposed
for object segmentation and feature extraction, described in [1, 5, 7, 8, 11, 15, 18, 26, 27,
31]. However, the design of robust and efficient segmentation algorithms is still a very
challenging research topic, due to the variety and complexity of images. Image segmen-
tation is defined as the partitioning of an image into non-overlapped, consistent regions
which are homogeneous in respect to some characteristics such as intensity, color, tone,
texture, etc. The image segmentation can be divided into four categories: thresholding,
clustering, edge detection and region extraction. In this paper, a clustering method for
image segmentation will be considered.

Clustering is a process for classifying objects or patterns in such a way that samples
of the same cluster are more similar to one another than samples belonging to different
clusters [6, 12]. There are two main clustering strategies: the hard clustering scheme and
the fuzzy clustering scheme. The conventional hard clustering methods classify each point
of the data set just to one cluster [12]. As a consequence, the results are often very crisp,
i.e., in image clustering each pixel of the image belongs just to one cluster. On the other
hand, fuzzy set theory [32] has introduced the idea of partial membership, described by
a membership function. Fuzzy c-means (FCM) algorithm [4] is the most popular method
used in image segmentation because it has robust characteristics for ambiguity and can
retain much more information than hard segmentation methods [9, 10, 25].

All clustering methods share a common problem, how “close” or “far” is one distribution
from the other in a consistent manner. Hence, it is necessary to measure distances between
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two distribution using a “distance metric”. A distance metric is a more than something
that starts at zero and gets bigger as it get farther away. It must be defined in such
a way that the shortest distance between any two distributions is a straight line. The
effectiveness of a clustering method is tied to the exploited distance metric.
In this paper, we introduce a distance metric between two distributions, that we call

Deformation Distance (DeD). DeD is a useful and flexible distance metric, based on the
“energy” that must be paid to deform one distribution into the other. The DeD relies on
the distributions’ frequency-based features. The frequency-based features are extracted
by the free vibrations of a physics-based deformable model [13, 20, 21] that parameterizes
the distributions under consideration. When used to compare distributions that have the
same size, the DeD is a true metric.
The remainder of the paper is organized as follows. In Section 2, we review and survey

some of the existing measures of similarity and their drawbacks. The physics-based de-
formable model [13] used as the frequency-based feature generator is presented in Section
3. In Section 4, the deformation distance (DeD) is introduced. Experimental results are
presented in Section 5 and conclusions are drawn in Section 6.

2. Previous Work. Image clustering systems usually represent image features by multi-
dimensional histograms. For example, the color content of an image is defined by the
distribution of its pixels in some color space. These distributions are used to separate
image clusters of an image. Thus, a measure of similarity between distributions must
be defined. In this Section, distributions are formally defined, and the most common
distribution similarity measures for image clustering are presented.
A distribution P is a function that maps an image and a set of reference colors and other

characteristics into a vector pi of nonnegative numbers. These vectors typically represent
bins (or their centers) in a fixed partitioning of the relevant region of the underlying
feature space, and the associated reals are a measure of the mass of the distribution that
falls into the corresponding bin.
Several measures have been proposed for the similarity between two distributions P =

{pi} and Q = {qi}. They can be divided into two categories. The bin-by-bin similarity
measures only compare contents of corresponding distribution bins, that is, they compare
pi and qi for all i, considering no relation among pi and qj for i ̸= j. On the other hand,
the cross-bin measures contain terms that also compare non-corresponding bins.

2.1. Bin-by-Bin Similarity Measures. In this category, only pairs of bins in the two
distributions that have the same index are matched. A combination of all the pairwise
differences defines this kind of similarity.

Minkowski-form distance::

dr(P,Q) =

(∑
i

∥pi − qi∥r
)1/r

. (1)

The L1 distance has been proposed for computing the similarity scores between color
images [30], and the L∞ norm was used to measure texture similarity.

Kullback-Leibler divergence and Jeffrey divergence::

dKL(P,Q) =
∑
i

pi log
pi
qi
. (2)

The Kullback-Leibler (K-L) divergence has been suggested in [22] as an image sim-
ilarity measure and measures how inefficient on average it would be to code one
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histogram distribution using the other as the code-book. Symmetric and numeri-
cally stable variants like the Jeffrey divergence (JD) [28] is also another similarity
measure:

dJ(P,Q) =
∑
i

(
pi log

pi
mi

+ qi log
qi
mi

)
, (3)

where mi =
pi+qi

2
.

X 2 statistics::

dX 2(P,Q) =
∑
i

(pi −mi)
2

mi

, (4)

where mi =
pi+qi

2
. This distance measures how unlikely it is that one distribution

was drawn from the population represented by the other.

The above mentioned similarity definitions can be appropriate in different areas. For
example, the Kullback-Leibler divergence is justified by information theory and the X 2

statistics by statistics. However, these measures do not necessarily match perceptual
similarity well. The major drawback of these measures is that they account only the
information of the bins with the same index, and do not use information across bins.
Another drawback of these kind of similarity measures is their sensitivity to bin size. A
binning that is too coarse will not have sufficient discriminative power, while a binning
that is too fine will place similar features in different bins which will never be matched. On
the other hand, cross-bin similarity measures, always produce better results with smaller
bins.

2.2. Cross-Bin Similarity Measures.

Quadratic-form distance::

d(P,Q) =
√

(p− q)TA(p− q), (5)

where p and q are vectors that list all the entries in P and Q. Cross-bin information
is incorporated via a similarity matrix A = [aij], where aij denote the similarity
between bins i and j.

Weighted-Mean-Variance (WMV)::

d(P,Q) =
|µP − µQ|

σ(µ)
+

|σP − σQ|
σ(σ)

, (6)

where σ(·) denotes an estimate of the standard deviation of the respective entity.
Kolmogorov-Smirnov distance::

d(P,Q) = max
i

(|p̂i − q̂i|), (7)

where p̂i and q̂i are cumulative distributions. The Kolmogorov-Smirnov distance is
a common statistical measure for unbinned distributions and it is defined only for
one distance.

Earth mover’s distance (EMD)::

d(P,Q) =

∑M
i=1

∑N
j=1 dijfij∑M

i=1

∑N
j=1 fij

, (8)

where dij denotes the ground distance and fij the flow between pi and qi. The EMD
[29] is based on the solution of a transportation problem which is a linear optimization
problem. If the cost for moving a single feature unit in the feature space is defined
based on the ground distance, then the distance between two distributions is given
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as the minimal cost to transform one distribution to the other, where the total cost
is the sum of the costs needed to move the individual features. As a key advantage of
the EMD, each image may be represented by an individual binning that is adapted
to its specific distribution.

Weighted-mean-variance (WMV) is a parametric measure relying on the means and vari-
ances of the marginal distributions. Kolmogorov-Smirnov distance is defined only for cu-
mulative distributions, and therefore can be used only with marginal distributions, while
the others are applicable to multidimensional histograms. The EMD has the additional
advantage to be applicable to histograms with individual binning.

3. Physics-Based Deformable Modelling. In this Section, the physically based de-
formable model [20, 21] exploiting modal analysis, which is used to parameterize the
distribution transformation, is presented. The model uses only elastic deformations, as-
suming that the distribution recovers its original configuration as soon as all applied forces
causing the deformation are removed.

F1

F2

F3

F5

F1 x

F1 y

F2 x

F5 x

F2 y

F5 y

m m

mm

m
m

m

m

k

k

k

k

k
k

k

c

c
c c

c
c

c

c

c

c
c

c

c

c

Figure 1. 2D model example of 8 nodes of mass m connected with identical
springs of stiffness k. Four forces are acting on the model, that produce
model deformation.

Modelling a M -dimensional distribution can be achieved by a chain topology of N
virtual masses on the distribution. In Figure 1 is depicted an example of a 2D model of 8
nodes. Each model node has a mass m and is connected to its two nearest neighbors with
identical springs of stiffness k. The ratio a = k

m
constitutes the so-called characteristic

value of the model, which is a constant value that describes its physical characteristics
and determines its physical behavior. When a increases, the deformable model tends to
behave as a rigid one, which means in practice, that the model can be spatially moved
without any deformation. On the other hand, when a decreases, model tends to be treated
as a fully deformable one, which means that each force affects only the node (mass) it is
applied to. Furthermore, these model nodes are points on the distribution at equilibrium.
The node coordinates of the model under examination are stacked in vector:

vt =
{(

vti(1), v
t
i(2), . . . , v

t
i(M)

)}
i=1,..,N

, (9)

where N is the number of vertices (masses) of the model, M is the dimension of the
distribution and t denotes the t-th deformation time instance. In the following, vt

i denotes
the i-th component of vector vt. The model under study, is a physics-based system
governed by the fundamental equation of dynamics:

fe(v
t
i) + fd(v

t
i) + fext(v

t
i) = miv̈

t
i, (10)
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where mi is the mass of the point under study and v̈t
i its acceleration under total load of

forces (i-th component of vector v̈t). fd(·) is a damping force, fext(·) the external load on
node under study, and fe(·) is the elastic force due to node neighbors. The above govern-
ing equation is expressed for all model nodes, leading to a nonlinear system of coupled
differential equations, since the displacement of a node depends on the displacement of
its neighbors.

In order to solve this system of equations, we propose to set the natural length l0 of
the springs equal to zero. The length l0 of the springs is included in the elastic force fe(·)
equation. This assumption does not import any restriction to the initial configuration
of the model, if we add an equilibrium force feq(v

t
i) = −fe(v

t
i) in (10). This force keeps

the model inflated, so that it does not shrink to a point. We assume that, at any future
time, this equilibrium force is constant. Hence, the natural state of the model is its initial
configuration. This assumption has a main advantage, that the model can be considered
within the framework of linear elasticity. As a consequence, our solution lies in a set
of linear differential equations with node displacements decoupled in each coordinate,
regardless of the magnitude of the displacements. To enforce the assumption of constant
equilibrium force feq(·), the angular variations of the springs orientation in any dimension
should be sufficient small (< 15o), in which case the aforementioned approximation is
valid [23, 24].

The governing equation can now be written in a matrix form [3]:

Mü+Cu̇+Ku = ft, (11)

where u = vt−vt0 is the nodal displacements vector. M,C, and K [3, 19, 20, 21] are the
mass, damping, and stiffness matrices of the model, respectively, and ft is the external
force vector, usually resulting from the distance (Euclidean distance or any other distance
metric) from one distribution to the other. Note, that the above formulation provides a
simplification between forces feq(·) and fe(·), so that they do not appear in the governing
equation. These forces can be viewed as internal forces which do not need to be computed.
Furthermore, equation (11) is a finite element formulation of the deformation process.

Instead of solving directly the equilibrium equation (11), one can transform it by a
change of basis:

u = Ψũ, (12)

where Ψ is the square nonsingular transformation matrix of order N to be determined,
and ũ is referred to as the generalized displacement vector. One effective way of choosing
Ψ is setting it equal to Φ, a matrix whose entries are the eigenvectors of the generalized
eigenproblem:

Kϕi = ω2
iMϕi. (13)

Thus, equation (12) is transformed to:

u = Φũ =
N∑
i=1

ũiϕi. (14)

Equation (14) is referred to as the modal superposition equation. The i-th eigenvector,
i.e. the i-th column of Φ, denoted by ϕi, is also called the i-th vibration mode. ũi (the
i-th scalar component of ũ) is its amplitude, and ωi is the corresponding eigenvalue (also
called frequency). Using the standard Rayleigh hypothesis [20], matrices K, M and C
are simultaneously diagonalized: {

ΦTMΦ = I
ΦTKΦ = Ω2 , (15)
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where Ω2 is a diagonal matrix whose elements are the eigenvalues ω2
i and I is the identity

matrix. Thus, in the modal space the governing matrix-form, equations decoupled into
N scalar equations, by substituting (14) into (11) and premultiplying by ΦT :

¨̃u+ C̃ ˙̃u+Ω2ũ = f̃ , (16)

where C̃ = ΦTCΦ and f̃ = ΦT f . Solving these equations at time t leads to ũ, and the
displacement u of the model nodes is obtained by the modal superposition equation (14).
In practice, we wish to approximate nodal displacements u by û, which is the truncated

sum of the N ′ low-frequency vibration modes, where N ′ ≪ N :

u ≈ û =
N ′∑
i=1

ũiϕi (17)

Eigenvectors (ϕi)i=1,...,N ′ form the reduced modal basis of the system. This is the major
advantage of modal analysis: it is solved in a subspace corresponding to the N ′ truncated
low-frequency vibration modes of the deformable structure [20, 21, 24]. The number of
vibration modes retained in the distributions’ displacement description, is chosen so as
to obtain a compact but adequately accurate representation. A typical a priori value for
N ′, covering many types of standard deformations is equal to one quarter of the number
of the vibration modes.
An important advantage of the formulations described so far, in the full as well as

the truncated modal space, is that the vibration modes ϕi and the frequencies ωi of a
chain topology have an explicit expression [20] and they do not have to be computed
using eigen-decomposition techniques (due to the dimensions of matrices K and M). The
eigenvalues (frequencies) are given by:

ω2
i = 4a sin2

(
πi

2N

)
, (18)

and the eigenvectors (vibration modes) are obtained by:

ϕi =

[
. . . , cos

πi(2j − 1)

2N
, . . .

]T
, (19)

where i ∈ {0, 1, . . . , N − 1} and j ∈ {1, 2, . . . , N}. This is the main reason we have
chosen and used the so far described model topology to parameterize our distributions’
displacements.
In many computer vision applications [21], when the initial and the final deformable

states are known, it is assumed that a constant force load f is applied to the initial model
state. Thus, equation (11) is called the equilibrium governing equation and corresponds
to the static problem:

Ku = f . (20)

In the new basis, equation (20) is simplified to 2N scalar equations:

ω2
i ũi = f̃i. (21)

In equation (21), ωi designates the i-th eigenvalue and the scalar ũi is the amplitude
of the corresponding vibration mode (corresponding to eigenvector ϕi). Equation (21),
indicates that, instead of computing the displacements vector u from equation (20), we
can compute its decomposition in terms of the vibration modes of the original (initial)
model. The physical representation v(ũ) is finally given by applying the deformations to
the initial model:

v(ũ) = v0 +Φũ. (22)
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External forces fi denote the x and y components of the forces acting on node i in a
2D case:

f = [fx,1, fy,1, fx,2, fy,2, . . . , fx,N , fy,N ]
T , (23)

where N is the number of model nodes.

4. The Deformation Distance (DeD). In this Section we will introduce the Defor-
mation Distance (DeD) metric among two distributions, based on the frequencies of the
physics-based deformable model (eq. 22) described in the previous Section.

Intuitively, given two distributions, one can be considered as the initial state of the
above described deformable model, while the other as the final state. Then, the DeD
measures the “energy” that must be paid to deform one distribution into the other.

In a more formulated way, we can say that having in hand two distributions, let P ={(
p1i , p

2
i , · · · , pMi

)}
i=1,..,N

one distribution with N points in M dimensions and let Q =

{(q1i , q2i , · · · , qMi )}i=1,..,N a second distribution with equal number of points defined in the

same dimension space; and FP,Q = [f j
i (P,Q)] the ground distance matrix, where f j

i (P,Q)

is the ground distance between points pji and qji . This distance matrix is considered as the
external forces acting on the deformable model used, deforming one distribution (initial
state) to the other (final state).

To estimate the desired deformation energy, the generalized displacement vector ũ,
derived by (14) will be used, which expressed as:

ũ =
{(

ũ1
i , ũ

2
i , ũ

3
i , · · · , ũM

i

)}
i=1,..,N

. (24)

δi = [ũ1
i , ũ

2
i , · · · , ũM

i ]T describes the ith coordinate of the vector ũ, which describes the
frequency-based properties of the deformation [13, 20, 24].

Having computed the generalized displacement vector ũ (24), the deformation energy
or in other words the DeD is defined as:

DeD(P,Q) =
1

N ∗M

√√√√ N∑
i=1

M∑
j=1

(
ũj
i

)2
. (25)

The DeD is a true distance metric if the ground distance is a metric, fact that allows
endowing image spaces with a metric structure. A proof of this is given in Appendix.

In the case, where the distributions under examination have not equal number of points,
let us say that P has N points and Q has N ′ points (N ̸= N ′), then the DeD can be
defined as:

DeD(P,Q) = f(DeD(P,Z), DeD(Z,Q)), (26)

where f(·, ·) is the ground distance metric (e.g. the L1 norm) and Z is the distribution
with all its points located in point zero. The physical explanation of above defined (26)
equation is that the distance among the two distributions is equal to the deformation
energy that must be paid to deform the first distribution (initial state) to the second
(final state) through the zero distribution − the distribution which has all its points
located in point zero.

Figure 2 illustrates a very simple 1D example of the DeD calculation. Two random
histograms (1D distributions) have been selected (Figure 2a) and the external forces
deform the model to adapted on the second distribution. The generalized displacement
vector ũ of the deformation process is depicted in Figure 2b, while their deformation
distance is DeD = 2, 55.
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Figure 2. A graphic representation of the DeD estimation. (a) The de-
formable model adapted on the first of the two histogram distributions and
the external forces deform it to the second, and (b) the ũ of the correspond-
ing deformation process (DeD = 2.55).

5. Experimental Results. To evaluate the DeD distance metric, we applied it on image
clustering problem. Our image clustering tests were performed on Berkeley Segmenta-
tion Dataset [16] and various other images. We compare the efficiency of the DeD with
two other distances, L1 norm and Earth Mover’s Distance (EMD). We applied them on
clustering using the well-known k-means [14] clustering method, and the performances of
the three algorithms (distances) were compared with respect to the optimal segmentation
accuracy (SA), where SA is defined as the sum of the correctly classified bins divided by
the sum of the total number of bins of a distribution [2]:

SA =
c∑

i=1

Ai ∩ Ci∑c
j=1Cj

, (27)

where c is the number of clusters, Ai represents the set of bins belonging to the i-th class
found by the algorithm, while Ci represents the set of bins belonging to the i-th class in
the reference distribution.

(a) (b)

(c) (d)

Figure 3. Four real gray-scale images and their clustering results after
applying k-means algorithm exploiting DeD metric.

In our first set of experiments, we apply the k-means [14] clustering algorithm to some
real gray-scale images exploiting the DeD metric (Figure 3). As distribution bin in that
experiments has been thought the simple case of gray values of each pixel, e.g. each
distribution bin was equal to the corresponding gray pixel value. Furthermore, four color
real images, depicted in Figure 4, were also clustered using k-means exploiting DeD metric.
In this case, each distribution bin was comprised by the RGB values of the corresponding
pixel.
Furthermore, we apply the k-means clustering algorithm exploiting DeD metric and

the images transformed to various color spaces. Because of how the human vision system
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(a) (b)

(c) (d)

Figure 4. Four real color images and their clustering results after applying
k-means algorithm exploiting DeD metric.

(a)

(b)

(c)

(d)

Figure 5. Four real color images and their clustering results after applying
k-means algorithm exploiting DeD metric. The first column depicts the
initial image, while the second the clustering results in HSV color space.
The third column shows the clustering results in CIE La∗b∗ color space, and
the last column the results combining all used color spaces.

is built, color lives naturally in a three dimensional space. Color distributions, then, can
describe the color contents of entire images. Due to the fact that RGB color space is very
sensitive to illumination changes, we transform the images under examination into the
HSV color space ignoring the luminance (value) information. Thus, instead of using HSV
color information, the method uses HS vector colors. Luminance conveys information only
about illumination intensity changes, while all color information is found in the hue and
saturation domain. Also, we transform the images under examination into the CIE La∗b∗

color space ignoring again the luminance information. Figure 5 illustrates a clustering
example exploiting the above color spaces. The first column of Figure 5 shows the initial
four images of Figure 4, while the second one depicts the clustering results exploiting
DeD metric in HSV color space. That is, each distribution bin is comprised by the HS
values of the corresponding pixel. The third column illustrates the clustering results in
CIE La∗b∗ color space. In this case, each distribution bin is comprised by the a∗b∗ values
of the corresponding pixel. Also, the last column of Figure 5 shows the clustering results
exploiting DeD metric in a combination color space, i.e. each distribution bin is comprised
by the RGB, HS and a∗b∗ values of the corresponding pixel.

The deformable model used in the proposed approach adapted on the derived distribu-
tions. Although, adjacent distribution bins in general represent similar colors, they are
some discontinuous bins in its body. These discontinuities are frequently appeared in HSV
and CIE La∗b∗ color space, namely, when the hue or a∗ bin proceeds to next value. The
deformable model adapted on the distribution bins “connects” similar color values, while
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(a)

(b)

(c)

Figure 6. Clustering of a synthetic image. First column depicts the initial
image, while the second the clustering result after applying the proposed
algorithm. (a) The synthetic image with Gaussian noise (8%). (b) The
same image with Salt & Pepper noise (8%). (c) The synthetic image with
Uniform noise (25%).

(a)

(b)

(c)

Figure 7. Clustering of real images. The first column depicts the initial
image, while the second the clustering result after applying k-means algo-
rithms using the L1 norm. The third column shows the clustering results
using the Earth Mover’s Distance (EMD), while the final column depicts the
results using the proposed distance metric. (a) A real image with Gaussian
noise (8%). (b) An image with Salt & Pepper noise (8%). (c) An image
with Uniform noise (15%).

the specific discontinuous parts are ignored by the proposed method and they are thought
as continuous without losing the generality as it is shown. The connection of the adjacent
distribution bins by the deformable model, influences the distribution representation in
the way that changes in a color value usually convey changes to similar color values and
as a consequence to adjacent distribution bin values.
Furthermore, we apply the proposed distance metric (DeD) to noisy images. We apply

the proposed algorithm to a synthetic test image (Figure 6: 128× 128 pixels, two classes
with two gray level values taken as 20 and 120) corrupted by different levels of Gaussian
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(8%), Salt & Pepper (8%) and Uniform (25%) noise, respectively. As a distribution for
each pixel has been used noise resistance characteristics, e.g., the characteristics of the
eight-connected neighborhood pixels, that is, the gray values of the corresponding pixel as
well as the gray values of its eight-connected neighborhood pixels. The proposed distance
metric (Figure 6) removes almost all the added noise achieving satisfactory results and
proving a robustness to noise.

Furthermore, we apply three distance metrics (L1 norm, Earth Mover’s Distance and
DeD) with the k-means clustering algorithm to some real images [17] (Figure 7), con-
taminated with various kind of noise (gaussian, uniform and salt & pepper noise). The
clustering results are shown in Figure 7. Figure 7(a) shows an MRI image contaminated
with gaussian noise (8%), while Figures 7(b) and 7(c) illustrates other real images contam-
inated with salt & pepper (8%) and uniform (15%) noise respectively. The first column of
Figure 7 shows the noisy image under consideration, while the second column illustrates
the clustering results after applying k-means algorithm exploiting L1 norm. The third and
fourth columns depict the clustering results after applying the same clustering algorithm
(k-means) using the EMD and DeD distance metrics respectively. It is clearly illustrated
in Figure 7 that clustering results using EMD metric are influenced by the noise to dif-
ferent extents, which indicates that this distance metric lack enough robustness to noise,
while L1 norm exhibits enough resistance to all kind of noises. The proposed distance
metric (DeD) eliminates almost all the effect of the noise. This remark is also enhanced
by the results of the segmentation accuracy (SA) (27) as shown in Table 1. The ground
truth clustered results has been manually extracted. Finally, as a distribution for each
pixel has been used noise resistance characteristics, e.g., the characteristics of the eight-
connected neighborhood pixels, that is, the gray values of the corresponding pixel as well
as the gray values of its eight-connected neighborhood pixels.

Table 1. Segmentation accuracy (SA%) of three distance metrics on real images.

L1 EMD DeD

Gaussian 98.61 63.14 99.27
Uniform 98.59 67.69 99.23
Salt & Pepper 98.66 70.44 99.33

Average 98.62 67.09 99.28

6. Conclusion. The deformation distance (DeD) is a general and flexible metric for
distributions. It allows partial matches and it can be applied to variable-length repre-
sentations of distributions. Because of these advantages, we believe that the DeD can be
of use both for understanding (study, conclusion eduction, etc) distributions related to
vision problems. Comparisons with other similarity measures show that the DeD matches
perceptual similarity better as a fundamental element of image clustering systems.

The DeD is based on the “energy” that must be paid to deform one distribution into
the other, relying on the distribution’s frequency-based features. The frequency-based
features are extracted by a physics-based deformable model that parameterizes the dis-
tributions. Furthermore, the low frequency modal analysis of the distributions makes the
metric robust to missing data or outliers.

Finally, the good quality of the results and the efficiency of DeD are rendered it a
promising tool not only for the computer vision problems but also in pattern recognition
systems and for problems outside the realm of computer vision.
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Appendix. In this Appendix we prove that when the distributions under examination
have equal number of points N and defined in the same space dimension M , and the
ground distance d(·, ·) is metric, the DeD is a true metric. Non-negativity and symmetry
hold trivially in all cases, so we only need to prove that the triangle inequality holds.
Let FP,Q the ground distance matrix from distribution P to Q, FQ,R the distance matrix
from Q to R and FP,R the corresponding matrix from P to R. Consider, now, the flow
P 7→ Q 7→ R. Since, the ground distance d(·, ·) is a metric, the triangle inequality is a
fact:

FP,R ≤ FP,Q + FQ,R. (A.1)

The DeD, as defined in eq. (25), between distributions P and R and the definition of
ũi (14) leads us to:

DeDP,R =

√√√√ N∑
i=1

M∑
j=1

(∑
k

[
f j
k(P,R)ϕk(i)

]
(1 + ω2

i )
∑

k ϕ
2
k(i)

)2

. (A.2)

The factor 1
N∗M is omitted because it is the same in all cases since all distributions under

examinations have the same number of points N and defined in the same dimension space
M , and does not infect at all the proof. Thus, the DeD between distributions P and R
described in the above equation (A.2) can be transformed to:

DeD(P,R) =

√√√√∑
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(A.3)
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