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ABSTRACT. Player detection and tracking play an important role for the content analy-
sis of broadcast tennis videos. It is still a challenge because the player size is small and
many noises and interference exist in a tennis court, which often results in a failure of
detection. In addition, occlusion of players in double matches causes a failure of tracking.
In this paper, we propose a robust technique of player tracking using an adaptive Kalman
filtering. The parameters of the Kalman filter are dynamically adjusted according to the
detection results of players. Experimental results indicate that the proposed method im-
proves the success rate of player tracking significantly, especially for the upper players as
well as for double matches.

Keywords: Player detection, Player Tracking, broadcast tennis video, Kalman Filter-
ing.

1. Introduction. In the past decade, broadcast programs of sport games are quite pop-
ular among millions of audiences in the world. A huge amount of broadcast sport videos
are generated every day. Processing the huge video data becomes tedious works. There-
fore, automatic content analysis for sport videos has received much attention recently.
The analysis of sports video generates various valuable applications such as highlighting,
summarization, indexing/retrieval, athlete’s training and entertainment. In the past few
years, significant content analysis has been performed to various kinds of sports such as
soccer, tennis, baseball, American football, etc. [1-18,21].

Player tracking can provide very useful information for sport content analysis [22]. For
example of tennis sports, events such as net approach, baseline rally and ace ball can be
detected by referring players’ position in the court. Players’ tactic in the matches can
be also discovered by players’ trajectory. Players’ tactic is the useful investigation to
the competitor before the matches for athletes and trainers. Therefore, player tracking
becomes one of most important issue for content analysis of sport videos.

Player detection and tracking for broadcast videos are much more difficult than real
videos due to the following reasons [17]:

(a) Cameras are not stationary; they are zoomed and rotated and often follow the players.

(b) The background is frequently changed and players move randomly during the play.

(¢) A player may be segmented into multiple regions because of the differences in the
color of shorts, jerseys, and socks used.
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(d) Court colors and textures change with different stadiums such as US Open, Wimble-
don Open and French Open.

(e) Shadows cast by the players or other objects in the scene.

(f) Occlusions of players.

For tennis videos, a more challenge task is the detection and tracking of the players in
the upper-half court not only the small size but also the noise interference. We will give
a brief analysis for the issue in the next Section.

In this paper, we propose a robust player tracking method to address the problems
mentioned above. It aims at upper player tracking; of course, it is also applied to the lower
player. The method is mainly based on an adaptive Kalman filter, in which the parameters
are adjusted dynamically according to the detection performance of players. In Section
2, we describe the proposed method which is mainly composed of courtline detection
and filtering, player detection, and player tracking with adaptive Kalman filtering. The
experimental results are described in Section 3. Finally, the conclusion is drawn in Section
4.

2. Problem Analysis. As shown in Figure 1, the camera, which is used to capture
a court view, is often located behind the court. As a result, the whole court can be
partitioned into upper-half and lower-half courts. We denote the player in upper-half
court as upper player, and the player in lower-half court as lower player. Due to the
camera’s viewpoint, the objects in the upper-half court are much smaller than ones in the
lower-half court.

FI1GURE 1. Lower player and upper players in a court view.

The backgrounds of the lower player are mainly the court fields with homogeneous
colors. In addition, the image of the lower player is large enough. Therefore, it is not
difficult to detect and track the player. The methods based on background subtraction
or dominant color have been applied to segment the players successfully [19, 20, 23].

On the contrast, the detection/tracking of the upper players is a real challenge. The
various objects such as commercial board, referee and staff are often mixed with the upper
player. Because the background is complicated and varies over time frequently, it is diffi-
cult to generate an appropriate background dynamically; hence background subtraction
hardly segments the upper player well. In addition, the upper player is quite small in
size, which often results in poor detection of players. Moreover, for double matches, the
occlusion of two players in a half court often causes tracking failure. Although, there are
usually two cameras in a real tennis match, one behind each baseline, the upper-half court
of one camera will become the lower-half court of the other camera. However, for most
users, they cannot control the production of sport program, thus to develop an effective
tracking technique is very desirable.
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To further study the difficulty of upper player detection and tracking, we use an example
to demonstrate the difference of resolution, i.e., size, between the two players in lower and
upper half courts in a court image. As shown in FIGURE 2, the width of a real court
is 36 ft, and for a typical player, the body height and width are assumed to be 6 ft and
1 ft and 6 inch, respectively. Assume the upper player and lower player stand on the
baselines of the upper-half and lower-half courts, and the lengths of the two baselines in
image space are L; pixels and L, pixels, particularly. The size of a player can then be
calculated when court lines are detected. Given L; and Lo, we can estimate the widths
of the upper player and lower player in image space, w; and ws, by

(112 +6)inch  wi(pizels)  ws(pizels) (1)
(36 % 12)inch Ly (pizels)  Ly(pixels)
After obtaining the widths of the two players in image space, we can further estimate

the heights of the two players in image space by using the height and width of a player
in real world. The estimation equation is denoted as

(6% 12+ 6)inch _ hy(pizels)  ho(pizels)
(1% 12+ 6)inch  wy(pizels)  wo(pizels)

(2)

We employ the court line detection scheme presented in Section 2.1 to obtain the length
of baselines, L; and L. Then we use Eq.(1) and Eq.(2) to estimate the sizes of the upper
player and lower player. Table 1 lists the average results for three courts respectively
including US Opens, French Opens and Wimbledon Opens. It indicates that the size of
upper player is very small (52 x 14 pixels to 76 x 21 pixels), and it is about 32.4% 24.1%
of the size of lower player. Therefore, the difficulty of the detection and tracking of the
upper player increases significantly.

W _ B

- Upper 36 ft
L2 PP
w2 court

Net ﬂ

/ l. Lower 11,6 inch
h1 court I.
G fi]
A—
wi

L1 36 ft

FIGURE 2. The relationship of court baseline length and player size: (A)
In image space, (B) In real-word space.

The estimation of player’s size in Table 1 is in an idea case. In practice, because the
interference of the commercial board, or the color of a player is very similar to that of
the playfield, the detectable player size is often much less than the estimation in Table 1.
In the following, we demonstrate the difficulty of detection by an example. We use the
detection method mentioned in Section 2 with a fixed detecting window of size 30x20
(in pixel), and the best and worst case for the detected player size is shown in Table 2.
The detection results are also shown in FIGURE 3. Obviously, the detected player size
varies dramatically, and even a very small one (11 to 27 pixels). Therefore, it is really a
challenge for upper player detection and tracking.
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TABLE 1. Estimate of player’s size in lower-half court and upper-half court

(in pixel).

Lower- half court (in pixel) Upper -half court (in pixel) Size ratio of two

Baseline Player’s size | Baseline length | Player’s  size players

length 11 hyxw, 2 Ty wy (hyxwy)/(hyxwy)
US Opens | 632 104x29 314 52x14 24.1%
French

549 90x25 316 52x14 32.4%
Opens
Wimbledon

974 143x40 464 76x21 27.9%
Opens

TABLE 2. The detected upper player size in pixel.
Average
Maximum size [Percentage® [Minimum size |Percentage™ |Average size
Percentage

US open 1 145 74.17% 25 1. 17% 240 40.00%
US open 2 459 76.50% 27 4.50% 272 45.33%
US open 3 560 93.33% 188 31.33% 367 61.17%
French open 541 90.17% 124 20.67% 362 60.33%
'Wimbledon Opens [384 64.00% 11 1.83% 116 19.33%

* The percentage is the ratio of detected player size and detecting window.

(A) Best case

(B) Worst case

FIGURE 3. The detected players: (1) In us open, (2) In french open, (3) In

wimbledon

open.
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3. Proposed Method. The flow chart of the proposed system is shown in FIGURE 4.
To extract player objects, we first filter out playfield and court line using color features.
Then, we detect player objects for the remaining image. Finally, the detection result is
fed into an adaptive Kalman filter (KF) to estimate the player’s position of each frame.
The flow can be partitioned into two phases conceptually. In the detection phase, object
extraction is performed for the first frame of the input video. For the subsequent frames,
the tracking phase is conducted with the adaptive Kalman filter. Because the court line
detection is not the main issue in this paper, so in Section 3.1 and 3.2, we briefly described
some necessary processing and parameters that will be applied to player detection and
tracking. For more detail, please refer to [19,24].

Court | _____ ,
line 1
T [}
| [}
v v !
Ipput Playﬁeld N CourF line L, Player' object _:* Pl'ayer tracking | ) Result
video filtering filtering detection with KF

Detection phase <> Tracking phase

F1GURE 4. Flow chart of proposed method.

3.1. Court line detection. Court line information provides the import reference for the
analysis of the court view. For example, side lines and base lines can be used to define
the inside field and outside field, and a net line can be employed for the separation of the
upper-half court and lower-half court. In our work, the court line detection is an essential
preprocessing, which is helpful for the success of the following processes.

The flow chart of the court line detection is shown in FIGURE 5. We first transform
the RGB color space into HSV space. The detection of court line is then performed in V
channel. Through binarization and noise removing, we detect the candidate pixels which
belong to the court lines. Radon transformation (RT') projects these candidates into peaks
in Radon space. By searching these peaks, we can obtain the parameters of court lines,
and equations of court lines can be calculated accordingly. FIGURE 6-8 illustrates the
experimental results of each step in FIGURE 5 respectively. Apparently, the results are
satisfactory and can be applied to subsequent phase. For more detail, please refer to [19].

3.2. Playfield filtering and court line filtering. For player tracking, we have to define
the active region of player in a game. Thus, to find the playfield and define the active
region of player according to court line is an important step for player detection and
tracking. Playfield of a court can be characterized by the dominant colors of the court.
The natural courts such as grass court and clay court have a single dominant color.
However, the artificial court often has two dominant colors, one for the inside field and
the other for the outside field, as shown in FIGURE 1. Thus, in our work, the playfield
filtering considers two dominant colors for the two fields.

FIGURE 9(a) shows a schematic diagram of a tennis court. Five horizontal lines (h1-h5)
and five vertical lines (v1-v5) construct a tennis court.

As shown in FIGURE 9(b), the inside field (Fjsiqe) is enclosed by hy, hs, v; and vs.
Then, we define the outside field (F,usiqe) as the outward extended area from the inside
court. Thus, Foutside is defined as the enclosed area by hi’, hs', vi’ and vs’ but excluding
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FIGURE 5. Flow chart of court line detection.
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FIGURE 6. Thresholding and binarization of court lines: (A) Original image
of court view, (B) Threshold determination, (C) The binarization result.
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FIGURE 8. Court line detection: (A) Radon transformation of the thinning
lines (B) Estimated court lines (redrawing line in green).

Finside.

The left and right bounds of Foutside, v;" and v/, are respectively defined as

the two lines outward extending 150 pixels (15/72 of image width) from v; and vs. The
bottom bound of F,,tsige, h1', is defined as the line outward extending 100 pixels (15/72
of image height) from h;.

Let the position of hs’ be at the corner of the wall behind the court. Here we estimate
the position of hs' using the gradient information of the upper image above hs. Because
the strongest edge happens in hs’', we use the maximum of the horizontal projection of
the gradient image to detect the position of hs', as illustrated in Eq.(3) and FIGURE 10.

y"PPe = vertical position of hs' = arg, max (horproj(E))

(3)
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FIGURE 9. Schematic diagram of court lines.

where E and horproj(.) is denoted as the gradient image and horizontal projection,
respectively. When the upper bound of the outside field is known, the F, ;5. and Fjgide
can be easily determined, as shown in FIGURE 11.

(b)

< maximum

s

(c)

FIGURE 10. Detection of the upper bound of foutside: (A) Original image,
(B) Gradient image of (A), and (C) Horizontal projection “horproj(.)” of

(a) (b) (c)

FIGURE 11. Boundary of finside and foutside (A) Original image, (B) Fin-
side and (C) Foutside.

After inside and outside of playfield have been determined, the next step is to filter out
the playfield pixels that are with dominant colors. Here we use color features to achieve
this purpose. We first convert a RGB court image to the HSV color space. The hue value
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and intensity value of a pixel at (z,y) are denoted by hue(z,y) and v(z,y) respectively.
Then, we filter out the playfield’s pixels using dominant colors within the outside and
inside fields, and yield non-dominant color image (Bnpc) using Eq.(4).

0, if hue(z,y) — prme| < @y, and [v(z,y) — pvalue] < X000
Bxpe(z, y) _{ 1, otherwise. , (@)

where iy and opye respectively represent the mean and variance of the inside or out-
side fields for hue component. Similarly, fi{mvaiue and ovane are for intensity component.
It is noted that Eq. (4) is only applied to the pixels within Fjgge and Fousige- AS a
result, Bxpc filter out the playfield and contains only player objects, court lines, and
other objects such as the net, as shown in FIGURE 12(a).

(a) (b)

FIGURE 12. (A) Bnpe, (B) After court line filtering.

In order to detect player, we should remove court line first. We denote the court line as
Ber, as shown in FIGURE 7. The B¢y, is operated by morphological dilation, and then
subtract it from Bypc as in Eq. (5). Finally, we can obtain a binary image containing
candidates of player objects, denoted by Bea, as shown in FIGURE 12(b).

Bean = Bxpe — (B @ SE) (5)

where SE is the square-shaped structure element of n x n matrix and @ is the dilation
operator.

3.3. Player object detection. This subsection describes how to detect (search) the
player objects from the image B..,. To improve the detection accuracy and efficiency, we
define a smaller initial search area using a priori knowledge. In general, when a player
prepares to serve a ball, and he/she has to stand in the fixed range behind the baseline.
In a single (match), the other player often stands behind the baseline in the opposite side
and prepares to hit the ball back.

Given court line and playfield information, as shown in FIGURE 13, and the knowl-
edge stated above, we can restrict the initial search area. For the upper-half court, the
initial search area is defined as a rectangle box below the baseline line, h5. Because the
broadcasting style is different for different games, the court might extend to the outside
of a frame. Thus, the search area is defined as follows.

Assume that X and Y respectively denote the horizontal and vertical coordinates of the
intersection of court lines. The left and right bounds of the initial search area are defined
as,

fupper o XPB; if XP3 >0 fupper . XPlg, if Xp19 < framewz'dth (6)
left 1 0, otherwise PIright =1 framewidth, otherwise
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FiGURE 13. The depiction of court line.

The upper and lower bounds are

fuppe'r _ Yupper if Yupper >0

left 0, otherwise ’ (7)
upper | [max(Ypy, Ypao) + 10], if[maz(Yps, Ypao) + 10] > 0

down

0, otherwise

Because the noises in lower-half court are much less than those in upper-half court, the

initial search area of the lower-half court can be defined as follows

flower _ 0 lower
- Y

left e = framewidth, fi" = Ype, [ = frameheight (8)

where P, is the center edge of net. The initial search areas for upper-half and lower-half
courts are shown in FIGURE 14.

(a) (b)

FIGURE 14. Initial search area (green box) and the result of player detec-
tion (red box) for (A) Upper player, (B) Lower player.

The next step is to search the player object using a sliding window over the initial
search area. The search is based on the binary image B.,,. The sliding window is a small
bounding mask with size of AW x AH. In our work, the size of the bounding mask is 30
pixelsx20 pixels. As shown in FIGURE 15, by shifting the sliding window pixel by pixel
from left to right and top to bottom, we can calculate the object areas of all windows.
The player’s position is the location where the sliding window Bg; generates the maximal
object area; i.e.,

Player’s position = arg max (areapit—1(Bsyt)) 9)
S
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where areabit-1(.) denotes the total number of bit-1 pixels in the binary image Beay.
Here, we use the bottom of the player window obtained in Eq.(9) to represent the player
location. In our work, due to the noise interference and the limitation of resolution, the
player extraction in playfield is not easy. For small or unimportant shadow, it will not
affect the results of player extraction and tracking. Unlike the issue of posture or gesture
recognition, which the precision of extracted player is necessary, we don’t need to eliminate
the shadow to reduce the interference. We will verify our viewpoint in simulation.

1. Using the property of 4-connectivity to find the bottom pixel of a player.

2. Check the bottom pixel of the player window. If it is not a player pixel, shift the player
window one pixel upward; otherwise go to step 3.

3. Check the lower neighboring pixel of the bottom of the player window. If it is a player
pixel, shift the player window one pixel downward and go to step 4; otherwise go to
step 4.

4. Calculate the middle point of the lower bound of the player window as the representa-
tive position of player.

Bound Box
Bouwnd Bosdr '
IIH e
HEC
v 20 pixels
A—
Plaer IEISO pixels
Pl L und J
Posﬁ;n ower bo Shift vpward
" T T
Search Window 7 Shift Downward Lower bound
| | ! |

FIGURE 15. Searching player object.

The detection example for the upper player and the lower player is shown in FIGURE 14.

3.4. Player’s position estimation using Kalman filter. After the player detection,
we use a AW x AH bounding box to enclose the detected player. The next step is to
estimate the player’s position for the subsequent frames, which is the so-called tracking
phase. We define a search window centered at the bounding box, as shown in FIGURE
16. According to the maximal movement of a player, we define the size of the search
window to be 2 x AW width and 1.5 x AH height. Within the search window, a full
search scheme sliders the bounding box to find a new position which generates maximal
object area for each frame. The calculation of object area is similar to that defined in Eq.
(9).

The upper player is quite small in size, and the background behind the upper player
is rather complicated. As a result, the player detection process above can’t obtain a
complete player body. This results in the failure of the tracking using the above object
search algorithm. In this work, we design an adaptive Kalman filter to solve the problem.

The system state model of Kalman filter for the player tracking is shown in Figure
17. The Kalman filter consists of the prediction process and the updating process. The
position measurement and the occupation rate from the player object detection are fed
into the updating process. Then, the occupation rate is used to predict the new position
of the player object. The new position is applied to detect the player object in the next
frame. The details are described in the following.

The state-space model of the Kalman filter is described as

state model : v(k) = ®(k — 1)v(k — 1) + T'w(k),and (10)
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FIGURE 16. Search window centered in a bounding box.
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FiGURE 17. Flow chart of player tracking with adaptive kalman filter method.

measurement model : z(k) = H(k)v(k) + e(k) (11)
where ®(k — 1) and H(k) are the state transition matrix and measurement matrix, re-
spectively. Assume the w(k) and e(k) are Gaussian noise with zero mean,; that is,
w(k)=N(0,Q(k)) and e(k)=N(0,R(k)), where Q(k) and R(k) are process error covariance
and measurement error covariance matrices, respectively.

Prediction process:

state prediction : v~ (k) = ®(k — 1)v(k — 1) (12)
error covariance : P~ (k) = ®(k — 1)PT(k — 1)®" (k- 1) + I'Q(k — DI'T (13)
Updating process:
Kalman gain matrix : K(k) = P~ (k)H” (k)[H(k)P~ (k)H” (k) + R(k)] " (
state updating : vt (k) = v~ (k) + K(k)[z(k) — H(k)v~ (k)] (15)
error covariance updating : P* (k) = [I — K(k)H(k)|P~ (k) (
The P(k) is the error covariance matrix associated with the state estimate of v(k). 1

defined as
P (k) = E[(v(k) — 0(k))(v(k) — 0(k))"] (17)

This matrix provides a statistical measure of the uncertainty in v(k). The superscripts
-7 and “ + 7 denote “before” and “after” measurement, respectively.

13
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We derive the state-space mode for player tracking in the following. Because the interval
between the two consecutive frames is very short, let us assume that the moving speed of
a player (moving object) is constant. In addition, the x-direction and y-direction position
of the tracking object are assumed mutually independent. Based on the assumptions, we
can formulate the x-direction or y-direction position of the player using three subsequent
frames k', (K — 1)™ and (k — 2)™ frame as

d(k) = d(k — 1)+ s(k) * 1+ w(k) (18)

where d(k) denotes the position of the player and w(k) is the process noise. The speed
of a player s(k) can be estimated as the position difference of (k — 1) and (k — 2)®™
frames by

s(k)y=d(k—1)—d(k—2) (19)
Thus, Eq.(21) becomes
d(k) =2d(k —1) — d(k —2) + w(k) (20)

However, the interference in upper player is significant especially for doubles match.
The interference is mainly due to two possible reasons in the following. (a). The detectable
player size is very small, and the non-court objects such as commercial board, score board,
line judge, and logo of TV channel appear frequently; (b) The relative motion of players
in double match is more complicated due to fast movement of players, and the two players
may occlude each other. Therefore, the uncertainty of both measurement and prediction
are very non-stationary. In order to reduce the interference and sensitivity, we refine
the motion model such that it is more robust in noisy environment. The velocity is
defined within longer time duration to avoid the randomness due to the fast movement
and imperfect player detection. Thus, instead of Eq.(19), the velocity is calculated by
(k— 1) frame and (k — n)™ frame as

s(k) = ﬁ dk — 1) — d(k — ) (21)

The velocity can be viewed as a motion trend, which effectively reduces the sensitivity.
Consequently, our proposed state model of Kalman filter can be represented as

v(/f):@v(k—1)+rw(k):{”1ﬁ ‘ﬁ} HEZ:B)%H]MM’
where v(k {d( J,v(k—l):{ ((Z:i” (22)
1

1 1
@_[ +1 1 6—1}andI‘:[ }

The measurement model can be represented as

d(k
d(k(—)l) } +elk),

and H=[1 0]

z(k) =H(k)v(k)+ek)=[1 0]
d(k)

k—1)
It is noted that the above model equations can be applied to estimate either horizontal

(x-direction) coordinate or vertical (y-direction) coordinate.
In our work, the n is set to be 2 for single match, 5 for double match, respectively.

(23)
where z(k) = d(k),v(k) = [ d
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3.5. Adaptive Kalman filtering. After constructing the motion model and achieving
the measurement with player detection, we can apply the adaptive Kalman filtering to
track the player in video sequences. The system state model in the adaptive Kalman
filtering is derived from motion model which is used in the prediction step. The adaptive
Kalman filter means that the parameters of Kalman filter are adjusted frame by frame
automatically. Since the state model is corresponding to a linear space invariant system,
all model parameters are thus given except the uncertainty of state model and measure-
ment model, Q(k) and R(k), respectively. Therefore, if we can carefully adjust the Q
and R(k), the better tracking performance can be achieved. In the following, we describe
how to calculate the filter parameters of Q(k) and R(k) automatically. As in Eq.(15),
the Kalman gain, K(k), can be simply viewed as inversely proportional to R(k). If R(k)
is greater, then K(k) is smaller, which means that the measurement, z(k), is less impor-
tant for state updating, as indicated in Eq.(15). Meanwhile, the current estimation result
should trust the prior estimation, v~ (k), more, so we must decrease Q(k — 1). On the
other hand, when R(k) is smaller and K(k) is greater, z(k) is more important. In this
case, the estimation result should trust z(k) more, so we increase Q(k — 1).

In our work, we apply the coverage ratio of the detected player object to adjust Q(k—1)
and R(k) dynamically. In player object detection, as in Eq.(9), the player’s position is the
location where the sliding window By generates the maximal object area. The coverage
ratio is defined as the area of the detected object compared to the area of the bounding
window as

area(detected player)

a(k) =

- 24
area(bounding window) (24)

If the ratio is large, then the measurement is reliable. We can decrease the R(k) and
increase Q(k) accordingly. Finally, Q(k — 1) and R(k) are simply defined as

Q(k—1)=a(k) and R(k) =1 — a(k) (25)

For the detection of the upper player, because the moving player is often corrupted by
the background noises such as commercial boards and side umpires, the detection of the
player may be degraded seriously. Thus the size of the upper player detected becomes
small; i.e., the coverage ratio is small. In such case, the proposed adaptive Kalman filter
trusts the prediction much more than measurement; therefore it can reduce the effect of
the unreliable measurement, and improve tracking accuracy significantly.

3.6. Player tracking for doubles. In a doubles match, two players are required to
track in either of two half courts. As same as singles, the first step is to filter out
playfield pixels and court line pixels to obtain player candidates image, Bc.,, as described
in Subsection 3.2. Then, we search the two player objects in B.,, which generate two
largest numbers of bit-1 pixels inside the bounding box of players. In order to detect the
players compactly, we use the 8-connectivity property to group the detected player pixels
in the bounding box, and label the two players objects with red marks (1) and (2) shown
in FIGURE 18(b) and (18(c). FIGURE 18(a) shows Be,, obtained by playfield and court
line filtering. FIGURE 18(b)-(c) respectively show the detection results for upper players
and for lower players.

In the tracking phase, we use two Kalman filters to estimate two players’ position in
either of two half courts. Each Kalman filter executes the single-player tracking indepen-
dently. Thus, we rewrite Eqgs. (12)-(16) into the following
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FIGURE 18. Player detection in a double: (A) bcan after filtering, (B)
Lower players, (C) Upper players.

Preditionstep : { (k—1)P/(k—1)®T(k—1) +T'Q;(k — DI,

K, (k) = P; (k)H (k) [EL(k)P; (K)HT (k) + R, (4] (26)

Updationstep : 4 97 (k) = 9 (k) -+ K (k) [z:(k) — H(k)9 (k)
P/ (k) = I - K;(k)H(k)P; (k)

where the subscript means the i-th player, i.e. © = 1 or 2.

For doubles matches, occlusions of two players happen frequently in a half court. The
occlusions often make the Kalman filters not successful to work such that tracking errors
occur (miss or mistake of tracking). To address the problem, we propose a new mechanism
for Q(k) and R(k) adjustment in the two Kalman filters. For two players in upper
court, we observe their position measurements d; (k) and ds(k), and calculate the distance
between them. When two players’ position approach each other, the assignment of @Q;(k —
1) and R;(k) is changed as shown in Eq.(27).

i |uds(k)—xda(E)] < 1.5- AW and |,dy(k)—ydo(k)| < 1.5- AH

then Q;(k — 1) =0 and Ry(k) = 00 (27)
else Qi(k — 1) = ay(k) and R;(k) =1 — (k)
where the left subscripts of “x” and “y” mean “x-component” and “y-component”

respectively. The size of the bounding box of a player is AW x AH. When the positions
of two objects are very close (the distances of x-direction and y-direction of two players
are less than 1.5 - AW and 1.5 - AH respectively), the occlusion happens. In such case,
the position measurements of two players are very unreliable. Instead of Kalman filtering,
the estimation use only prediction, i.e. Q;(k —1) = 0 and R;(k) = oo. Until two player
leave each other far enough, the measurements information are referred again for the
estimation, i.e., Q;(k — 1) = a; and R;(k) = 1 — o;. The new mechanism effectively
reduce the interference of unreliable measurement, and improve the tracking accuracy
significantly.

4. Experimental Results. In our experiments, we record several videos of tennis matches
from broadcast channels which were taken place in US Opens, French Opens and Wim-
bledon Opens. We obtain the tennis videos containing three different kinds of playfields
including artificial, red clay and grass courts. We manually edit the clips out of the whole
match videos. All of clips are videos of rallying between two sides, i.e. players running
and stroking. The experimental materials contain 54 clips of 20 seconds in average which
come from 10 matches, including 48 clips for singles and 6 clips for doubles. The video
format is MPEG-2, that is, image resolution is 720x480 and frame rate is 30 fps.
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For singles, Table 3 lists tracking results of the proposed method without Kalman filter-
ing (only the player object detection). The success rate is 77% in average. According to
our observation, most cases of the tracking misses are caused by the complex background
including non-playfield objects such as commercial board, scoreboard caption and side
umpire. Using dominant colors of playfield can not filter out these objects completely.
As a result, the player object detection possibly tracks to the non-playfield objects in the
half-upper court. In addition, when the color of the player’s clothes is similar to the color
of the playfield, over filtering happens to the player object and makes the object area very
small. This is another reason for the failure of the player object detection.

Our proposed Kalman filtering cooperates with the player object detection to improve
the tracking performance. The success rate of the tracking is raised from 77% to 94% in
average, as shown in Table 4; that is to say, the Kalman filtering obtains 17% improve-
ment. The key point is that when the measurement accuracy decreases, the prediction
automatically compensate the unreliability by adaptive Kalman gain adjustment; because
the motion of player can be viewed as continuous and smooth, so that the prediction can
always effectively correct the error of poor measurement.

Figure 19-21 show the sequential frames of the successful tracking with Kalman filtering
which are selected from three clips of US Opens, French Opens and Wimbledon matches.
Figure 22 shows two tracking misses without Kalman filtering, when the upper players
(tracking targets) approach side umpires.

For doubles, besides the factors of the complex background, the occlusion of two players
affects tracking performance significantly. Table 5 lists the tracking results of doubles
without and with Kalman filtering. Without Kalman filtering, the tracking of doubles
does not succeed when the occlusion happens. The tracking with Kalman filtering achieves
66.7% success rate.

Figure 23 shows the successful tracking with Kalman filtering for the video clip selected
from US Opens match.

TABLE 3. Tracking result of singles without kalman filtering.

# of video clip # of success # of miss success rate
US Opens 35 28 7 80%
French Opens 7 6 1 85.7%
Wimbledon Opens 6 3 3 50%
Total 48 37 11 77%
TABLE 4. Tracking result of singles with kalman filtering.
# of video clip # of success # of miss success rate

US Opens 35 33 2 94.3%

French Opens 7 7 0 100%

Wimbledon Opens 6 5 1 83.3%

Total 48 45 3 94%
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TABLE 5. Tracking result of doubles in us opens with and without kalman filtering.

# of video clip # of success # of miss success rate
without KF 6 0 6 0%
with KF 6 4 4 66.7%

250" frame 350" frame 420" frame

FI1GURE 19. Tracking result in us opens with kf.

350" frame 450" frame

250" frame

FiGURrE 20. Tracking result in french opens with kf.
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250" frame 350™ frame 450" frame

F1cURE 21. Tracking result in wimbledon opens with kf.

410" frame 420" frame 440™ frame

Ficure 23. Tracking result in a double, us opens (with kf).

For more demonstration, FIGURE 24-25 show the player motion trajectory with and
without Kalman filter in image plane and real-world space, respectively. Due to the im-
perfect player detection, the variation of bounding box is significant, and thus the abrupt
jumps occur in the trajectories. However, the Kalman filter can effectively compensate
the imperfect detection; therefore the trajectories are smoother.

Finally, for double match, the prediction model is modified to reduce the uncertainty
of player motion. FIGURE 26-27 compare the tracking results with and without model
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FIGURE 24. The Trajectories without kalman filter: (A) In us open, (B)
In french open, (C) In wimbledon open.

FIGURE 25. The trajectories with kalman filter: (A) In us open, (B) In
french open, (C) In wimbledon open.

modification. Obviously, because the model modification effectively reduces randomness
of player motion, it performs much better in tracking than the original model

5. Conclusion. In this paper, we have proposed a robust Kalman based player detection
and tracking technique for broadcast tennis videos. In the detection phase, the playfield
and court line are first filtered out from a court view. Then, the remaining is applied to
detect player objects in a delimited search area. In the tracking phase, a bounding box
containing the detected object (player) is used to search the position of the player in the
next frame. The utilization of an adaptive Kalman filtering greatly corrects the detection
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405" frame 420" frame

FIGURE 26. The trajectories with kalman filter: (A) In us open, (B) In
french open, (C) In wimbledon open.

405" frame 420" frame

FIGURE 27. The trajectories with kalman filter: (A) In us open, (B) In
french open, (C) In wimbledon open.

(measurement) errors and improves the tracking accuracy. Effective mechanisms for au-
tomatically adjusting parameters R(k) and Q(k) are developed based on the occupation
ratio in the detection phase. The experiments indicate that the proposed method achieves
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average success rate of 94% for singles and of 67.7% for doubles. The applications based
on this result such as event detection and tactics analysis will be investigated in the future.
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