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Abstract. This paper proposed a novel representation for color image on quantum com-
puter and further explored the basic color and geometric transformations on it. First, a
multi-channel representation for color quantum image based on phase transform (CQIPT)
is introduced in the form of a normalized state which captures information about colors
RGB, transparency and positions. Then, a constructive polynomial preparation is in-
troduced for CQIPT. Finally, the elementary transformations on CQIPT such as color
channels swapping, one color operations, transparency adjustments and geometric trans-
formations are researched. Analysis shows that the proposed CQIPT is more efficient
than other representations for many phase-encoding based quantum image processing.
Keywords: Quantum computation, Color quantum image, Channel swapping opera-
tion, One channel operation, Geometric transformation

1. Introduction. A quantum computer is a physical machine that can accept input
states which represent a coherent superposition of many disparate possible inputs and
subsequently evolve them into a corresponding superposition of outputs [1]. Any quantum
algorithm or unitary operation can be decomposed into a circuit composed by a succession
of basic unitary gates that act on one or two qubits [2]. In quantum circuit models of
computation, designing circuits is necessary to realize and analyze any quantum algorithm
[3]. Physical implementations of the qubits and their corresponding gates have been
introduced in the literatures [4].
The natural parallelism of quantum computation makes many classical problems pro-

cessed as a lower computation complexity. Therefore, quantum image processing has
peculiarly been a hot topic in quantum computation and information. However, the first
problem to be solved in this field is how to represent image in quantum computer, which is
called quantum images. Some methods for representing gray-scale quantum images have
been proposed. The quantum image is represented by color, a quantum state detected
from monochromatic electromagnetic waves through special machines and position, the
storing unit was named Qubit Lattice [5]. Latorre brought out a method that mapped the
pixels into the Real Ket of the Hilbert space to complete image compression combined
with pixel states [6]. A flexible representation of quantum image (FRQI) [7] encoded
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the intensity and position of gray image into one quantum state which keeps the clas-
sical properties of color and position. An enhanced quantum representation (NEQR)
for digital images is proposed in [8], which improves the representation of FRQI. In [9],
the authors focus on the quantum image representation using qutrits (3-level quantum
systems). Moreover, a quantum image representation for log-polar image (QUALPI) is
proposed for the storage and processing of images sampled in log-polar coordinates [10].
All the above representations are serviced for gray scale image. However, color is one of
the most important ways to represent images because most objects in nature are colorful.
Therefore, based on FRQI, a multi-channel representation for quantum images (MCRQI)
using RGBα color space is proposed in [11] . MCRQI is represented and prepared based
on rotation gates and is flexible to realize some classic-like operations. However, many
other quantum gates such as phase gate are usually utilized in quantum algorithms [12],
rotation gate based representation, MCRQI, isn’t flexible enough when processed in this
condition.

Based on the fact that the images in the real life are usually colorful, color quantum
images representation is explored in this paper. Disparate from the representation MCRQI
in [11], the CQIPT proposed in this paper is prepared mainly by controlled phase gates.
Same as MCRQI, the CQIPT is easily processed for color transformations, transparency
adjustments and geometric transformations. Moreover, it is especially flexible for many
image processing and security algorithms based on phase encoding.

The rest of the paper is organized as follows. Section 2 gives the pattern of CQIPT
and the polynomial preparation theories are studied in Section 3. Furthermore, Section
4 researches the transformations about disparate channels , single channel and positions.
Analysis acting upon CQIPT is proposed in Section 5. Finally, Section 6 concludes the
paper.

2. Color quantum image based on phase transform (CQIPT). To simplify the
problem, we suppose that the size of a color image is 2n × 2n, the concrete pattern of
CQIPT is shown in Eq. (1),

|I(θ)⟩ = 1

2n+3/2

22n−1∑
j=0

∣∣cjRGBα

⟩
⊗ |j⟩ , (1)

here, different from MCRQI using rotation gate in [11], the color encoding
∣∣cjRGBα

⟩
car-

rying the information R, G, B and transparency α is defined as,∣∣cjRGBα

⟩
= |000⟩+ eiθRj |001⟩+ |010⟩+ eiθGj |011⟩+
+ |100⟩+ eiθBj |101⟩+ |110⟩+ eiθαj |111⟩ , (2)

wherein, i =
√
−1, θXj ∈

[
0, π

2

]
, X ∈ {R,G,B, α}, j = 0, 1, ..., 22n − 1 encodes the

color information and |j⟩ encodes the corresponding position of the quantum images.
The position information includes two parts: the vertical and horizontal coordinates.
Considering a color quantum image in 2n-qubits system,

|j⟩ = |y⟩ |x⟩ = |yn−1yn−2 · · · y0⟩ |xn−1xn−2 · · · x0⟩ , (3)

x, y ∈ {0, 1, ..., 2n − 1},

|yi⟩ , |xi⟩ ∈ {|0⟩ , |1⟩}, i = 0, 1, · · · , n− 1,

where, |y⟩ encodes the first n-qubits along the vertical location and |x⟩ encodes the second
n-qubits along the horizontal axis. The CQIPT state is a normalized state, i.e.
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∥|I(θ)⟩∥ =
1

2n+3/2

√√√√22n−1∑
j=0

(1 + |eiθRj |2 + 1 + |eiθGj |2 + 1 + |eiθBj |2 + 1 + |eiθαj |2)

=
1

2n+3/2

√
22n · 23 = 1.

(4)

CQIPT can be easily generalized to represent any color image of size 2m × 2n.

3. Polynomial preparation for CQIPT. Generally, the initialized state of quantum
computation is supposed to be |0⟩⊗2n+3, the aim of preparation is to transform the ini-
tialized state to the desired state |I(θ)⟩ using unitary transforms described by unitary
matrices.

Lemma 3.1. Given angle vectors θX = (θX0, θX1, · · · , θX(22n−1)),X ∈ {R,G,B, α}, there
is a unitary transformation P that turns the quantum computers from initialized state
|0⟩⊗2n+3to desired CQIPT state |I(θ)⟩, composed by Hadamard and controlled phase trans-
formations.

Proof: The preparation process can be divided into two steps A and B. Suppose two
single qubit gate, identity transform and Hadamard gate,

I =

(
1 0
0 1

)
, H =

1√
2

(
1 1
1 −1

)
.

The first transform is applyingH gate on every qubit of |0⟩⊗2n+3, i.e., A = H⊗2⊗H⊗H⊗2n

on |0⟩⊗2n+3 = |0⟩⊗2 ⊗ |0⟩ ⊗ |0⟩⊗2n, we have

A(|0⟩⊗2n+3) = 1
2n+3/2

3∑
l=0

|l⟩ ⊗ (|0⟩+ |1⟩)⊗
22n−1∑
j=0

|j⟩

= |W ⟩ .
(5)

Then, we construct four 8× 8controlled phase matricesPRi,PGi,PBiandPαi as follows,

PXi =

 3∑
j=0,j ̸=f(X)

|j⟩ ⟨j| ⊗ I

+ |f(X)⟩ ⟨f(X)| ⊗ P (θXi),

wherein, P (θXj) is phase transform and P (θXj) =

(
1 0
0 eiθXj

)
, X ∈ {R,G,B, α},

f(X) =


0, X = R,
1, X = G,
2, X = B,
3, X = α.

(6)

Thus, we obtain P ′
i = PRiPGiPBiPαi, i = 0, 1, ..., 22n − 1 and furthermore, construct

transform

Pi = I⊗3 ⊗
22n−1∑
j=0,j ̸=i

|j⟩ ⟨j|+ P ′
i ⊗ |i⟩ ⟨i| . (7)

It is easily proved that Pi is a unitary matrix, thus, applying Pk on |I(θ)⟩ gives us
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Pk(|W ⟩) = 1
2n+3/2

{[(
I⊗2

(
3∑

l=0

|l⟩
))

⊗ I (|0⟩+ |1⟩)
]
⊗

[(
22n−1∑

j=0,j ̸=k

|j⟩ ⟨j|

)(
22n−1∑
i=0

|i⟩

)]
+

+

[
P ′

k

(
3∑

l=0

|l⟩ ⊗ (|0⟩+ |1⟩)
)]

⊗

[
(|k⟩ ⟨k|)

(
22n−1∑
i=0

|i⟩

)]}

= 1
2n+3/2

[
3∑

l=0

|l⟩ ⊗ (|0⟩+ |1⟩)⊗
22n−1∑

j=0,j ̸=k

|j⟩+
∣∣ckRGBα

⟩
⊗ |k⟩

]
,

(8)

PmPk(|W ⟩) = Pm (Pk |W ⟩)

= 1
2n+3/2

[
3∑

l=0

|l⟩ ⊗ (|0⟩+ |1⟩)⊗
22n−1∑

j=0,j ̸=k,m

|j⟩+
∣∣ckRGBα

⟩
⊗ |k⟩+ |cmRGBα⟩ ⊗ |m⟩

]
.

(9)
From (9), it is clear that

B(|W ⟩) =

(
22n−1∏
i=0

Pi

)
|W ⟩ = |I(θ)⟩ . (10)

Therefore, unitary transform P = BA can turn quantum computer from initialized
state to the CQIPT.

Then, we focus on the feasibility of broken down the transform P into simple gates
such as NOT gate, Hadamard, and CNOT gates. The circuit of NOT and CNOT gate
are illuminated in Figs. 1 and 2.
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Figure 1. NOT gate
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Figure 2. CNOT gate

Corollary 3.1. The unitary transform P in Lemma 1 can be implemented by Hadamard
gate, CNOT and controlled phase gate C2n+2

(
P
(

θXi

22n+1

))
, i = 0, 1, ..., 22n − 1.

Proof: From the proof of Lemma 1, the transform P is composed of BA. The transform
A can be directly realized by 2n+3 Hadamard gates, and the transform B is constructed

by
22n−1∏
i=0

Pi, where

Pi = I⊗3 ⊗
22n−1∑
j=0,j ̸=i

|j⟩ ⟨j|+ P ′
i ⊗ |i⟩ ⟨i| ,
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P ′
i = PRiPGiPBiPαi,

PXi = C2 (P (θXi)) .

Thus, Pi can be implemented by C2n+2 (P (θXi)) and NOT gate [13]. Furthermore, the
result in [3] implies that C2n+2 (P (θXi)) can be broken down into 22n+2 − 1simple gates,
P
(

θXi

22n+1

)
, and 22n+2 − 2CNOT gates.

The total number of simple operations used to prepare CQIPT is

2n+ 3 + 4× 22n × (22(n+1) − 1 + 22(n+1) − 2)
= 2× (4× 22n)2 − 3× (4× 22n) + 2n+ 3.

This is quadratic to the total4× 22nangle values.

Theorem 3.1. Given 4 vectors θX = (θX0, θX1, · · · , θX(22n−1)), X ∈ {R,G,B, α}, there is

a unitary transform P that turns quantum computer from the initial state |0⟩⊗2n+3 to the

CQIPT state,|I(θ)⟩ = 1
2n+3/2

22n−1∑
j=0

∣∣cjRGBα

⟩
⊗|j⟩, composed of polynomial number of simple

gate.

Proof: Coming from Lemma 3.1 and Corollary 3.1.

4. Elementary transformations for CQIPT. For classical images, kinds of image
processing operations such as geometric transformations, color transformations and im-
age compression etc. have been studied deeply. But as for quantum images, corresponding
processing is still in his infancy. Based on FRQI, strategies and fast geometric transfor-
mations are proposed in [14][15] and efficient color transformations are proposed in [2].
Based on MCRQI, channel swapping operation and one channel operation is proposed
in [11]. Actually, for disparate representations for quantum images, image processing
circuits on them should be designed specially. Therefore, in this section, some elemen-
tary transformations about channel swapping, one channel swapping and transparency
transformations for CQIPT are researched, respectively.

4.1. Channel swapping operation. Channel Swapping Operation (CSO) on MCRQI
was defined in [11], similarly, three sorts of CSO on CQIPT, TRG, TGBand TRB swapping
the values between R and G, G and B or R and B are designed in this section.
1. Swapping between R and G channel
To realize the swapping operation between R and G channel, the desired state is as

follows,

TRG(|I(θ)⟩) = 1
2n+3/2

22n−1∑
j=0

TRG

(∣∣cjRGBα

⟩)
⊗ |j⟩

= 1
2n+3/2

22n−1∑
j=0

∣∣cjGRBα

⟩
⊗ |j⟩ ,

(11)

where, ∣∣cjGRBα

⟩
= |000⟩+ eiθGj |001⟩+ |010⟩+ eiθRj |011⟩+
+ |100⟩+ eiθBj |101⟩+ |110⟩+ eiθαj |111⟩ .

The quantum circuit to realize this operation TRG is illustrated in Fig.3.
The zero controlled NOT gate is shown in Fig.4
2. Swapping between G and B channel
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Figure 3. Quantum circuit for swapping between channels R and G
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Figure 4. Zero controlled NOT gate

Similar as TRG, the swapping operation and the corresponding quantum circuit between
G and B channel is shown in Eq.(12) and Fig. 5, separately,

TGB(|I(θ)⟩) = 1
2n+3/2

22n−1∑
j=0

TGB

(∣∣cjRGBα

⟩)
⊗ |j⟩

= 1
2n+3/2

22n−1∑
j=0

∣∣cjRBGα

⟩
⊗ |j⟩ ,

(12)

where, ∣∣cjRBGα

⟩
= |000⟩+ eiθRj |001⟩+ |010⟩+ eiθBj |011⟩+
+ |100⟩+ eiθGj |101⟩+ |110⟩+ eiθαj |111⟩ .

And the controlled swapping gate is shown in Fig.6.
3. Swapping between R and B channel
Moreover, the swapping between R and B channel can be realized by Eq. (13) and Fig.

7.

TRB(|I(θ)⟩) = 1
2n+3/2

22n−1∑
j=0

TRB

(∣∣cjRGBα

⟩)
⊗ |j⟩

= 1
2n+3/2

22n−1∑
j=0

∣∣cjBGRα

⟩
⊗ |j⟩ ,

(13)

where, ∣∣cjBGRα

⟩
= |000⟩+ eiθBj |001⟩+ |010⟩+ eiθGj |011⟩+
+ |100⟩+ eiθRj |101⟩+ |110⟩+ eiθαj |111⟩ .
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Figure 5. Quantum circuit for swapping between channels G and B
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Figure 7. Quantum circuit for swapping between channels R and B

4.2. one channel operation. As for only one color operation, because all the color
and position information is entangled together, it is impossible to distinguish the pixels
with different color scales using basic quantum gates and operate them individually. But
changing the same phase angel of one channel to all positions is easily realized. Fig.8
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shows the circuit to realize R channel from |000⟩+ eiθRj |001⟩to |000⟩+ ei(θRj+ϕR) |001⟩ for
all j = 0, 1, ..., 22n − 1, where the transform matrix is

CR(|I(θ)⟩) = 1
2n+3/2

22n−1∑
j=0

CR

(∣∣cjRGBα

⟩)
⊗ |j⟩

= 1
2n+3/2

22n−1∑
j=0

∣∣cjR′GBα

⟩
⊗ |j⟩ ,

(14)

where, ∣∣cjR′GBα

⟩
= |000⟩+ ei(θRj+ϕR) |001⟩+ |010⟩+ eiθGj |011⟩+
+ |100⟩+ eiθBj |101⟩+ |110⟩+ eiθαj |111⟩ .
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Figure 8. Quantum circuit for changing R channel by angle φR

Similarly, the operations and circuits to realize G, B and α channel changing angles
φG, φB and φα are shown in Eqs. (15)-(17) and Figs. 9-11.

CG(|I(θ)⟩) = 1
2n+3/2

22n−1∑
j=0

CG

(∣∣cjRGBα

⟩)
⊗ |j⟩

= 1
2n+3/2

22n−1∑
j=0

∣∣cjRG′Bα

⟩
⊗ |j⟩ ,

(15)

here, ∣∣cjRG′Bα

⟩
= |000⟩+ eiθRj |001⟩+ |010⟩+ ei(θGj+ϕG) |011⟩+
+ |100⟩+ eiθBj |101⟩+ |110⟩+ eiθαj |111⟩ .

And

CB(|I(θ)⟩) = 1
2n+3/2

22n−1∑
j=0

CB

(∣∣cjRGBα

⟩)
⊗ |j⟩

= 1
2n+3/2

22n−1∑
j=0

∣∣cjRGB′α

⟩
⊗ |j⟩ ,

(16)

where, ∣∣cjRGB′α

⟩
= |000⟩+ eiθRj |001⟩+ |010⟩+ eiθGj |011⟩+
+ |100⟩+ ei(θBj+ϕB) |101⟩+ |110⟩+ eiθαj |111⟩ .
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Figure 9. Quantum circuit for changing R channel by angle φG
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Figure 10. Quantum circuit for changing R channel by angle φB

Finally,

Cα(|I(θ)⟩) = 1
2n+3/2

22n−1∑
j=0

Cα

(∣∣cjRGBα

⟩)
⊗ |j⟩

= 1
2n+3/2

22n−1∑
j=0

∣∣cjRGBα′

⟩
⊗ |j⟩ ,

(17)

here, ∣∣cjRGBα′

⟩
= |000⟩+ eiθRj |001⟩+ |010⟩+ eiθGj |011⟩+
+ |100⟩+ eiθBj |101⟩+ |110⟩+ ei(θαj+ϕα) |111⟩ .

If just one value of some channel belongs to some special position swaps, the above
circuits are not applicable for it any more. A feasible transform to realize the aim of
changing only one value on some position and keep the others unchangeable is constructed
as follows. Suppose we just want to change X channel (X ∈ {R,G,B, α}) on the position
|i⟩ from θXi to ψXi, we can design transform,

CXi = I⊗3 ⊗
22n−1∑
j=0,j ̸=i

|j⟩ ⟨j|+ C ′
Xi ⊗ |i⟩ ⟨i| , (18)
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C ′
Xi =(

3∑
j=0

|j⟩⟨j| ⊗ I)f(X)[
3∑

j=0,j ̸=f(X)

|j⟩⟨j| ⊗ I + |f(X)⟩⟨f(X)| ⊗ P (φXi)]

(
3∑

j=0

|j⟩⟨j| ⊗ I)3−f(X),

(19)

Here, X ∈ {R,G,B, α}, f(X) is same as Eq. (6).

4.3. Geometric transformations. As for geometric transformations such as position
shifting [14], two-point swapping, flip, coordinate swapping and orthogonal rotations [15],
the operations are isolated to the color qubits, therefore, the general circuit of above
operations can be applied on the latter 2n-qubits about pixel positions of CQIPT. The
general quantum circuit is shown in Fig. 12.
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Figure 12. General circuit design for geometric transformations on CQIPT



584 X.H. Song, S. Wang and X.M. Niu

5. Analysis. Comparing with the existed multi-channel representation for color image
MCRQI in [11], the proposed CQIPT not only has the same preparation complexity and
the same flexibility for the elementary transformations, but also have more flexibility
for processing on image using phase transformations. Double random-phase encoding
(DRPE) technique proposed in [16] combining appropriate transformed domains is widely
used in image security such as encryption [17] and information hiding [18]. A typical
DRPE technique based image encryption is

c(x, y) = FT−1{FT{f(x, y) exp[j2πn(x, y)]} exp[j2πb(ξ, η)]}, (20)

f(x, y) = FT−1{FT{c(x, y) exp[−j2πb(ξ, η)]} exp[−j2πn(x, y)]}. (21)

Where, f(x, y)is the plain image, c(x, y)is the cipher image, n(x, y)and b(ξ, η)are the two
random-phase functions in spatial domain and frequency domain, respectively, which are
uniformly distributed in [0, 1]. FT and FT−1 represent the Fourier transform and its
inverse Fourier transform, respectively. Using the proposed CQIPT and transformations
shown in Eqs. (18) and (19), it is more easily than MCRQI [11] to realize the processing
such as Eqs. (20) and (21).

6. Conclusions. For some special applications of quantum images, especially phase en-
coding based methods, this paper proposed a novel multi-channel quantum image rep-
resentation approach CQIPT. Moreover, the elementary transformations about channel
swapping operations, one channel swapping operations and general circuits for designing
geometric transformations are researched. The corresponding transformations matrices
and quantum circuits are designed and they can be easily implemented by basic quantum
gates.
As for future work, the results in this paper will be extended to representation for

video, the quantum image encryption and quantum image watermarking for publication
protection.
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