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Abstract. With the prevalence of group communications, how to implement secure
broadcasting among group members has become one of the most important issues. Broad-
casting is a point-to-multipoint communication, and secure broadcasting should ensure
that only authorized group members can obtain the correct content of the message that is
broadcast by a sender. In this paper, we propose a secure broadcasting method based on
the generalized Aryabhata remainder theorem (GART). By the use of the RSA public-key
scheme, the proposed scheme allows the sender to send one copy of an encrypted mes-
sage to all group members, but only the authorized members can recover the plaintext.
Analysis showed that our scheme is secure and efficient.
Keywords: Secure broadcasting, Generalized aryabhata remainder theorem (GART),
Security, Public-key scheme, Encryption, Decryption

1. Introduction. Since group communications [11-14, 23] have been studied extensively
by scholars and experts, transmitting messages secretly among group members is the
main topic for group communication. There are two communication modes in group
communication, i.e., point-to-point and point-to-multipoint communication. Point-to-
point communication means that a sender transmits a message to only one receiver, while,
in point-to-multipoint communication, which also is called broadcasting communication,
a sender can transmit a message to several receivers simultaneously. In recent years,
broadcasting communication has been addressed in many scientific publications, and it has
been applied extensively in many areas, such as electronic conferences, video information
systems, and satellite systems [1, 3, 4, 6, 8-10, 15, 16, 18, 21, 22, 24, 25].
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Broadcasting for group communication should satisfy the security requirement that only
authorized group members can obtain the correct content of the message that is broadcast
by a sender, whereas any unauthorized users should not be able to decipher any part of
the message. Generally, various cryptographic techniques are used to implement secure
broadcasting, including the NBS data encryption standard (DES) [7] and the RSA public-
key scheme [20]. These cryptographic techniques encrypt the message to be transmitted
into ciphertext, and, then, the sender broadcasts the ciphertext to all group members.
However, only the receivers who are authorized to know the message can decrypt the
ciphertext.
In 1982, Gifford [10] proposed an approach for secure broadcasting in which the com-

munication key was hidden in the transmitted message, and only legitimate receivers were
able to recover the communication key. In 1988, Chang and Lin [3] proposed a secure
broadcasting cryptosystem that was similar to Gifford’s approach. Their cryptosystem
was based on the generalized Chinese remainder theorem (GCRT), and its security relied
on the RSA public-key scheme. There have been many extensions of Chang and Lin’s
cryptosystem. In 1991, Jan and Yu [16] presented a design for secure broadcasting based
on the single-key concept for which security was the same as that of the RSA public-key
scheme. In 1993, Jan and Chen [15] proposed a design for secure broadcasting to reduce
the size of the communication key. Chang and Buehrer [1] presented a generalized, secure,
broadcasting cryptosystem, in which many messages could be encrypted into a single ci-
phertext. Recently, Wu and Chang [21] presented five message authorization strategies
in a group-oriented, secure broadcasting system.
Inspired by Chang and Lin’s method, in this paper, we propose a new method for

secure broadcasting based on the generalized Aryabhata remainder theorem (GART) and
the RSA public-key scheme. The main contributions of our proposed method are listed
below:

(1) In our proposed method, the sender can send one copy of encrypted messages to all
group members, but only the authorized members can use the deciphering key to
decrypt the ciphertext.

(2) The GART is used to conceal the information related to the deciphering key in
a message. The GART is flexible in such a way that, if we want to conceal the
deciphering key in another message, only a parameter k must be reconfigured.

(3) The security of our proposed method is the same as that of the RSA public-key
scheme.

(4) Our proposed method is more efficient than Chang and Lin’s method in terms of
computational cost.

The rest of this paper is organized as follows. In Section 2, we briefly introduce some
fundamental knowledge that is useful in our proposed method. In Section 3, we propose
our new method for secure broadcasting. Section 4 gives security and efficiency analyses
of the proposed method, and our conclusions are presented in Section 5.

2. Preliminaries. In this section, we briefly review some fundamental knowledge that
is useful in our proposed method. First, we review the RSA public-key scheme and its
basic properties, and, then, we introduce the Chinese remainder theorem (CRT) and the
generalized Chinese remainder theorem (GCRT). Finally, we describe Chang and Lin’s
method [3] for secure broadcasting, which is based on the RSA public-key scheme and the
GCRT.

2.1. RSA public-key scheme. Let us review how the RSA public-key scheme [20] per-
forms. Let U = {u1, u2, ..., ut} denote a group of t users who wish to communicate with
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each other. Assume that user ui (i = 1, 2, ..., t) has one public enciphering key (ei, Ni)
and one private deciphering key di. If M and C represent the plaintext and ciphertext
of the transmitted message, respectively, the encryption and decryption processes of the
RSA public-key scheme can be described as C = M ei(modNi) and M = Cdi(modNi),
respectively.

From the principle of encryption and decryption, the RSA public-key scheme can be
used for digital signature. Next, we give an example to illustrate the implementation
of a digital signature that is based on the RSA public-key scheme. Let us consider the
situation below. If user ui attempts to transmit a signed, secret message M to user uj,
ui should first encipher M with his/her private deciphering key and then with uj’s public
enciphering key by C = (MdimodNi)

ejmodNj, where di is the sender’s (ui’s) private
deciphering key, (ei, Ni) is the sender’s (ui’s) public enciphering key, dj is the receiver’s
(uj’s) private deciphering key, and (ej, Nj) is the receiver’s (uj’s) public enciphering key.
Upon receiving the ciphertext C, uj can recover the message M by deciphering C as
M = (CdjmodNj)

eimodNi. Because only the sender ui knows the private deciphering key
di, no one else can forge ciphertext C. Therefore, receiver uj can conclude that message
M was, indeed, sent by ui.

2.2. Chinese remainder theorem. The Chinese remainder theorem (CRT) is a very
important tool in many applications, such as cryptology, signal processing, and access
control. Let p1, p2, ..., pt be positive, pairwise, relative prime integers and x1, x2, ..., xt

be positive integers. Thus, a system of equations can be established as follows:

x1 = X(modp1),

x2 = X(modp2),
...

xt = X(modpt).

According to the CRT, there is a unique solution X in ZP and X can be computed as:
X =

∑t
i=1 Mi ·M

′
i · xi(modP ), where P =

∏t
i=1 pi, Mi =

P
pi
, and Mi ·M

′
i ≡ 1(modpi).

2.3. Generalized Chinese remainder theorem. The generalized Chinese remainder
theorem (GCRT) [2, 17] is a significant extension of the CRT in which an integer k is
added in the computational process. Let p1, p2, ..., pt denote positive integers that are
pairwise relatively prime to each other, and x1, x2, ..., xt denote positive integers. Select
an integer k that satisfies Max{xi}1≤i≤t < k < Min{pi}1≤i≤t. Then, a system of equations
can be constructed as follows:

x1 = ⌊X/p1⌋(modk),

x2 = ⌊X/p2⌋(modk),
...

xt = ⌊X/pt⌋(modk).

From the GCRT, the solutionX in ZkP can be computed asX =
∑t

i=1 Ai·A
′
i·Bi(modk·P ),

where P =
∏t

i=1 pi, Ai = k · P
pi
, Ai · A

′
i ≡ k(modk · pi), and Bi = ⌈xi·pi

k
⌉.

Although the GCRT requires slightly more computational cost than the CRT, the
GCRT has an advantage over the CRT in that it is more flexible due to the additional
integer k. In the CRT, it is necessary to modify the entire system of equations that has
been constructed to change the integer X, whereas, in GCRT, only the integer k must be
modified to alter the value of X.
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2.4. Chang and Lin’s method for secure broadcasting. Chang and Lin’s method
[3] for secure broadcasting is based on the RSA public-key scheme and the GCRT. Let
U = {u1, u2, ..., ut} denote a group of t users in a group communication. Assume that the
sender ui wants to transmit a secret messageM to the authorized users in group U . Chang
and Lin’s method for secure broadcasting consists of two phases, i.e., the encryption phase
and the decryption phase. In the encryption phase, the sender ui encrypts messageM into
ciphertext C and then broadcasts C to all of the other users in group U simultaneously.
First, ui generates a public enciphering key and a private deciphering key. Second, ui

conceals the private deciphering key into the message X by using the GCRT. Third, ui

uses the public enciphering key to create the ciphertext C of message M and broadcasts
C and X to all of the other users in group U simultaneously. In the decryption phase,
although all of the other users in group U can receive the ciphertext C, only the authorized
users who are requested to obtain the message M can decrypt it. Each authorized user
can calculate the private deciphering key from the message X by using the GCRT and
then uses the recovered private deciphering key to decrypt C to obtain M .
According to Chang and Lin’s method for secure broadcasting, the sender can select an

arbitrary number of users who are authorized to know the secret message M . The security
of their method depends on the RSA public-key scheme. However, the efficiency can still
be improved. In the next section, we will propose a method for secure broadcasting that
is more efficient than Chang and Lin’s method in terms of computational cost.

3. Our proposed method. In this section, we propose a new method for secure broad-
casting based on the generalized Aryabhata remainder theorem (GART) and the RSA
public-key scheme. Let U = {u1, u2, ..., ut} denote a group of t users such that each user
is able to transmit a secret message to any other users in group U . Assume that H is
a subset of U . Then, the objective of our proposed method is to allow the sender us to
broadcast a message M securely to all of the users in H. In order to achieve this goal, the
RSA public-key scheme is used for ciphering the message M into ciphertext C, and the
GART is used for ciphering the private deciphering key into a message L. All authorized
receivers can decipher the message L to obtain the private deciphering key to recover the
message M that is sent by us.

3.1. Definitions. Let us define the terms that are used in our proposed method. Each
user ui (i = 1, 2, ..., t) is associated with one public enciphering key (ei, Ni) and one private
deciphering key di. Each user ui also has a unique identification number pi, which satisfies
two conditions, i.e., 1) p1, p2, ..., pt are positive integers that are pairwise relatively prime
to each other and 2) pi > Ni for i = 1, 2, ..., t. In addition, the sender us must generate
a public enciphering key (e,N) or encrypting the message M he/she wants to broadcast
and a private deciphering key d for decrypting the ciphertext C of message M . To ensure
that only the authorized receivers can obtain the private deciphering key d to decrypt the
ciphertext C, the broadcast message sent by the sender us must be in the format shown
in Figure 1.

C L CKD SID

M d
kN

d qs

Figure 1. Format of the broadcast message
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Now, we explain the components of the broadcast message.
C: the ciphertext of message M ;
L: the ciphertext of the private deciphering key d by using the GART;
k: a parameter selected in the GART to compute L;
CKD: the ciphertext of the private deciphering key d obtained by using the public
enciphering key (e,N);
SID: the ciphertext of the sender’s identification number ps.

Since using the GART to conceal the information of private deciphering key d in the
message L is a critical step in our secure broadcasting method, we will first review the
GART and then provide details of our proposed method in the following two subsections.

3.2. Generalized Aryabhata remainder theorem. As mentioned in Sections 2.2 and
2.3, both CRT and GCRT are required to compute an integer X by a large number,
which is the product of all pairwise, relative prime integers. This process can increase
the computational cost. To overcome this weakness, Rao and Yang [19] proposed the
Aryabhata remainder theorem (ART) in 2006. The ART is conducted with only two
relative prime integers and described as follows. Let p1 and p2 be two relative prime
integers and x1 and x2 be two positive integers. Thus, two equations x1 = X(modp1) and
x2 = X(modp2) can be established. According to the ART, there is a unique solution
X in Zp1·p2 and X can be computed as X = p1 · (((x2 − x1) · p−1

1 )modp2) + x1, where
p1 · p−1

1 = 1modp2. The proof of ART is shown in [19].
Later in 2010, Chang et al. [5] proposed a valuable extension of the ART, which they

called the generalized Aryabhata remainder theorem (GART). They presented the GART
with two and t relative prime integers, respectively. The GART with two relative prime
integers can be described as follows. Let p1 and p2 be two relative prime integers and
x1 and x2 be two positive integers. Select an integer k that satisfies Max{x1, x2} < k <
Min{p1, p2}. Then, two equations x1 = ⌊X/p1⌋(modk) and x2 = ⌊X/p2⌋(modk) can be
constructed and the solution X in Zk·p1·p2 can be computed by X = k ·p1 · ((⌈(x2 ·p2−x1 ·
p1)/k⌉ ·p−1

1 )modp2)+x1 ·p1. Chang et al. also extended the proposed GART to t relative
prime integers for the general case. Let p1, p2, ..., pt denote positive integers that are
pairwise relatively prime to each other and x1, x2, ..., xt denote positive integers. Select
an integer k that satisfies Max{xi}1≤i≤t < k < Min{pi}1≤i≤t. Then, a system of equations
can be constructed as follows:

x1 = ⌊X/p1⌋(modk),

x2 = ⌊X/p2⌋(modk),
...

xt = ⌊X/pt⌋(modk).

From the GART, the solution X in ZkP can be computed by the iterative algorithm
shown below, where P =

∏t
i=1 pi.

GART Algorithm
Input: (k, {x1, x2, ..., xt}, {p1, p2, ..., pt})
Output:integer X

1. P1 = p1, X1 = x1 · p1
2. for i = 2 to t do
3. Pi = Pi−1 · pi
4. Xi = k · Pi−1 · ((⌈(xi · pi −Xi−1)/k⌉ · (Pi−1)

−1)modpi) +Xi−1, where (Pi−1)
−1modpi

is the multiplicative inverse of Pi−1 modulo pi.
5. end for
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6. Return Xt

Next, an example is given to demonstrate the computational process of the GART.
Example 3.1. Given {x1, x2, x3}={11, 2, 11}, {p1, p2, p3}={23, 37, 43}, k = 15, and xi =
⌊X/pi⌋(modk), where 1 ≤ i ≤ 3, compute the integer X using the GART.
The three steps of the computational process are shown below:
Step 1:

P1 = p1 = 23, X1 = x1 · p1 = 11 · 23 = 253.

Step 2:

P2 = P1 · p2 = 23 · 37 = 851,

X2 = k · P1 · ((⌈(x2 · p2 −X1)/k⌉ · (P1)
−1)modp2) +X1

= 15 · 23 · ((⌈(2 · 37− 253)/15⌉ · 23−1)mod37) + 253

= 15 · 23 · 14 + 253 = 5083.

Step 3:

P3 = P2 · p3 = 851 · 43 = 36593,

X3 = k · P2 · ((⌈(x3 · p3 −X2)/k⌉ · (P2)
−1)modp3) +X2

= 15 · 851 · ((⌈(11 · 43− 5083)/15⌉ · 851−1)mod43) + 5083

= 15 · 851 · 15 + 5083 = 196558.

The unique solution X3 in Z548895 can be verified as follows:
x1 = ⌊X3/p1⌋modk = ⌊196558/23⌋mod15 = 11,
x2 = ⌊X3/p2⌋modk = ⌊196558/37⌋mod15 = 2,
and x3 = ⌊X3/p3⌋modk = ⌊196558/43⌋mod15 = 11.
The difference between the GCRT and the GART comes from the GCRT use of a

modular operation with a large integer, say kP , as its last operation, whereas the GART
uses a modular operation with a relatively smaller integer, say pi, in each iteration. Thus,
the use of the GART can reduce the computational cost.

3.3. Description of the proposed method. Our proposed method for secure broad-
casting consists of two phases, i.e., the encryption phase and the decryption phase. The
sender us enciphers the message M that he/she wants to broadcast by the encryption
phase and, then, each authorized receiver can decipher the ciphertext of M by the de-
cryption phase. The encryption phase is shown as follows:
Encryption phase (performed by the sender us)
Step 1. Compute the public enciphering key (e,N) and the private deciphering key d
for message M by using the RSA scheme.
Step 2. Conceal the private deciphering key d in the integer L by using the GART.

(1) Encipher d by each authorized user’s public enciphering key.
For i = 2 to t do
If ui ∈ H
Then compute li = deimodNi

Else li = 0;
End for.

(2) Select an integer k that satisfies Max{li}1≤i≤t < k < Min{pi}1≤i≤t, where pi is ui’s
identification number.

(3) Compute the integer L by using the GART algorithm introduced in Subsection 3.2
with the inputs of k, {l1, l2, ..., lt}, and {p1, p2, ..., pt}.



A Secure Broadcasting Method Based on the Generalized Aryabhata Remainder Theorem 715

Step 3. Compute C and CKD as C = M emodN and CKD = demodN .
Step 4. Compute SID as SID = ps

emodN .
Step 5. Broadcast the message (C,N,L, k, CKD, SID) as shown in Figure 1 to all users
in group U .

From the encryption phase, we can infer that Step 2 is the most important step and that
the GART used in Step 2 is very flexible. If we want to encrypt the private deciphering
key d into another integer, it is only necessary to modify the integer k that was selected
for the GART.

The decryption phase is demonstrated below:
Decryption phase (performed by each authorized receiver ui in H)
Step 1. Compute the private deciphering key d.

(1) Use the GART to compute li as li = ⌊L/pi⌋modk.
(2) Use ui’s private deciphering key di to recover d by d = li

dimodNi.

Step 2. Authenticate that the message M was sent by us.

(1) Compute d′ = (CKD)dmodN .
(2) If d′ = d,

Then go to Step 3
Else dispose of the message M ;

Step 3. Decipher the ciphertext C by computing M = CdmodN .
Step 4. Check the sender’s identification number ps as ps = (SID)dmodN .

3.4. Example. This subsection provides an example to illustrate our proposed method
for secure broadcasting.
Example 3.2. Assume that U = {u1, u2, u3, u4, u5} is a group of five users. Table 1 gives
each user ui’s public enciphering key (ei, Ni), private deciphering key di, and identification
number pi. Now, user u2 wants to broadcast a message M = KEY to users u1, u3, and
u4 (H = {u1, u3, u4} ⊂ U). Each character of message M is represented by two digits,
such that A = 01, B = 02, ..., Z = 26. In the following, we discuss the encryption phase
and the decryption phase in this example.

Table 1. Information of users in group U

User Enciphering key (ei, Ni) Deciphering key di Identification number pi
u1 (7, 22) 3 23
u2 (5, 10) 9 31
u3 (17, 21) 5 37
u4 (3, 15) 3 41
u5 (11, 14) 17 43

Encryption phase
Step 1. Select (e,N) = (35, 65) and compute d = 11.
Step 2.

(1) Compute l1 = de1modN1 = 117mod22 = 11, l3 = de3modN3 = 1117mod21 = 2, and
l4 = de4modN4 = 113mod15 = 11. Set l5 = 0.

(2) Select k = 15.
(3) Assume that as li = ⌊L/pi⌋modk if li ̸= 0, we use k = 15, {l1, l3, l4}={11, 2, 11}, and

{p1, p3, p4}={23, 37, 43} to compute L = 196558 by the GART as in Example 3.1.
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Step 3. M = HELP = 08 05 12 16. Compute 835mod65 = 57, 535mod65 = 60,
1235mod65 = 38, and 1635mod65 = 61. C = 57 60 38 61. Compute CKD = demodN =
1135mod65 = 6.
Step 4. Compute SID = p2

emodN = 3135mod65 = 21.
Step 5. Broadcast the message (C,N,L, k, CKD,SID) as shown in Figure 1 to all users
in group U .
The decryption phase for user u3 is demonstrated below. Other authorized users can

perform the decryption phase similarly.
Decryption phase (performed by u3)
Step 1.

(1) Compute l3 = ⌊L/p3⌋modk = ⌊196558/37⌋mod15 = 2.
(2) Compute d = l3

d3modN3 = 25mod21 = 11.

Step 2. Compute d′ = (CKD)dmodN = 611mod65 = 11 = d.
Step 3. Compute 5711mod65 = 8, 6011mod65 = 5, 3811mod65 = 12, and 6111mod65 =
16. M = 08 05 12 16 =HELP .
Step 4. Compute p2 = (SID)dmodN = 2111mod65 = 31.

4. Analysis. In this section, we present our analysis of the security and efficiency of our
proposed method for secure broadcasting. The security analysis is presented first. The
approach for verifying the security of our method was to analyze whether an attacker
could thwart or bypass the security measures that we implemented. In the encryption
phase, the private deciphering key d is concealed in the integer L by using the GART [24].
If the attacker wants to break our method, he/she must know the private deciphering key
d, which is computed by d = li

dimodNi, indicating that the attacker must obtain both
li and di. However, since each authorized user keeps his/her private deciphering key di
secretly, the attacker cannot obtain di from each authorized user’s public enciphering key
(ei, Ni) due to the RSA public-key scheme. Therefore, our method is secure and the
security is the same as that of RSA public-key scheme.
Next, we analyze the efficiency of our proposed method and compare the computational

cost of our method with that of Chang and Lin’s method [3]. Because the difference
between the two methods lies mainly in Step 2 of the encryption phase, we only need to
analyze the computational cost in Step 2 of each of the methods.
In our method, Step 2 of the encryption phase uses the GART to conceal the private

deciphering key d in the integer L. From the GART, L is computed by the integer k, {l1,
l2, ..., lt} (where li is the ciphertext of d) and the identification numbers {p1, p2, ..., pt}
via t-1 rounds. In each round:

Li = k · Pi−1 · ((⌈(li · pi − Li−1)/k⌉ · (Pi−1)
−1)modpi) + Li−1 (1)

Assume that k, li, and pi are allocated b digits. Because k ·Pi−1 · ((Pi−1)
−1modpi) can be

computed earlier, Equation (1) requires two multiplications, one subtraction, one division,
one addition, and one modular operation. Consequently, when (t-1) rounds have been
conducted, the computational cost is about (t− 1)× (2b2+ b+ b2+ b+ b2) bit operations.
Hence, the time complexity of computing an integer by the GART is O(tb2).
Chang and Lin’s method uses the GCRT to achieve the same goal as in our proposed

method. From the GCRT, L can be computed as:

L =
t∑

i=1

Ai · A
′

i ·Bi(modk · P ), (2)
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where P =
∏t

i=1 pi, Ai = k · P
pi
, Ai ·A

′
i ≡ k(modk · pi), and Bi = ⌈ li·pi

k
⌉. Similarly, assume

that k, li, and pi are allocated b digits. Because Ai ·A
′
i can be computed earlier, Equation

(2) requires 2t multiplications, t divisions, (t-1) additions, and one modular operation.
Therefore, the computational cost is about 2t× b2+ t× b2+(t− 1)× b+((t+1)× b)2 bit
operations, which implies that the time complexity of computing an integer by the GCRT
is O(t2b2). Since the time complexity of the GART is less than that of the GCRT, our
method is more efficient than Chang and Lin’s method. Table 2 compares our proposed
scheme with Chang and Lin’s scheme.

Table 2. Comparison of our proposed scheme and Chang and Lin’s scheme

Scheme Method Time complexity of
encryption

Time complexity of
decryption

Chang and Lin [3] GCRT O(t2b2) O(b2)
Ours GART O(tb2) O(b2)

5. Conclusions. In this paper, we proposed an efficient method for secure broadcasting
based on the GART and the RSA public-key scheme. In our proposed method, the sender
can broadcast an encrypted message to all group members, but only authorized members
can obtain the deciphering key d to decrypt the ciphertext. In order to ensure security,
the deciphering key d is concealed in an integer L, and the security is the same as that
of the RSA public-key scheme. In addition, our proposed method is more efficient than
Chang and Lin’s method in terms of computational cost.
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