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Abstract. We propose a digital image stabilization algorithm based on improved Sage-
Husa filter. Global motion estimation is obtained by detecting interest points from refer-
ence frame, matching points in current frame, and solving motion equations. The motion
includes intentional camera scan and unwanted jitter; therefore, we need to smooth global
motion sequence to remove jitter. The Sage-Husa filter is improved by modifying process
and observation noise using their statistical property. The prediction error matrix can
be adjusted according to the property of innovation sequence to avoid filter divergence.
Finally each current frame is warped by fast motion compensation in consideration of
the linear storage of the image. We investigate the filter accuracy and visual quality
by experimental evaluation. The results show that the proposed algorithm is capable of
smoothing inter-frame jitter and tracking real scene at real time speed.
Keywords: Digital image stabilization; Sage-Husa filter; Global motion estimation

1. Introduction. The camera on unstable platforms in surveillance applications will
capture a shaky video with low perceptual quality. Digital Image Stabilization (DIS) is
designed to detect and remove inter-frame global motion. It has been widely used in
moving object detection and target tracking [1], walking robot, video compression and
image mosaic.

In general, DIS system consists of Global Motion Estimation (GME) and Motion Com-
pensation (MC). GME estimates inter-frame motion and its most popular method is the
feature matching [2] method, which can obtain translation, rotation and zooming. MC
is designed to correct motion by smoothing the motion parameters to reduce dithering.
The previously proposed algorithms include motion attenuation [3], average filter [4]and
Kalman filter [5, 6]. The attenuation coefficient is set by experimental results, which is
not applicable to all videos. The average filter has simple computation but the extra low
frequency noise still exists. The Kalman filter is based on the assumption that the noise
is given and obeys the Gauss distribution with zero mean value, which is impossible in
real applications.

Based on visual attention mechanism, the video is smooth if camera moves uniformly at
low frequency speed. When the camera is placed on moving vehicles such as planes, cars
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or ships, the jitter is assumed to be high-frequency random vibration, but the intentional
camera scan is smooth at low-frequency. Based on the above analysis, a fast digital image
stabilization algorithm using adaptive filter is proposed. It detects interest points using
Harris operator in regions and matches points with template. The pairs are verified with
the statistical property of distances and brought into the motion model to compute global
motion. Then, motions are filtered by the proposed improved Sage-Husa filter, which can
estimate process and observation noise of Kalman filter in real time. Finally, we use fast
linear compensation method to ensure real-time performance. Experimental results show
that the proposed method can reduce jitter and track the camera scan with improved
visual quality.
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Figure 1. Flow chart of proposed algorithm

2. Parametric motion model. Various parametric motion models have been used for
global motion estimation. The most commonly used motion model is similarity model, as
established in equation (1).

P = T · P̃ + b (1)

T =

[
1 −θ
θ 1

]
, b =

[
∆X
∆Y

]
(2)

Here, P = (x, y)Tand P̃ = (x̃, ỹ)T are corresponding pixels in adjacent images. It describes
rotation θ and translation (∆X,∆Y ) in horizontal and vertical direction.

3. Global motion estimation.

3.1. Interest point selection. In this paper, global motion estimation is realized by
extracting and tracking interest points. The classic Harris operator is robust to noise and
light variation [7]. The principle of Harris corner detection is as follows:

HC = det Ĉ −K · traceĈ (3)

det Ĉ = λ1 · λ2 , traceĈ = λ1 + λ2 (4)

Ĉ =
1

2πσ2
exp(−u

2 + v2

2σ2
)⊗

[
I2u IuIv
IuIv I2v

]
(5)

Where, symbol Ĩ represents applying Gauss filter on image I.Iu is the gray difference
in horizontal direction and Iv, vertical direction. [λ1, λ2] is the eigenvalue of the auto-
correlation matrix C̃.It is supposed that point with large eigenvalue has high interest
value HC and is taken as the interest point.

The interest points that detected by Harris operator are too dense in edge or corner
region, as shown in Fig. 2(a). The points are mostly detected in the moving object, which
are defined local points. Therefore, the Harris operator is modified to select interest points
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in divided areas. The reference image is divided into r × s non-overlapped regions, and
in each region the point with the maximal HC is selected as interest point. Thus these
independent points distribute uniformly, as shown in Fig.2(b).

(a) Result of Harris operator  (b) Result of sub-area Harris operator 

 

Figure 2. Result of Harris points detection

3.2. Point matching and validation. Each interest point in reference frame is matched
using template matching to get corresponding point in current frame. The template is
selected as a block around each interest point. Then, the sequential similarity detection al-
gorithm (SSDA) is used to find the best matched block and its center is the corresponding
point in current frame.

Considering local points will interfere with global motion, the matched points should be
validated to delete mismatched or local points. The distance criterion [8] is used to verify

points. The Euclidean distance di =
√

(xi − x̃i)2 + (yi − ỹi)2 is defined between point pair
in adjacent frames. According to the statistic of experimental data, the verification is as
the following steps.

1) Calculate the distances between corresponding pairs and then classify these distances
into k kinds.

2) Accumulate the point pairs number ni(i = 1, 2, · · · , k) of each kind.
3) Find N = max{ni|i = 1, · · · , k} and then its corresponding points pairs are the cor-

rectly matched global features.

3.3. Global motion computation. All the verified interest points are then brought into
equation (1) to get 2N-linear equations. The final function B = Am is in form of matrix,

as shown in Equation (6). The global motion parameter is defined as m = [ θ,∆X,∆Y ]T .

B =


x1 − x̃1
y1 − ỹ1

...
xN − x̃N
yN − ỹN

 , A =


−ỹ1 1 0
x̃1 0 1

...
−ỹN 1 0
x̃N 0 1

 (6)

We can solve the above over-determined linear equation with three unknowns. The least-
square solution of the equation is defined as m = (ATA)−1ATB.

4. Motion compensation. Global motion composes of intentional camera scan and
unwanted jitter. The basic hypothesis of Sage-Husa filter is that scan is intended to
move smoothly at low speed towards one direction, while jitter is random in altitude and
direction. So, the intentional scan is of low frequency while undesired jitter is of higher
frequency. We can get smooth motion vector through filter (MVfilter ), and then jitter is
the difference between original and smooth vector, MVjitter = MVfilter −MVraw.
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4.1. Sage-Husa filter. Global motion vectors are filtered to get dithering component by
Sage-Husa filter. The accuracy of classic Kalman filter reduces and even diffuses, when
the distribution of process and observation noise is unknown. However, in the process of
Sage-Husa filter, observation data estimate the predictive value automatically and correct
the process noise and observation noise simultaneously, which can reduce model error and
improve accuracy. The linear discrete system model is constructed as follows:

S(k) = F · S(k − 1) + w
Z(k) = H · S(k) + v

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , H =

[
1 0 0 0
0 1 0 0

] (7)

where S(k) = [x(k), y(k), dx(k), dy(k)]T is state in horizontal and vertical displacement
and their instantaneous velocity.Z(k) = [x(k), y(k)]T is observation vector.w −N(0, Q)and
v −N(0, R) represent the process noise and observation noise respectively [9]. F is state
transition matrix, and H is observation matrix. The process of Sage-Husa state prediction
and update is as the following steps:

1) Build the state prediction equation;

S(k|k − 1) = F · S(k − 1|k − 1) (8)

2) Predict covariance matrix P (k|k − 1);

P (k|k − 1) = F · P (k − 1 |k − 1) · F T +Q (9)

3)Build the state update equation and compute the result of optimal estimated value;

S(k|k) = S(k|k − 1) +Kg(k) · ε(K) (10)

Kg(k) = P (k|k − 1)HT (HP (k|k − 1)HT +R)−1 (11)

ε(k) = Z(k)−H · S(k|k − 1) (12)

Where, Kg(k) is Kalman gain, and ε(k) is innovation sequence.
4) Update the filter error matrix P (k|k) of S(k|k).

P (k|k) = (I −Kg(k) ·H) · P (k|k − 1) (13)

In the above process, we cannot estimate Q and R when they are unknown [10]. And
when Q and R lose positive definiteness, the stability and convergence reduce or even
diffuse.

4.2. Improved adaptive filter. To prevent filter diffusion, the adaptive filter (AF)
based on Sage-Husa is improved by correcting covariance matrix P (k|k − 1) to increase
performance of tracking abrupt variation. We determine whether the filter is divergent
using the property of innovation sequence ε(k).

ε(k)T ε(k) ≤ γ · Trace[HP (k|k − 1)HT +R] (14)

Here, γ is an adjustable coefficient and γ > 1. If formula (14) holds, the filter is in
normal state and the optimal estimated value is obtained by equation (9). Otherwise, the
actual error is γ times more than theoretical estimate value, and the filter will diverge. So,
we make advantage of the fading factor [11] of Kalman filter to improve the convergence
of Sage-Husa filter. P (k|k − 1) is corrected by weighted coefficient C(k) as follows.

P (k|k − 1) = C(k)FP (k − 1)F T +Q (15)
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C(k) =
ε(k)T ε(k)− Trace[HQHT +R]

Trace[H · F · P (k) · F T ·HT ]
(16)

The weighted coefficient C(k) is designed to modify P (k|k − 1) in equation (9) if the
filter lose stability and convergence when Q and R lose positive definiteness. In real appli-
cations, the variance matrix Q of process noise and R of observation noise are unknown,
they can be predicted as follows.

R(k) = (1− dk)R(k − 1) + dk[ε(k) · ε(k)T −H · P (k) ·HT ] (17)

Q(k) = [1− d(k)]Q(k − 1)
+d(k)[K(k) · ε(k) · ε(k)TK(k)T ]
+d(k)[P (k|k)− F · P (k − 1|k − 1) · F T ]

(18)

Here d(k) = (1 − b)/(1 − bk); b is forgetting factor and 0 < b < 1. So, the process of
proposed adaptive Sage-Husa filter is as follows.

Step 1) Build state prediction equation by equation (8);
Step 2) Predict Q and R by equation (17) and (18);
Step 3) Judge the filter divergence by equation (14); if it holds, P (k|k − 1) is predicted

by equation (9); otherwise, it is corrected by equation (15)-(16);
Step 4) Build state-update equation and compute optimal estimated value by equation

(10)-(12);
Step 5) Update P (k|k) by equation (13) and continue step 2).

4.3. Fast motion compensation. Motion sequence is smooth through the above filter,
and the jitter component is computed as the difference between original motion vector
and smooth vector, that is MVjitter = MVfilter −MVraw . The jitter component is taken
into similarity model (1) to compute new pixels in current image. This point-to-point
pixel computation is time-consuming. So, the fast linear compensation is proposed to
reduce computation cost.

 

(a) Before rotation   (b) After rotation 

Figure 3. Rotation-invariant structure of image

In Fig.3(a), A(xA, yA) , B ,C and D are four vertices of a rectangle. Based on the
linear storage structure of image, their relative position does not change after linear
transformation. So, new pixel D′ in Fig.3(b) can be calculated as:

x′D = x′B + (x′C − x′A)
y′D = y′B + (y′C − y′A)

(19)

This simple algebraic addition can avoid matrix multiplication and reduce time-cost
greatly. The compensation is made by two ways. If pixel is at first row and first column,
similarity transformation (1) is made to get its new coordinates; for all the other pixels,
coordinates addition is made with formula (19).
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5. Experimental results. In this section, robustness of global motion estimation, con-
vergence of adaptive motion filter and validity of linear compensation is compared to
demonstrate the performance of proposed algorithm. We select 80 adjacent frames with
the size of 640 ∗ 480 from the test video on a moving camera. The camera scans slowly
in horizontal direction and the platform dithers in horizontal and vertical direction.

 

                    (a) Point selection   (b) Point matching and validation 

’

’

’

Figure 4. Interest points selection and validation

5.1. Global motion estimation. Fig.4 is the result of point selection, matching and
validation. The points A, B and C are validated as mismatching points through distance
criterion. By deleting these mismatched points, Global Motion Estimation (GME) is
improved.

The validated motion is compared with direct motion which is computed by points
without distance validating. We select two videos and give comparison in average time
per-frame and average error with the real motion. In Table 1, the average error between
validated motion and real motion is below half a pixel, which reduces 80% comparing to
the error of direct motion. The accuracy improves greatly while the processing speed can
also achieve real time realization.

Table 1. Results of time and accuracy of GME

Comparison Global Average Time
results Motion Error(pixel) (ms)

Direct(1)

 0.0982
−20.0360
11.0341

 1.6 34.45

Validated(1)

 0.0970
−18.5840
10.6860

 0.3 35.25

Direct(2)

 1.0200
−0.0223
1.0035

 1.7 31.89

Validated(2)

 1.0000
−1.0190
0.1927

 0.4 32.10

5.2. Results of motion smooth. Fig.5 shows convergence of our proposed AF (Adap-
tive filter) versus Kalman filter at different process noise Q. The original horizontal motion
curve 5(a) accumulates at a steady increase because of camera scan. Curve 5(b) fluctuates
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at zero-position due to jitter in vertical direction. As Fig.5 shows, different process noise
Q in Kalman filter affects smooth result obviously. A Large Q shows no effect in smooth-
ing; while a small Q leads to over smooth deviating from real motion, and even results in
filter divergence. It can be seen that the adaptive filter can smooth jitter component as
well as track camera scan effectively.

 

(a) Result of horizontal motion filter       (b) Result of vertical motion filter 
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Figure 5. Comparison between AF and Kalman

Fig.6 shows convergence of our proposed AF (Adaptive filter) versus Motion Attenua-
tion. It can be seen that attenuation filter has a time-delay and its smooth effect is not
obvious.

    

(a) Result of horizontal motion filter           (b) Result of vertical motion filter 
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Figure 6. Comparison between AF and Attenuation

5.3. Result of linear compensation. According to experimental statistic data, lin-
ear compensation time cost is 4.025ms per-frame, which reduces 76.2% comparing with
17.633mspf by traditional compensation method.
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Figure 7. Comparison of PSNR

The PSNR (Peak Signal to Noise Ratio) is used to test the global fidelity of inter-
frames. From Fig.7, we can see that the PSNR after stabilization is increased greatly,
which means the difference between frames is reduced and the video is stabilized.
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Fig.8 gives difference image from stabilized video and original video. The difference
gray value is not zero due to camera scan. Comparing to original difference, the stabilized
difference reduces greatly after removing jitter motion with compensation.

 

(a)Original difference  (b) Stabilized difference 

 

Figure 8. Comparison of image difference

6. Conclusions. An efficient digital image stabilization algorithm is presented, capable
of real-time performance. The global motion estimation improves by interest points val-
idation and motion is filtered based on adaptive motion filter, which is independent of
the noise variance matrix and has fast convergence. The algorithm is applicable to hand-
held cameras and surveillance system in moving vehicles, which need to track scan and
reduce jitter. And, for more complex applications with camera zoom or shaky, we plan to
use a complex parametric motion model for global motion estimation and design a more
effective motion filter for motion compensation.
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