Journal of Information Hiding and Multimedia Signal Processing (©2015 ISSN 2073-4212
Ubiquitous International Volume 6, Number 1, January 2015

Compressing Vector Quantization Index Table Using
Side Match State Codebook

Chin-Chen Chang!?

!Department of Information Engineering and Computer Science
Feng Chia University, Taichung, Taiwan, 40724, R.O.C.
cccQ@cs.ccu.edu.tw

Chia-Chen Lin®*

3Department of Computer Science and Information Engineering
Asia University, Taichung, Taiwan, 41354, R.O.C.
*Corresponding author
andrewlin@asia.edu.tw

Chih-Yang Lin?
2Department of Computer Science and Information Management
AProvidence University, Taichung, Taiwan 433, R. O. C.
2Corresponding author
mhlin3@pu.edu.twQasia.edu.tw

Received November, 2013; revised April, 2014

ABSTRACT. In the memoryless vector quantization scheme, each image block is indepen-
dently encoded as a corresponding index and then an index table will be generated. In
this paper, we apply the side match concept and propose a new scheme, which can further
compress the index table without introducing extra encoding distortion. Our scheme ex-
ploits the characteristic that the blocks of images are highly correlated to their neighboring
indices in the compression process. To increase the compression, the side match concept
s applied to dynamically generate a state codebook for each encoding block. Simulation
results show that our schemes are superior to SOC and traditional memoryless VQ on
the compression rate.

Keywords: Vector quantization system; SOC; Side match

1. Introduction. Vector quantization (VQ) is an effective compression scheme of digital
images for the purpose of transmission and storage [3, 12]. The major advantages of VQ
are that the compression rate is very high and its hardware of encoder and decoder is very
simple. In general, VQ consists of three phases: (1) codebook generation phase, (2) the
encoding phase and (3) the decoding phase. At first, a codebook K, which is composed of
the most representative codewords must be constructed. Then K will be employed in both
the encoding phase and the decoding phase. Generating a perfect codebook from a large
amount of training set is a critical work in V(. Many codebook generation algorithms
have been proposed, and the most famous one is the LBG algorithm that was presented by
Linde, Buzo and Gray in 1980 [9]. Basically, the LBG algorithm is an iterative algorithm
that splits the training sets and updates the codebook iteratively. A perfect codebook is
generated by a good initial guess and a fast convergence to obtain the most representative
codewords. For example, assume that the size of the codebook is set to be 256, and each
codeword consists of a 16-dimensions vector.

47

48 C.C. Chang, C.C. Lin, and C. Y. Lin

The image (iS) first is partitioned into non-overlapping 4x4 pixel blocks, each block rep-
resents one codeword, and then we randomly pick 256 codewords to form the initial
codebook. The rest of the blocks are classified into a certain codeword when the Eu-
clidean distance between it and the codeword is the shortest. Lastly, we can get 256
groups. Each group will be recalculated to generate a new centroid, and all new centroids
will be treated as a new codebook. These operations are repeated until all centroids are
convergent. The codebook generating process is illustrated in Figure 1. In the encoding

Cy Cluster,
Generating| C Cluster,
codebook Cluster,

b+ o 1+ Clustering »

rmage y c 55 Cluster,s;
(n-bits/pixel 253

T
| Regenerating
Decomposition codebook
L]
r
c a
c 1
c,

Image
(hxh-pixels/block) }

:
i
Css

| Yes B
No Stable or not ? Exat

FiGURE 1. The flowchart of VQs codebook generation

phase, the input image S is divided into many non-overlapping square blocks of size hxh
pixels, and each of them stands for an h?-dimension vector. The set of vectors is repre-
sented by S = {S;,S%,..., S}, where m is the number of vectors in S. Suppose that the
finite set S = {k;|i =0,1,..n} is the codebook of size n k; = {ki1, kiz, ...kin2} is the ith
codeword. Therefore, VQ can be regarded as a mapping function @ from a p>-dimension
Euclidean space Rh2 to a finite subset K € R" Q : R” — K The encoder designs a
desired mapping function QQ such that the Euclidean distance between the input vector
S; and the mapped codeword Q(S;) = k, is the shortest. The Euclidean distance is often
used to measure the distortion and defined in Formula (1).

hxh n hxh
> (Sju — kaa)® = mineey | Y (S — ki), forl <j <myandl <z <n
a=1 a=1

(1)
As a result, the corresponding distortion is minimal. Then, as shown in Figure 2, the
index z of codeword k, which is mapped from the input vector is transmitted to the
decoder rather than the input vector S;. Since the input vector is replaced by the index
of k., the number of bits used for representing the index x of the codeword k, is smaller
than that of the input vector S;. The original image is compressed. According to the
encoding procedure described above. It is obvious that the bpp (bits per pixel) value of the
compressed image generated by VQ is 0.5 since the number of bits used for representing
the codeword is eight in the above example. In terms of image compression, the good

Compressing VQ Index Table Using Side Match State Codebook 49

x hxch :
i T 1]

- |

........ Compression data

Original image (S) Codewords

F1GURE 2. The flowchart of VQs codebook generation

compression ratio is provided by VQ.
Before the decoding phase, the decoder and encoder have to share the same codebook.
Each index x received by decoder is transmitted by the encoder, and an easy look-up table
operation is performed to find the corresponding codeword k.. As a result, the codeword
k, is employed to reconstruct the input vector S;. The original image is reconstructed
by repeating the above processes for all the received indices. VQ not only provides good
compression ratio but also its computation load is quite low such that it is superior to
other compression techniques.
In general, the VQ scheme can be mainly classified into two categories: memoryless VQ
and memory VQ. In a memory VQ, image blocks are encoded dependently such as finite-
state VQ (FSVQ) [1, 5]. FSVQ employs the previously encoded blocks to make a selection
only from the sub-codebook of a much smaller size. Therefore, FSV(Q may lead some ex-
tra coding distortion. There are several other related techniques such as predictive VQ
(PVQ) [2, 4] and address VQ (AVQ) [11]. PVQ can be regarded as an extension of vector
quantization. AVQ is based on exploiting the inter-block correlation by encoding a group
of blocks together using an address-codebook. However, most of the memory VQ schemes
are very complex for hardware implementation and require more computational cost than
memoryless VQ. On the contrary, memoryless VQ schemes exploit the high correlation
and the spatial redundancy between neighboring pixels; meanwhile, they ignore the spa-
tial redundancy between neighboring image blocks. In other words, each image block is
encoded independently. After the encoding phase is completed, a set of indices will be
sent to the decoder. Several efficient techniques have been proposed, such as predictive
mean search algorithm (PMS) [10], index-compressed VQ (ICVQ) [13], and search-order
coding (SOC) [6] and so on. Among these various techniques, it has been proven that
SOC is efficient in improving the image compression rate [6]. The main concept of SOC is
to search the same index from the neighboring indices of the current processing index and
then use search-order codes as the encoded codes. Compression can be achieved when the
length of binary representation of search-order codes is shorter than the number of bits
required by the original index value. In 2009, Shie and Chen [14] exploited the benefits
of combination of SMVQ and SOC to improve the compression rate. Their method does
not include VQ indices, which may result in unacceptable image quality. In contrast,
our proposed method will consider VQ, SMVQ, and SOC at the same time, which can
produce better image quality.

In this paper, we inherit the basic idea of SOC to further propose a new compression
scheme that can provide better compression rate than SOC does without losing any image
quality from the original VQ encoding. To make sure there are more similar codewords

50 C.C. Chang, C.C. Lin, and C. Y. Lin

that can be referred for the current processing index, we not only use SOC but also apply
the side match concept to dynamically generate a state codebook for each current pro-
cessing index. Experiments provide supportive results to demonstrate our newly proposed
scheme achieves significant reduction of bit rate without losing any image quality by the
original V@ encoding.

This paper is organized as follows. Section 2 presents a brief review of some related
works, including SOC algorithm [6] and side match VQ [7]. In Section 3, the proposed
schemes shall be described in detail. Finally, in Section 4, simulation results shall be
given, followed by some conclusions in Section 5.

2. Related Works. The search-order coding (SOC) scheme will be described in Sub-
section 2.1. Since we apply the SMVQs Side-Match and state codebook to design our
scheme, the SMVQ will be briefly introduced in Subsection 2.2

2.1. Search-Order Coding Algorithm. The search-order coding (SOC) algorithm [6]
is a technique that further achieves image compression on the index table of VQ and does
not cause coding distortion again. Its basic concept is based on two image characteristics:
an image is generally encoded block by block in a raster scan order (i.e. from left to
right and from top to bottom) and the neighboring blocks are highly related to the same
indices. For an index table, SOC works on the previously generated V(Q indices and uses
the corresponding search-order codes as the compression codes if any previous index is
the same as the current processing index. The binary representation of the search-order
codes are less than the original VQ indices, therefore, SOC’s compression performance
can been achieved.

According to the raster scan order, the current processing index is denoted as a search
center (SC) and one of previous encoding indices is the starting search point (SSP). The
black dot is the SC and starting search point (SSP) is defined in Figure 1.

23 [4
LN ol P

‘o]

FIGURE 3. Four starting search points (SSP)

In Figure 3, there are four starting search points (SSP) defined by the SOC algorithm.
To start a search, the SSP must be decided in advance. Then, four SPs in the 1st level
will be searched for. If any same index is found, the search-order codes will be sent to
the decoder. Otherwise, the SPs in the 2nd level will be searched for. If none of the SPs
is equal with the current processing index, the original index value of SC will be sent. To
distinguish the search-order codes from the original index value by the decoder, an extra
bit, called an indicator, is also sent to the decoder in the front of them. Following the
definition shown in Figure 3, we take Figure 4 for example to describe the idea of SOC.
In Figure 4, there are two 7x7 index tables. It is obvious that these two index tables
(shown in Figure 4(a) and 2(b)) demonstrate two different search paths for searching a
same index value with the SC. The solid boundary squares are the search points (SP) that
are previously encoded based on the raster scan order. In other words, non-search points
cannot be considered in a search path because they are encoded after SC. It is noted that

Compressing VQ Index Table Using Side Match State Codebook 51

1% level --F-Fk1 == 2 Jevel

2 Jevel --F b

it™ (VY

(a) (b)
[] : Starting search point (SSP)
@ : Search center

: Non-search points

[]: Search points

FIGURE 4. Search paths of SOC (a) SSP =1 (b) SSP = 4

in each search, SOC always searches the SPs across the search path, 1st level, 2nd level, ,
and so on, until the first same index is found or none of the SPs is matched. For example,
in Figure 5, the index of (3,3), which equals to 36, is the SC and SSP equals to 1. In this
case, two repetition indices are located in (2,2) and (3,1), which are equal to 28 and 34,
respectively. If the number of bits assigned to search-order codes, n, is limited to 2. Once
these two repetition indices are included, the matched index of (2,1) that also equals to
36 will not be included in this search. However, the corresponding search-order codes,
11, can be included while the repetition indices are ignored. In the decoding process,

1 2 3 4
1
L [36 =30 ezl
= 1‘(11} (x) |(@1) Q0
34 |128 | 36 :
3 (x) | (o0 :
] I1 1 T :
[: Search center
x : Repetition SP
— : Search path
[] : Search points

FIGURE 5. A 4 4 index table for showing the exclusion of repetition points

n is equal to that of the encoding process and the raster scan order is also used to be

52 C.C. Chang, C.C. Lin, and C. Y. Lin

the decoding order. After receiving the compression codes, the decoder can distinguish
the search-order codes from the original index value according to its indicator. Then a
similar search procedure with the encoding process is conducted. Once the index table
is recovered, the image can be reconstruct by using the traditional VQ codebook look-up
procedure.

2.2. The Concept of SMVQ. To improve the compression bit rate, side match VQ was
proposed by Kim in 1992 [7]. Kim assumes the pixels in the top row in the current block
are correlated closely with those in the bottom row in the upper block, and the pixels in
the first column in the current block are correlated closely with those in the right column
in the left block, pixels in the fourth column in the current block are correlated closely
with those in the left column in the right block, and that the pixels in the bottom row in
the current block are correlated closely with those in the top row in the lower block. Based
on this assumption, Kim used Side-Match approach to design SMVQ, and successfully
reduces the blocking effect by using local edge information and provides better visual
quality and compression ratio than VQ does. To perform SMVQ, a super codebook is
required to encode the blocks in the first row and the first column, and a state codebook
is required to encode the rest of the blocks. The state codebook is a subset of the
super codebook. Consider the 4x4 image blocks shown in Figure 6, where U and L are
image blocks reconstructed by the traditional V@, and X is the current processing image
block. The prediction process of SMVQ is as follows. These grey regions in Figure 6
are temporarily assigned by its upper and left neighboring blocks U and L, such that
X = (U41 + L14)/27X12 = U2, X13 = Usz , X1u = Uy, Xo1 = Loy, X31 = L34, and
X4y = Lyy , as shown in Figure 6. Then, the assigned the assigned values are used to
search against the super codebook for generating a state codebook that contains N closest
codewords for the current block X according to the side match distortion SMD.

l r
SMD (X) =dy (X,U) +dp (X,L) =Y (X1;-Us;)* + D (X1; — Lja)* (2)
J=1 Jj=1
where dy and dj are the upper and left side-match distortions, respectively. The
codeword of the state codebook with the minimum Fuclidean distance from X is used to
encode X. Since the state codebook is smaller than the super codebook, the bit rate of
the predicted block is reduced from @ , m to W , m, where M is the size of the
super codebook, and N is the size of the state codebook. Moreover, the state codebooks
can be generated dynamically from the super codebook, and therefore need not be stored
for the reconstruction of the original image.
The flowchart of how SMVQ works is illustrated in Figure 7.

3. The Proposed Scheme. In this section, we propose a lossless compression method
for VQ indices. The compression scheme is based on SOC and Side-Match approaches by
a raster scan order that is from left to right and top to bottom. The VQ image is composed
of codewords indices of a universal codebook. Each codeword index represents a subimage
block in the image. Since the size of the blocks used in VQ is very small relative to the
original images, the neighboring blocks in the image usually have correlations each other.
Therefore, the compression bit rate using VQ can be further improved by exploiting the
interblock correlations.

In the original SOC method, the indices of the first row and first column are unchanged,
but the other indices are required inspection by SOC. In contrast, the proposed method
only remains the first index value (i.e., the upper left corner) intact, and the other indices
are examined sequentially by two criteria: SOC and Side-Match. When an index is to

Compressing VQ Index Table Using Side Match State Codebook 53

P
e

Ip-l

rlelelele] ™
plee|e|g

Uy [Us
Xy | X
Xo | Xa
X [Xn
¥ [Xa
Current Block X

I~
k.
£ [[&[&

F1GURE 6. The upper (U) and left (L) blocks used to generate the state
codebook and predict the current block X

Encode 1* row and
1* column using VQ

o

Use upper and left blocks
to predict the current block

More blocks?

FI1GURE 7. Flowchart of SMVQ

be encoded, it is first checked by SOC. If the neighbors of the current index (i.e., the
search points) contain the index value, it is encoded as the search-order compression code
(SOCC). Otherwise, the index is inspected further by Side-Match. The Side-Match uses
the upper and left adjacent blocks of the current block to construct the state codebook,
which has been mentioned in Subsection 2.2. The state codebook should not contain the
same index values as the search points used in SOC. If the current index falls in the state
codebook, it is represented by the index of the state codebook, which is denoted as a
side-match compression code (SMCC). Once the current index cannot be found by using
SOC and Side-Match, the index value is still encoded as traditional VQ compression code

54 C.C. Chang, C.C. Lin, and C. Y. Lin

(VQCC). It is noted that the indices of the first row and first column in the VQ index
table can only refer to one-sided neighboring indices. In the proposed method, there are
three types of compression codes in the VQ index table: SOCC, SMCC, and VQCC. In
order to distinguish these types, the indicators 0, 10, and 11 are added to the preceding
of the SOCC, SMCC, and VQCC, respectively. According to the experimental results in
6], the best choice assigning the number of bits for a SOCC code is two. Furthermore,
the indicator for SOCC is 1-bit instead of 2-bits contributes higher compression bit rate
in our experiments especially when the smooth image such as Lena is applied. Therefore,
if the super codebook size is n and the state codebook size is p, the code lengths for
SOCC, SMCC, and VQCC are 142, 2+log,p , and 2 +log, n bits, respectively. We now
give an example for the proposed method. Assume the number of nonrepetition search
indices (i.e., the search points) used for SOC is 4, the super codebook size is 256, the
state codebook size is 8, and the current index to be encoded is at (3,2) shown in Figure
8(a). The current index can be encoded by SOC since its four neighboring nonrepetition
indices according to the clockwise search direction are 42, 35, 38, and 33, which the
second value is the same as the current index value. Therefore, the index at position (3,2)
is encoded as a SOCC code 001, where the first bit 70” is the indicator. On the other
hand, the next index 32 at position (3,3) can not be encoded using SOC since its four
neighboring nonrepetition indices (i.e., 35, 38, 42, and 33) exclude 32. Hence, the state
codebook shown in Figure 8(b) is constructed by Side-Match using the adjacent blocks
at positions (2,3) and (3,2). The state codebook at index 101 contains value 32, so the
index is encoded as a SMCC code 10101, where the first two bits 10 are the indicator. As
to the index 67 at position (3,4), the index can not be encoded by SOC and assume that
its state codebook also excludes the index value, the index is encoded as a VQCC code
111000011, where the first two bits "11” denotes the indicator.

The index of | The index walue
the state i1 the super
codebock codebook

1 2 3 4 5 000 2]

1 3835 33 5 o1 PE

2 55135 | 30| 4] 40 o >

3 L-:m 35 | 32| 67| 60 = -
4

L A S 1010 =7
SO0 0

------------------- 101 32

110 45

111 4B

(a) The input indices to be encoded (k) The state codebook for position (3.3)

F1GURE 8. The flowchart of VQs codebook generation

Compressing VQ Index Table Using Side Match State Codebook 55

The compression process is summarized as follows:
The Proposed Compression Algorithm

Input: The VQ mdices that are processed by the raster scan order.

Output: The compression codes of the V() index table.

Step 1: For an input index, if the same index valve can be found wsmng SOC, owntput the
corresponding SOCC. Go to Step 4.

Step 2: Construct the state codebook for the input index. The values in the state codebook
should be different to the search points used in the S0OC. If the state codebock contains
the index value, output the cotresponding SMOC. Go to Step 4.

Step 3. If the index value cannot be found by SOC and Side-Match, output the corresponding
VQCC.

Step 4: Bepeat Steps 1 to 3 uniil all the input mndices have been processed.

In the decoder, the image blocks can be reconstructed using the same raster scan order
as in the compression process. When receiving the compression codes, the decoder uses
indicators to distinguish SOCC, SMCC, and VQCC codes. If the decoder receives a
VQCC code, the corresponding image block can be reconstructed by the table look-up
operation. In contrast, if a SOCC or SMCC code is received, we first recover the original
V(@Q index and then reconstruct the image block. The proposed compression method is
lossless and easy to implement.

4. Experimental Results. In this section, we conduct several experiments to evalu-
ate the proposed method. Six standard 512512 gray level images ”Lena”, "F16”, ” Pep-
per”,”Sailboat”, " Tiffany”, and " Baboon” shown in Figure 9, were used as the test images.
The codebooks sized 128, 256, 512, and 1024 are used in the experiments were generated
by the LBG algorithm [8]. Each codeword in a codebook has 16 dimensions; that is the
size of each subimage block of the test images is 4x4 pixels. For convenient description,
we call our method SOCSM (SOC plus Side-Match) in the experiments.

Tables 1-4 show the compression results using different sizes of codebooks. The last
row of each table lists the PSNR value of each image. In the tables, VQ denotes the
original gray-level images are encoded by a vector quantizer; Huffman indicates that the
index table constructed by VQ is further compressed by Huffman coding; SOC sets 2-
bits for the search points; SOCSM uses the state codebook with a size of 16. All the
methods in these tables are lossless. From these tables we can observe that Huffman
coding is no longer suitable for VQ indices compression when the codebook becomes
large; furthermore, SOCSM has minimum bit rates for all images. The main reason for
its success is that we use two-phase compression scheme instead of one-phase, so the
correlations between local blocks can be exploited more thoroughly. Using SOC as the
first criterion and then the Side-Match applied can speed up the compression process and
lower the bit rates. The "Baboon” image is difficult to lower the bit rate since its context
is more complex than the others. When the complex image is applied, the bit rate using
SOC may be even worse than using the traditional VQ encoding method.

Tables 5-8 list the bit rates when different sizes of state codebooks are applied. In
general, the smaller size of the state codebook is suitable for smaller size of the codebook.
In contrast, larger state codebook is appropriate for large codebook. These tables show
when the codebook size is 128 or 256, the size 8 of the state codebook is a better choice.
However, when the codebook size is up to 512 or 1024, the size the state codebook should
be set to 16 to demonstrate the betteryesult. ...

56 C.C. Chang, C.C. Lin, and C. Y. Lin

i ,[1 i:fj': .

(d) Salboat (e) Tiffany

FI1GURE 9. The flowchart of VQs codebook generation
TABLE 1. Bit rates (bit/pixel) of images using the codebook with size of 128

Methods | Lena F16 | Pepper | Sailboat | Tiffany | Baboon
VQ 0.4375 | 0.4375 | 0.4375| 0.4375| 0.4375| 0.4375
Huffman | 0.306 | 0.273 | 0.287 0.285 | 0.247 0.391
SOC 0.277 | 0.27| 0.277 0.291 | 0.212 0.399
SOCSM | 0.256 | 0.253 | 0.253 0.272 | 0.207 0.372
PSNR |29.349 | 29.308 | 25.522 27.43 | 26.052 | 23.935

TABLE 2. Bit rates (bit/pixel) of images using the codebook with size of 256

Methods | Lena | F16 | Pepper | Sailboat | Tiffany | Baboon
VQ 0.5 0.5 0.5 0.5 0.5 0.5
Huffman | 0.439 | 0.356 | 0.417 0.409 0.256 | 0.474
SOC 0.359 | 0.325 | 0.352 0.367 0.281 0.492
SOCSM | 0.305 | 0.289 | 0.296 0.322 0.245 | 0.449
PSNR | 31.366 | 30.582 | 29.734 | 28.622 | 29.248 | 24.379

TABLE 3. Bit rates (bit/pixel) of images using the codebook with size of 512

Methods | Lena | F16 | Pepper | Sailboat | Tiffany | Baboon
VQ 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625 | 0.5625
Huffman | 0.548 | 0.491 | 0.529 0.524 0.371 0.569
SOC 0.454 | 0.433 | 0.442 0.46 0.347 | 0.575
SOCSM | 0.36 | 0.355 | 0.349 0.385 0.29 0.529
PSNR | 32.24 | 31.58 | 30.47 29.25 29.57 | 24.71

Compressing VQ Index Table Using Side Match State Codebook 57

TABLE 4. Bit rates (bit/pixel) of images using the codebook with size of 1024

Methods | Lena | F16 | Pepper | Sailboat | Tiffany | Baboon
VQ 0.625 | 0.625 | 0.625 0.625 0.625 0.625
Huffman | 0.683 | 0.684 | 0.642 0.682 0.603 | 0.698
SOC 0.55 |0.492 | 0.529 0.545 0.406 0.65
SOCSM | 0.434 | 0.391 | 0.408 0.456 0.323 | 0.611

PSNR |[33.208 | 32.24 | 31.791 | 29.874 | 30.35 | 25.037

TABLE 5. Bit rates (bit/pixel) of images using the codebook with size of 256

State codebook size | Lena | F16 | Pepper | Sailboat | Tiffany | Baboon
4 0.255 | 0.254 | 0.251 0.274 0.207 0.387
8 0.252 | 0.251 | 0.248 0.27 0.206 0.376
16 0.256 | 0.253 | 0.253 0.272 0.207 0.372
32 0.265 | 0.26 | 0.264 0.279 0.21 0.381

TABLE 6. Bit rates (bit/pixel) of images using the codebook with size of 512

State codebook size | Lena | F16 | Pepper | Sailboat | Tiffany | Baboon
4 0.312 | 0.297 | 0.303 0.334 0.246 | 0.477
8 0.303 | 0.29 | 0.293 0.325 0.242 0.46
16 0.305 | 0.289 | 0.296 0.322 0.245 0.449
32 0.316 | 0.295 | 0.31 0.329 0.254 | 0.449

TABLE 7. Compressible rate using the codebook with size of 256

Compressible rate | Lena | F16 | Pepper | Sailboat | Tiffany | Baboon
SOC 0.543 | 0.632 | 0.562 0.522 0.752 0.188
SOCSM 0.873 | 0.867 | 0.894 0.817 0.954 | 0.561

We define the compressible rate is the number of indices that can be compressed by
SOC or SOCSM divided by the total number of indices of a VQ image. From Tables 7
and 8 we can observe that with the help of the Side-Match, SOCSM can compress more
VQ indices than SOC does.

5. Conclusions. In this paper, a new scheme has been proposed for V(@ index com-
pression. Our scheme is designed based on the observation that the high correlation of
neighboring blocks in an image. To increase the compression rate, our scheme first uses
the search-order coding algorithm to find the same one in the neighboring indices. After
that, we apply the Side-Match concept of SMVQ to generate the state codebook for the
current processing index and to find the same one from the state codebook. Hence, for
generating the compression codes and recovering the original index, the index-based state
codebook look-up procedure can be simply performed. Our experiments prove our scheme
indeed yields a better performance than other lossless compression techniques, such as
SOC, Huffman. Moreover, compared to the traditional memoryless V(Q system and the
SOC algorithm, both our proposed schemes certainly achieve the goal of reducing the bit
rate.

58

[1]
2]

[11]
[12]
[13]

[14]

C.C. Chang, C.C. Lin, and C. Y. Lin

TABLE 8. Compressible rate using the codebook with size of 512

Compressible rate | Lena | F16 | Pepper | Sailboat | Tiffany | Baboon
SOC 0.39 | 0.44 | 0.419 0.377 0.636 0.114
SOCSM 0.808 | 0.798 | 0.829 0.74 0.888 0.438
References

J. Foster, R. M. Gray, and M. O. Dunham, Finite-state vector quantization for waveform coding,
IEEFE Trans. on Information Theory, vol. 31, no. 1, pp. 348-359, 1985.

R. M. Gary and Y. Linde, Vector quantization and predictive quantizers for Gauss-Markov sources,
IEEFE Trans. on Communs., vol. COM-30, no. 1, pp. 381-389, 1982.

R. M. Gray, Vector quantization,/ EEE ASSP Mag., vol. 1, no. 2, pp. 4-29, 1984.

H. M. Hang and J. M. Woods, Predictive vector quantization of images, IEFEE Trans. on
Communs., vol. COM-33, no. 11, pp. 1208-1219, 1985.

C. H. Hsieh and J. S. Shue, Frame adaptive finite-state vector quantization for image sequence
coding, Image Commun., vol. 7, no. 1, pp. 13-26, 1995.

C. H. Hsieh and J. C. Tsai, Lossless compression of VQ index with search-order coding,
IEEE Trans. on Image Processing, vol. 5, no. 11, pp. 1579-1582, 1996.

T. Kim, Side match and overlap match vector quantizers for images, IEEE Trans. on Image
Processing, vol. 1, no. 2, pp. 170-185, 1992.

R. C. T. Lee, Y. H. Chin, and S. C. Chang, Application of principal component analysis to multikey
searching, IEFEE Trans. on Software Engineering, vol. SE-2, no. 3, pp. 185-193, 1976.

Y. Linde, A. Buzo, and R. M. Gray, An algorithm for vector quantizer design, IEEE Trans. on
Communs., vol. 28, no. 1, pp. 84-95, 1980.

K. T. Lo and J. Feng, Predictive mean search algorithms for fast VQ encoding of images, I EFFE
Trans. on Consumer Electronics, vol. 41, no. 2, pp. 327-331, 1995.

N. M. Nasrabadi and Y. Feng, Image compression using address-vector

quantization,” ITEEE Trans. on Communs., vol. 38, no. 12, pp. 2166-2173, 990.

N. M. Nasrabadi and R. A. King, Image coding using vector quantization: A

review,” IEEE Trans. on Communs., vol. 36, no. 8, pp. 957-971, 1988.

J. Shanbehzadeh and P. O. Ogunbona, Index-compressed vector quantization based on index map-
ping, Vision, Image and Signal Processing, vol. 144, no. 1, pp. 31-38, 1997.

S. C. Shie and L. T. Chen, Image compression based on side-match VQ and SOC, Procceedings of
Digital Image Computing: Techniques and Applications, pp. 369-373, 2009.

