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Abstract. In this paper, a compact Articial Bee Colony optimization method (cABC)
for applying to the topology optimization of wireless sensor networks (WSNs) is presented.
The purpose of compact algorithms is to address to the computational requirements in the
limited resources of hardware devices such as memory size or low price. A probabilistic
representation random of the collection behavior of social bee colony is inspired to employ
for this proposed algorithm. The real population is replaced with the probability vector
updated based on single competition. These lead to a modest memory usage when the en-
tire algorithm is applied. Four selected test functions are used to evaluate the accuracy,
computational time and memory saving of the proposed method. The experimental re-
sults show that the proposed cABC method is not only as accurate as the existing original
Articial Bee Colony optimization but also requires less calculative time than the origi-
nal method and uses a modest memory with only six agents needed for storing space.
In addition, compared with the genetic algorithm (GA) method and the particle swarm
optimization (PSO) method, the proposed cABC method can provide the highest robust
structure and lowest contention topology schemes.
Keywords: Bee colony algorithm, Compact artificial bee colony algorithm, Optimiza-
tions, Swarm intelligence, Topology control, Wireless sensor networks.

1. Introduction. Computational intelligence algorithms have been used to solve opti-
mization problems in engineering, financial, and management fields. For example, genetic
algorithms (GA) have been used successfully in engineering, financial, and security [1-
3]. Particle swarm optimization (PSO) and enhanced PSO techniques [4-6] have been
employed to forecast the exchange rates, segment images, optimize multiple interference
cancellations [7-9], construct the portfolios of stock, and segment color images based on
human perception [3, 10, 11]. Ant colony optimization (ACO) techniques have been uti-
lized to solve the routing problem of networks and secure watermarking [12, 13]. Artificial
bee colony (ABC) and Interactive Artificial Bee Colony have been used to solve the nu-
merical problems and support the passive continuous authentication systems [14, 15]. Cat
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swarm optimization (CSO) techniques have been used to solve the numerical problems,
the aircraft schedule, and the lot-streaming flow shop scheduling problem [16-18] and dis-
cover proper positions for information hiding [19], respectively. In addition, bat algorithm
(BA) is used for engineering design [20] and classifications[21]. Some applications require
the solution of a complex optimization problem in limited hardware conditions caused
by the cost and space constraints of computational devices. For example, wireless sensor
networks (WSNs) are the networks of small, battery-powered, and memory-constraint
devices (i.e., sensor nodes). Due to memory and power constraints, they need to be well
arranged to build a fully functional network to have the capability of wireless communi-
cation in a restricted area [22]. For telecommunications [23] and energy production [13],
a fast solution of the optimization problem is required. In addition, space shuttle control
[24] and underwater communication [25] require high fault-tolerance and the avoidance of
device rebooting. However, computational devices do not have enough memory to store a
population composed of numerous candidate solutions of those computational intelligence
algorithms for the aforementioned applications.

Compact algorithms are a promising answer to hardware limitations because they use an
efficient compromise to present some advantages of population-based algorithms without
storing an actual population of solutions. Compact algorithms simulate the behavior of
population-based algorithms by employing their probabilistic representation instead of a
population of solutions. Consequently, compact algorithms require less memory to store
the number of parameters compared to their corresponding population-based structures.

The rst implementation of compact algorithms is the compact Genetic Algorithm (cGA)
[26]. The cGA simulates the behavior of a standard binary encoded Genetic Algorithm
(GA). The performance of cGA is almost as good as that of GA and requires less memory.
The compact Differential Evolution (cDE) algorithm has been introduced in [11]. The
success implementation of cDE is based on the combination of two factors. First, a cDE
scheme benets from the introduction of a certain degree of randomization due to the
probabilistic model. Second, the one-to-one spawning survivor selection typical of cDE
(the offspring replaces the parent) can be naturally encoded into a compact logic.

The compact Particle Swarm Optimization (cPSO) has been dened in [27]. The im-
plementation of cPSO algorithm benets from the same natural encoding of the selection
scheme employed by cDE and another ingredient of compact optimization, i.e., a spe-
cial treatment for the best solution ever detected and reinterpreted as an evolutionary
algorithms in order to propose a compact encoding of PSO.

In this paper, the behavior and the characteristic of the bees are reviewed to improve
the Artificial Bee Colony algorithms [16, 28] and to present the compact Artificial Bee
Colony Algorithm (cABC) based on the framework of the original Artificial Bee Colony
(oABC). According to the experimental results, our proposed cABC presents the same
result in finding solutions as the original Artificial Bee Colony algorithm [29].

Moreover, WSNs, an emerging and promising technology, have been widely used in a
variety of long-term and critical applications [30]. However, sensor nodes are limited in
the computation capability and storage capacity of a computing unit, the communication
range and radio quality of a communication unit, the sensing coverage and accuracy of
a sensing unit, and the available energy of a power unit [31]. Topology control is one of
the most fundamental problems in WSNs. It is an effective factor to ensure the quality of
connectivity and coverage because it determines how to maintain network connectivity and
transmit the power of each node while consuming as minimum power as possible. The new
proposed cABC method would be applied to find out the solution for the topology control
scheme in WSNs. The topology control scheme could be transformed into the problem of
multi-objective degree-constrained minimum spanning tree. The multi-objective strategy
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with a fitness function based on a niche and phenotype sharing function is also applied
in cABC to obtain an approximation of the true Pareto front.

The rest of this paper is organized as follows: a brief review of ABC is given in Section
2; the statement of topology control in WSNs is reviewed in Section 3; the analysis and
design for the cABC is presented in Section 4; the experimental results and the comparison
between oABC and cABC are discussed in Section 5; the application of cABC for topology
control is presented in Section 6; finally, the conclusion is made in Section 7.

2. The Artificial Bee Colony algorithm. The Artificial Bee Colony algorithm was
proposed by Karaboga in 2005 [23], and the performance of ABC was analyzed in 2008
[24] by inspecting the behaviors of real bees on finding nectar and sharing the information
of food sources to the bees in the nest. There are three kinds of bees defined in ABC
as being the artificial agents known as the employed bee, the onlooker, and the scout.
Every kind of these bees plays a different and important role in the optimization process.
For example, the employed bee stays on a food source, which represents a spot in the
solution space, and provides the coordinate for the onlookers in the hive for reference.
The onlooker bee receives the locations of the food sources and selects one of the food
sources to gather the nectar. The scout bee moves in the solution space to discover new
food sources.

The process of ABC optimization is listed as follows:
Step 1. Initialization: Spray ne percentage of the populations into the solution space

randomly, and then calculate their fitness values, namely nectar amounts, where ne rep-
resents the ratio of employed bees to the total population. Once these populations are
positioned into the solution space, they are called the employed bees. The fitness value
of the employed bees is evaluated to take account in their amount of nectar.

Pi =
F (θi)∑S
k=1 F (θk)

(1)

Step 2. Move the Onlookers: Calculate the probability of selecting a food source by
equation (1), where θi denotes the position of the ith employed bee, F (θi) denotes the
fitness function, S represents the number of employed bees, and Pi is the probability of
selecting the ith employed bee. The roulette wheel selection method is used to select a
food source to move for onlooker bees and then determine their nectar amounts. The
onlookers are moved by equation (2), where xi denotes the position of the ith onlooker
bee, t denotes the iteration number, is the randomly chosen employed bee, j represents
the dimension of the solution, and Φ(.) produces a series of random variable in the range
from -1 to 1.

xij(t+ 1) = θij (t) + Φ(θij (t)− θkj (t)) (2)

Step 3. Update the Best Food Source Found So Far: Memorize the best fitness value
and the position, which are found by the bees.

Step 4. Move the Scouts: If the fitness values of the employed bees are not improved
by a continuous predetermined number of iterations, namely Limit, those food sources
are abandoned, and these employed bees become the scouts. The scouts are moved by
equation (3), where r is a random number and r ∈ [0, 1].

θij = θjmin + r × (θjmax − θjmin) (3)

Step 5. Termination Checking: Check if the amount of the iterations satisfies the
termination condition. If the termination condition is satisfied, terminate the program
and output the results, otherwise go back to Step2.

The main steps of the algorithm are as below:
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1. Initialize Population
2. repeat
3. Place the employed bees on their food sources
4. Place the onlooker bees on the food sources depending on their nectar amounts
5. Send the scouts to the search area to discover new food sources
6. Memorize the best food source found so far
7. until requirements are met

3. Topology control scheme for wireless sensor networks. A wireless sensor net-
work is modeled as a directed, connected graph G = (V,E), where V is a nite set of
vertices (sensor nodes), V = {v1, v2, ..vn} and E is the set of edges (network links), rep-
resenting connection of these vertices, E = {e1,2, e1,3, ..ei,j, ..en−1,n} . Let n = |V | be the
number of network nodes and l = |E| be the number of network links. The linke = (vi, )
from node vi ∈ V to node vj ∈ V implies the existence of a link e′ = (, vi) from node vj
to node vi. A link can be defined as follows:

ei,j =

{
1, if vi, vj have edge

0, otherwise
(i = 1, 2, .., n− 1; j = i+ 1, 2, .., n) (4)

If the edge of ei,j exists, this edge has l associated positive real numbers. There are
attributes in WSNs that weights could be defined on [28] [29]. Representing the weight
could be denoted wki,j =

{
w1
ij, w

2
ij, ..w

l
ij

}
, where k = 1, 2, , l. There l positive real value

functions are associated with each linke(e ∈ E) such as: cos C(e) : E → R+, cover-
age B(e) : E → R+, delay D(e) : E → R+, data fusion F (e) : E → R+, loss rate
L(e) : E → R+, power consumption P (e) : E → R+ , etc. The link cost function, C(e),
may be either monetary cost or any measures of resource utilization that must be opti-
mized. The link coverage, B(e), is the reachable sensing radius of the sensors. The link
delay, D(e), is considered to be the sum of switching modes, queuing, transmission, and
propagation delays. The link data fusion,F (e), is the aggregation and integration data
functions. The link loss rate, L(e), is the packet loss rate on the receiving end on link e.
The link power consumption, P (e), is the energy for transiting, receiving and processing
signals. These attributes B(e), D(e), F (e), L(e), P (e) dene the criteria that must be con-
strained (bounded) because the sensor nodes are limited resources. Let PT (s, d) be path
in the tree T from the source node s to a destination node d ∈ M . Let m = |M | be the
number of multi-criteria destination nodes, where M is the destination group and s ∪M
is the multi-criteria group. Let α be the coverage constraint, β be the delay constraint, δ
be the data aggregation constraint, ζ be the loss rate constraint, and η be the dissipated
energy constraint. The multi-constrained least-cost multi-criteria problem is defined as
follows:

MinimizeC(T (s,M)) subjects to:

Bxi,yi(X) ≤ α ∀ d ∈M ;D(PT (s, d)) ≤ β ∀ d ∈M ;F (PT (s, d)) ≤ δ ∀ d ∈M ;

L(PT (s, d)) ≤ ζ ∀ d ∈M ;P (PT (s, d)) ≤ η ∀ d ∈M
(5)

A spanning tree of graph G can be expressed by the vector x.
Letx = (x1,2, x1,3, . . . , xi,j, . . . xn−1,n)

xi,j =

{
1, if ei,j = 1 and selected

0, otherwise
(i = 1, 2, . . . , n− 1; j = i+ 1, 2, . . . , n) (6)

A multi-criteria tree T (s,M) is a subgraph of G spanning the source node s ∈ V and the
set of destination nodes M ⊆ V −{s}. Let X be the set of all such vectors corresponding
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to spanning trees in graph G. The multi-criteria degree constrained minimum spanning
tree problem can be formulated as follows:

min f1 (x) =
∑
w1
i,jxi,j

min f2 (x) =
∑
w2
i,jxi,j

. . .
min fm (x) =

∑
wli,jxi,j

(i = 1, 2, .., n− 1; j = i+ 1, . . . n)
1 ≤

∑
wli,jxi,j ≤ d

(x ∈ X; i = 1, 2, .., n; j = 1, 2, . . . n)

(7)

where fi(x) is the ith objective to be minimized for the problem and d denotes the
degree constraint. Wireless sensor network may suffer from poor network utilization,
high end-to-end delays, and short network lifetime if its topology control scheme is not
proper in a right place.

4. The proposed Compact Artificial Bee Colony (cABC) method. As mentioned
above, compact algorithms process an actual population of solution as a virtual popula-
tion. This virtual population is encoded within a data structure, namely Perturbation
Vector (PV) as probabilistic model of a population of solutions. The distribution of in-
dividuals in the hypothetical swarms must be described by a probability density function
(PDF) [30] defined on the normalized interval from -1 to +1. The distribution of each bee
in the swarms could be assumed as Gaussian PDF with mean µ and standard deviation
δ [20]. A minimization problem is considered in an m-dimensional hyper-rectangle in
normalization of two truncated Gaussian curves (m is the number of parameters). With-
out loss of generality, the parameters are assumed to be normalized so that each search
interval ranges from -1 to +1. Therefore, PV is a vector of m2 matrix specifying the two
parameters of the PDF of each design variable. PV is defined as:

PV t =
[
µt, δt

]
(8)

where µ and δ are mean and standard deviation values of a Gaussian (PDF) truncated
within the interval range from -1 to +1, respectively. The amplitude of the PDF is
normalized in order to keep its area equal to 1. The apex t is time step. The initialization
of the virtual population is generated for each design variable i, µ1

i = 0 and δ1 = k, where
k is set as a large positive constant (e.g., k = 10). The PDF height normalization is
obtained sufficiently in the uniform distribution with a wide shape. The generating for
a candidate solution xi is produced from PV (µi, δ). The value of mean µ and standard
deviation δ in PV are associated to the equation of a truncated Gaussian PDF as follows:

PDF (trucNormal (x)) =
e
− (x−µi)

2

2δ2
i

√
2
π

δi(erf
(
ui+1√
2δi

)
− erf

(
ui−1√
2δi

)
)

(9)

The PDF in equation (9) is then used to compute the corresponding Cumulative Dis-
tribution Function (CDF). The CDF is constructed by means of Chebyshev polynomials
by following the procedure described in [31]. The codomain of CDF ranges from 0 to 1.
CDF is defined as a real-valued random variable X with a given probability distribution
at a value less than or equal to xi, as shown in equation (10). CDFs are also used to
specify the distribution of multivariate random variables.
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CDF =

1∫
0

e
− (x−µi)

2

2δ2
i

√
2
π

δi(erf
(
ui+1√
2δi

)
− erf

(
ui−1√
2δi

)
)
dx (10)

The sampling of the design variable xi from PV is performed by generating a random
number rand [0, 1] from a uniform distribution and then computing the inverse function
of CDF in rand [0, 1]. The newly calculated value is xi by the sampling mechanism as
equation (11):

xi = inverse(CDF ) (11)

When the comparison between two design variables for individuals of the swarm (or
better two individuals sampled from PV) is performed the winner solution biases the PV.
The vector that scores a better tness value is regarded as the winner; the individual losing
the (tness based) comparison is defined as the loser. Regarding the mean values l, the
update rule for each of its elements is µti, δ

t
i => µt+1

i , δt+1
i

µt+1
i = µti +

1

Np

(winneri − loseri) (12)

where Np is virtual population size. Regarding δ values, the update rule of each element
is given by:

δt+1
i =

√
(δti)

2 + (µti)
2 −

(
µt+1
i

)2
+

1

Np

(winner2i − loser2i ) (13)

[winner, loser] = complete
(
xbest, x

t+1
)

(14)

The construction of equations (13) and (14) are persistent and non-persistent structures
with tested results given in [32]. Similar to the binary cGA case, it was impossible to
assess whether one or another elitist strategy was preferable. In elitist compact schemes,
each moment of the optimum performance is retained in a separate memory slot. If a
new candidate solution is computed, the tness-based comparison between it and the elite
is carried out. If the elite is a winner solution, it biases the PV as shown in formulas (13)
and (14).

Figure 1 shows the pseudo code of algorithm working principles of cABC. The tness
value of the position xt is calculated and compared with xbest to determine a winner
and a loser. Equations (13) and (14) are then applied to update the probability vector
PV. If rand is smaller than Prob (probability equation (1) is calculated from employment
bee phrase), xt will be calculated by equation (2). Update local and update global are
implemented in Onlooker bee phrase. If f(sol) < fbest, the value of function is memorized,
and the value of the global best is then updated.

5. Experimental results. This section presents the simulation results in running bench-
mark function tests and compares the cABC with the oABC, both in terms of solution
quality and the number of memory variables evaluations taken. Four test standard func-
tions are chosen for the experiments to evaluate the accuracy and computational speed
of the proposed cABC. All experiments are averaged over different random seeds with
10 runs. The test standard functions used include Rosenbrock, Griewank, Rastrigin, and
Sphere, which are listed in equations (15) to (18).

f1 (x) =
n−1∑
i=1

(100
(
xi−1 − x2i

)2
+ (1− xi)2 (15)
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f2 (x) = 1 +
N∑
i=1

x2i
4000

+
N∏
i=1

cos
xi√
i

(16)

f3 (x) =
N∑
i=1

[10 + x2i − 10cos2πxi] (17)

f4 (x) =
N∑
i=1

x2i (18)

Figure 1. The pseudo code of compact Artificial Bee Colony algorithm

The initial range and total iteration for all test functions are listed in Table 1.
The optimization goal for all of these test functions is to minimize the outcome. The

parameters setting for both cABC and oABC are the initial limit = 10 of food source,
the total population size n = 20, and the dimension of the solution space dim = 10. Each
function contains the full iterations of 1000 is repeated by different random seeds with 10
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Table 1. The initial range and the total iteration of test standard functions

Functions
Initial range

[xmax, xmin]
Total iterations

Rosenbrock f1 (x) [ -30,30] 1000
Griewangk f2 (x) [ -100,100] 1000
Rastrigin f3 (x) [-5.12,5.12 ] 1000
Spherical f4 (x) [ -100,100 ] 1000

runs. The final result is obtained by taking the average of the outcomes from all runs.
The results are compared with the original ABC.

5.1. Comparing optimizing performance algorithms. Table 2 shows the compari-
son of the quality of performance and time running for numerical problem optimization
between cABC and oABC. It is obvious that the average cases of the testing functions
in compact Artificial Bee algorithm converge faster than the original cases. The mean of
four test functions on the evaluation of minimum function for 10 runs is 6.78E+07 with
average time consuming 1.174 s for oABC and 3.29E+07 with average time consuming
0.341 s for cABC.

Table 2. The comparison between oABC and cABC in terms of perfor-
mance quality and speed

Functions
Performance as mean of

evaluation
Time running

evaluation (seconds)
oABC cABC oABC cABC

f1 (x) 1.79E+08 1.75E+08 0.7503 0.2118
f2 (x) 0.2987 0.3615 1.0895 0.2457
f3 (x) 137.8214 139.2473 0.6979 0.2075
f4 (x) 2.2582 2.6112 0.6241 0.1891

Average value 1.79E+08 1.76E+08 3.1618 0.8541

Figures 2 to 3 show the average of function minimum of four test functions in 10 seed
of output with the same iteration of 1000.

Figure 2. The mean of 10 runs of fitness function minimum curves in
comparing cABC and oABC algorithms for the Rosenbrock and Griewank
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Figure 3. The mean of 10 runs of fitness function minimum curves in
comparing cABC and oABC algorithms for the Rastrigin and Sphere

5.2. Comparing saving-memory and time-complexity algorithms. Table 3 shows
the comparison of the saving-memory computations of two algorithms, cABC and oABC.

Table 3. The saving-memory comparison between compact ABC and orig-
inal ABC

Algorith
-ms

Popula
-tion size

Dimen
-sion

#Memory
variables

# Equations
Computing
complexity

Original
ABC

N D 3×N ×D (1),(2),(3)
3× T ×N ×
D × iteration

Compact
ABC

1 D 6×D (1),(2),(3),
(12),(13),(14)

6× T ×D ×
iteration

It is evident that the number memory variables of cABC are smaller than those of oABC
in the same computation condition, such as iterations. The real numbers of population or
population size and dimension space of food source of oABC are N and D, but that size
for cABC is only one with dimension D. Six equations (i.e., equations (1), (2), (3), (12),
(13) and (14)) are used for optimizing computation in cABC. In contrast, three equations
(i.e., equations (1), (2), and (3)) are used in oABC. The computing complexity of cABC
and oABC is 6× T ×D × iteration and 3× T ×N ×D × iteration, respectively. Thus,
the rate of saving-memory equals the computing complexity of cABC per the computing
complexity of oABC as given: rate = 2/N.

The computational times for both the algorithms cABC and oABC have been calculated
by means of a PC Intel Core 2 Duo 2.4 GHz with 4 GB RAM employing in Windows7-OS,
with Matlab (R2011b), version 7.13.0.564 32bits. Figure 4 illustrates the comparison of
executing time between cABC and oABC in 10 trails with iteration 1000 for four test
functions. It is clear that the execution time of test functions in the proposed cABC (red
colored bars) is less than that in oABC (blue colored bars).

6. Application of the proposed cABC method. In this section, an application of the
proposed cABC method is presented to solve the problem of topology control in WSNs.
The objective function for optimal topology control schemes in WSNs is constructed based
on the residual energy node and contention. The experimental results of the proposed
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Figure 4. Comparison of two algorithms in term of time running for test functions

method is compared with the PSO-Optimized Minimum Spanning Tree-Based Topology
Control Scheme method in [33] and the Genetic Algorithm (GA) for Multi-criteria Mini-
mum Spanning Tree Problem in [34].

6.1. Network Model Description. As mentioned in section 4, a network model could
be described as following: a wireless sensor network with n nodes is randomly distributed
in desired areas. Each node can communicate with others by using transmission range
r. That is, node i can receive the signal of node j if node i is in the transmission
range r of node j. The topology of the network is abstracted by nodes with their own
maximum transmission range as a directed graph, denoted by G =< V,E > in which
V = {V1, V2, .., Vn} is the set of node numbers, and E = {E1, E2, .., En} is the set of
connectable communication between any of two nodes.

Let D(i, j) be the Euclidean distance of nodes i and j in the network and CNi be
the set of connectable neighbors which communicate with node i by using its maximum
wireless transmission range rmax. For each node i that belongs to V , let Gi =< Vi, Ei >
be an induced sub-graph of G in which Vi = CNi, Ei is the subset of E. Consequently,
Gi is the connectable node graph of node i.

Let C(i, r) be the coverage of an edge, that is, the disk centered at node i with its certain
radius r. Node i could affect at least all nodes located in the area of radius r = D(i, j),
centered at node i. The coverage of an edge between node i and node j is the measure of
the number of nodes covered by the disk established by i and j [35].

Li,j = [{Vi ∈ V |D(Vi, i) ≤ R1}]∪ [Vj ∈ V |D(Vj, j) ≤ R2)] (19)

where R1 and R2 are the radius of C(i, r) and C(j, r), respectively. The strength of an
edge between node i and node j is defined as:

Si,j =
ei × ej√
e2i + e2j

(20)

where ei and ej are the remaining energy of node i and j, respectively.
Local minimum spanning tree of node i is implemented based on the set of connectable

neighbors Gi. It is assumed that E = {E1,2, E1,3, ..., Ei,j, ..., En−1,n} is the set of edges
constructed by Gn =< Vn, En > . If the connection can be formed between nodes Vi
and Vj, then Ei,j = E,ji = 1. Otherwise, Ei,j = E,ji = 0, where ∀Vi, Vj ∈ Gn; i =
1, 2, 3, ..., n; j = i+ 1, ..., n . The energy consumption between nodes Vi and Vj is defined
asPi,j = kdβ, where k is the system constant, d is the communication distance, and the
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value of β is often predefined constant as the path loss exponent with value setting from 2
to 4. Each edge has a positive real number, Wi, defined as the weight of a communication
link and calculated as the result of a topology with the aspects of low energy consumption,
high stable structure, and low communication interference:

Wi,j = α1 ×
Pi,j
Si,j

+ α2 × Li,j (21)

where α1 and α2 are the predefined parameters and α1 + α2 = 1. A spanning tree of
graphGn can be expressed by vectorX as shown in equation (6), which can be transformed
into the optimization problem for the minimal fitness function as shown in equation (7),
which in turn can be formulated as the following equation:

Fitnessi =
∑

Wi,j × xi,j (22)

In reality, because the network topology in WSNs may vary with time as a result of many
uncertain factors, the network topology is adjusted every ∆t time. At the same time,
uni-directional edges can be removed or some extra edges can be added in order to get
a final topology consisting of only bi-directional edges. The coordinates of vertices in G
and the weights of each edge are generated randomly. Each edge in the graph is supposed
to have only two weights with real numbers

6.2. Experimental results and comparison. The environmental setting is as follows:
the range of deployment of network is 100X100m, the number of objectives is 2, and
the number of vertices is 20. The setting parameters for both the proposed cABC-WSNs
topology and oABC-WSNs topology are as follows: the initial limit of food source is 10,
the total population size n is 20, and the dimension of the solution space dim is 10. Each
function contains 1000 full iterations for each of the 10 random seeds. The experimental
parameters for PSO-WNS topology are c1 = c2 = 2.0, inertia weight w is 0.9, population
size is 20, and the maximum iteration times is 1000 in each run [36]. The parameters
for the GA-WSNs topology are set as follows: population size is 20, crossover probability
pc is 0.2, mutation probability pm is 0.05, and maximum generation max gen is 1000 in
each run [1, 34]. The final result is obtained by taking the average of the outcomes from
10 runs. The experimental results of cABC-WSNs are compared with the results of ABC
(ABC-WSN topology), GA (GA-WSN topology), and PSO (PSO-WSN topology).

Table 4 shows that the average convergent time of the fitness functions in the cABC
method (9.288 minutes) is 30% faster than that of the oABC method (12.086 minutes).
While cABC-WSNs topology evidently outperforms oABC-WSNs topology in time con-
sumption, the mean of fitness functions evaluation of minimum function for 10 runs ob-
tained using the cABC method is almost as good as that obtained using the oABC method.
In addition, it is much more accurate than the means obtained using the GA-WSNs topol-
ogy and PSO-WSNs topology by 16% and 8%, respectively.

Figure 5 illustrates the comparison of the cABC-WSNs topology method with the
oABC-, PSO-, and GA-WSNs topology methods.

It is obvious that the performance of fitness functions evaluation values for 10 runs
using the cABC-WSNs topology and oABC-WSNs topology are faster convergence than
the performance using the GA-WSNs topology and PSO-WSNs topology.

7. Conclusion. In this paper, a novel optimization algorithm, namely compact Artificial
Bee Colony algorithm (cABC), was presented. The implementation of compact optimiza-
tion algorithms is significant for the development of small-sized and low-cost embedded
devices. It fits the trend of ubiquitous computing today. In this new proposed algorithm,
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Table 4. The comparison of the proposed cABC-WSN topology with the
GA-WSNs topology, the PSO-WSNs topology, and the oABC-WSNs topol-
ogy in terms of quality performance evaluation and speed

Methods
Population

size
Objectives Vertices

Average
function
values

Consum
-ption

times(m)
The GA-WSNs
topology (Han &
Wang 2005, with

cm-MST)

20 2 20 8.6023 22.086

The PSO-WSNs
topology (Wenzhong
et al., 2013, with

cm-MST)

20 2 20 7.2091 11.086

The oABC-WSNs
topology

20 2 20 5.9434 12.086

The cABC-WSNs
topology

1 2 20 6.0921 9.288

Figure 5. The averages of minimum value of fitness function for 10 runs
obtained using the cABC-, oABC-, PSO-, and GA-WSNs topology meth-
ods.

the actual design solutions for search space for Artificial Bee Colony algorithm is replaced
with a virtual population, which is a probabilistic representation of the population. This
feature is essential for applications with a limited memory such as the embedded imple-
mentation in small and inexpensive devices. The performance of cABC algorithm is as
good as the other compact algorithms in previous works in literature. The results of the
proposed algorithm on a set of various test problems show that cABC is a valid alternative
for optimization problems with a limited memory. The proposed method is also applied
to solve the problem of topology control in WSNs. Compared with the GA method and
the PSO method, the proposed cABC method provides the most robust structure and



A cABC Optimization for Topology Control Scheme in WSNs 309

lowest contention topology schemes. The experimental results show the proposed cABC
as an effective memory-saving algorithm.
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