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Abstract. On the training samples number and kernel function and its parameter en-
dured by Kernel Principal Component Analysis, this paper presents one-class support
vector based Adaptive Sparse Kernel Principal Component Analysis (ASKPCA) through
reducing the training samples with sparse learning based least squares support vector ma-
chine and adaptive self-optimizing kernel structure according to the input training sam-
ples. ASKPCA is adaptive to the computation and store space constrained applications,
such as small size of hardware platform based image retrieval, medical assistant diag-
nosis system, and so on. Moreover, the few meaningful samples are found with solving
the constraint optimization equation, and these training samples are used to compute the
kernel matrix which decreases the computing time and saving space, and the algorithm
is to increase the recognition accuracy and computing efficiency in the image process-
ing under the hardware computing platform on the limit training samples. Experimental
results on UCI datasets, ORL and YALE face databases and Wisconsin Breast Cancer
database show that it is feasible to improve KPCA and Sparse Kernel Principal Compo-
nent Analysis (SKPCA) on saving consuming space and optimizing kernel structure.
Keywords: Kernel method; Kernel principal component analysis; Sparse learning;
Data-dependent kernel function; Feature extraction; Computation efficiency.

1. Introduction. Feature extraction with dimensionality reduction is an important step
and essential process in many data analysis [1, 2]. Linear dimensionality reduction aims
to develop a meaningful low dimensional subspace in a high-dimensional input space such
as PCA and LDA [3]. LDA is to find the optimal projection matrix with Fisher criterion
through considering the class labels, and PCA seeks to minimize the mean square error
criterion. Linear Discriminant Analysis (LDA) has been widely used in many fields such
as face recognition and character recognition. LDA works well in some cases, but it fails
to capture a nonlinear relationship with a linear mapping. For this problem, kernel trick
is used to represent complicated nonlinear relationships of input data. The kernel-based
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nonlinear feature extraction techniques have attracted much attention in the areas of pat-
tern recognition and machine learning [1]. Some algorithms using the kernel trick are
developed in recent years, e.g., Kernel Principal Component Analysis (KPCA) [6], Kernel
Discriminant Analysis (KDA) [7] and Support Vector Machine (SVM) [8]. In the recent
years, the multiple kernel learning method was developed for kernel-based learning. Re-
searchers presented Generalized Multiple Kernel Learning (GMKL), and other multiple
kernel learning, for example, EMKL(Elastic Multiple Kernel Learnin), GL-MKL(Group
Lasso Regularized Multiple Kernel Learning), DTMKL(Domain Transfer Multiple Ker-
nel Learning), NLMKL(nonlinear MKL) [16, 17]. KPCA was originally developed by
Scholkopf et al. in 1998, while KDA was firstly proposed by Mika et al. in 1999. KDA
has been applied in many real-world applications owing to its excellent performance on
feature extraction. Researchers have developed a series of KDA algorithms (Juwei Lu [9],
Baudat and Anouar [10], Liang and Shi [11], Yang [12], Wang [13] and Chen [14]). In par-
ticular, Kernel Principal Component Analysis (KPCA) took the place of traditional linear
PCA as the first feature extraction step in various research and applications. KPCA copes
with non-linear variations well. KPCA algorithm has been applied in pattern recognition
areas, but high time consuming is needed during training KPCA, but in the practical ap-
plication, processing speed is a crucial problem such as face recognition. However, KPCA
is to solve the eigenvalue problem with the number of samples plus the number of samples
in the application. Kernel computations with all training samples are required to map a
test sample to the subspace obtained by KPCA. In the classification process, KPCA com-
putes kernel functions with all training samples, and the computational cost and memory
required are high. So sparse KPCA is very meaningful, and it not only accelerates the
evaluation of the test data but also saves the memory of storing the trained data. In this
paper, we build the sparse kernel component analysis and prove the feasibility of using the
direct method for building sparse kernel principal component analysis from the theoretical
derivation. From the analysis on the computation complexity and memory capacity of
the algorithm, Sparse KPCA can save the store space and reduce the time consuming.

From the discussion on Kernel Principal Component Analysis and Kernel Discriminant
Analysis, we discuss the following points. Firstly, on the saving place of the training
samples, in KPCA, this nonlinearity is firstly mapping the data into another space us-
ing a nonlinear map, and then PCA is implemented using the mapped examples. The
mapping and the space are determined implicitly by the choice of a kernel function which
computes the dot product between two input examples mapped into feature space via
kernel function. If kernel function is a positive definite kernel, then there exists a map
into a dot product space. The space has the structure of a so-called Reproducing Kernel
Hilbert Space (RKHS). First, inner products in feature space can be evaluated without
computing the nonlinear mapping explicitly. This allows us to work with a very high-
dimensional, possibly infinite-dimensional RKHS. Secondly if a positive definite kernel is
specified, we need to know neither the nonlinear mapping nor feature space explicitly to
perform KPCA since only inner products are used in the computations. Commonly used
examples of such positive definite kernel functions are the polynomial kernel and Gaussian
kernel, each of them implying a different map and RKHS. For the image classification,
the dimension of image is r ×m. PCA based feature extraction needs to store the r ×m
coefficient matrix, where r is the number of principal components, and m is the number of
training samples. While KPCA based feature extraction need to store the original sample
information owing to computing the kernel matrix, which leads to a huge store and a high
computing consuming. On computation and store space constrained-based conditions, in
the practical applications, such as small size of hardware platform based image retrieval,
medical assistant diagnosis system, and so on. The system is to increase the recognition
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accuracy and computing efficiency in the image processing under the hardware computing
platform on the limit training samples. And the system can decreases the computing time
and saving space in the practical applications.

In order to solve the problem, we apply the least squares support vector machine to
build the sparse KPCA. Secondly, on the choosing of kernel function and its parameters,
kernel function and its parameter has significant influence on feature extraction owing
to the fact that the geometrical structure of the data in the kernel mapping space is
determined totally by the kernel function. If an inappropriate kernel is used, the data
points in the feature space may become worse. However, choosing the kernel parameters
from a set of discrete values will not change the geometrical structures of the data in the
kernel mapping space.

So, it is feasible to improve the performance of kernel principal component analysis with
sparse analysis and kernel optimization. In this paper, we reduce the training samples
with sparse analysis and then optimize kernel structure with the reduced training samples.

2. Problem Statement and Preliminaries. In this section, we present a novel learn-
ing called Adaptive Sparse Kernel Principal Component Analysis (ASKPCA) with the
viewpoint of least squares support vector machine to solve the following problem. That
is, the first is that all training samples need to be stored for the computing the kernel
matrix during kernel learning and the second is that the kernel and its parameter have the
heavy influence on performance of kernel learning. We reduce the training samples with
sparse analysis and then optimize kernel structure with the reduced training samples.

Step 1. Reducing the training samples with sparse analysis
Firstly, we apply a least squares support vector machine formulation to KPCA which is

interpreted as one class modeling problem with a target value equal to zero around which
one maximizes the variance. Secondly, we introduce data-dependent kernel into Sparse
Kernel Principal Analysis, where the structure of the input data is adaptively changed
regard to the distribution of input data. Then, the objective function can be described as

max
w

N∑
i=1

[
0− wT

(
φ(xi)− uφ

)]2
. (1)

where φ : RN → Rl denotes the mapping to a high-dimensional feature space and uφ =∑N
i=1 φ(xi)

/
N . The interpretation of the problem leads to the following optimization

problem:

max
w,e

J(w, e) = −1
2
wTw + γ

2

N∑
i=1

e2i

subject to ei = wT
(
φ(xi)− uφ

)
, i = 1, 2, ..., N

. (2)

We also apply the direct sparse kernel learning method to KPCA. Here we also use the
phase expansion coefficients and expansion vectors. Supposed a matrix Z = [z1, z2, ..., zNz ],
Z ∈ RN×Nz , composed of Nz expansion vectors, and βi(i = 1, 2, ·, Nz)(Nz < N) are ex-
pansion coefficients, we modify the optimization problem to the following problem:

max
w,e

J(w, e) = −1
2
wTw + γ

2

N∑
i=1

e2i

subject to ei = wT
(
φ(xi)− uφ

)
, i = 1, 2, ..., N

w =
Nz∑
i=1

φ(zi)βi

, (3)
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where φ(Z) = [φ(z1), φ(z2), ..., φ(zNz)]. Now our goal is to solve the above optimization
problem. We divide the above optimization problem into two steps, one is to find the opti-
mal expansion vectors and expansion coefficients; second is to find the optimal projection
matrix. Firstly we reduce the above optimization problem, then we can obtain

max
Z,β,e

J(Z, β, e) = −1
2

(
Nz∑
r=1

φ(zr)βr

)T (Nz∑
s=1

φ(zs)βs

)
+ γ

2

N∑
i=1

e2i

subject to ei =

(
Nz∑
r=1

φ(zr)βr

)T (
φ(xi)− uφ

)
, i = 1, 2, ..., N

(4)

where Z is variable. When Z is fixed, then

max
β,e

J(β, e) = −1
2

Nz∑
r=1

Nz∑
s=1

βsβrφ(zr)
Tφ(zs) + γ

2

N∑
i=1

e2i

subject to ei =

(
Nz∑
r=1

βrφ(zr)
T

)(
φ(xi)− uφ

)
, i = 1, 2, ..., N

. (5)

We apply the kernel function, that is, k (x, y) = 〈Φ (x) ,Φ (y)〉 , given a random Z, then
the above problem is same to the following problem.

W (Z) := max
β,e
−1

2
βTKzβ + γ

2

N∑
i=1

e2i

subject to ei = βTg(xi) , i = 1, 2, ..., N.
(6)

where β = [β1, β2, ..., βNz ]
T , g(xi) =

[
k(z1, xi)− 1

N

N∑
q=1

k(z1, xq) · · · k(zNz , xi)− 1
N

N∑
q=1

k(zNz , xq)

]T
and Kz

ij = k(zi, zj).
Step 2. Solving the optimal projection matrix
After the optimal solution of data-dependent kernel is solved, the optimal kernel struc-

ture is achieved which is robust to the changing of the input data. After this step, the
next step is to solve the equation to obtain the optimized sparse training samples with
the so-called Lagrangian method. We define the Lagrangian as

L (β, e, α) = −1

2
βTKzβ +

γ

2

N∑
i=1

e2i −
N∑
i=1

αi
(
ei − βTg(xi)

)
(7)

with the parameter αi, i = 1, 2, · · · , N . The Lagrangian L must be maximized with
respect to β, αi, and ei, i = 1, 2, · · · , N , and the derivatives of L with respect to them must

vanish, that is, ∂L
∂β

= 0, ∂L
∂ei

= 0, ∂L
∂αi

= 0 , so Kzβ =
N∑
i=1

αig(xi), αi = γei, ei − βTg(xi) = 0.

Let α = [α1, α2, ..., αN ]T (αN×1), and G = [g(x1), g(x2), ..., g(xN)] (GNz×N) and E =

[e1, e2, ..., eN ]T (EN×1), we can obtain Kzβ = Gα, α = γE,E = GTβ. So, we can obtain
β = (Kz)

−1Gα, then E = GT (Kz)
−1Gα. It is easy to obtain the optimal solution αz,

which is an eigenvector of the GT (Kz)
−1G corresponding to the largest eigenvalue βz =

(Kz)
−1Gαz. W (Z) reaches the largest value when αZ is the eigenvector of GT (Kz)

−1G
corresponding to the largest value, and βz = (Kz)

−1Gαz. From above the equation, we
can see that J(β, e) reaches the largest value when λ reaches the largest value. Now our

goal is to find the optimal Z that maximizes W (Z) = −1
2
(βz)TKz (βz)+ γ

2
(βz)TGGT (βz).

After we obtain Z∗, and then compute the eigenvector A = [α1, α2, ..., αm] of GT (Kz)
−1G

corresponding to the following eigen problem GT (Kz)
−1Gα = λα, then
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B = (Kz)
−1GA. (8)

Step 3. Optimizing kernel structure with the reduced training samples
For given kernel, we introduce the data-dependent kernel with a general geometrical

structure can obtain the different kernel structure with different combination parameters,
and the parameters are self-optimized under the criterions. Data-dependent kernel k′(x, y)
is described as

k′(x, y) = f(x)f(y)k(x, y), (9)

where f(x) is a positive real valued function x, and k(x, y) is a basic kernel, e.g., poly-
nomial kernel and Gaussian kernel. Amari and Wu [18] expanded the spatial resolution

in the margin of a SVM by using f(x) =
∑

i∈SV aie
−δ‖x−x̃i‖2 , where x̃i is the ith support

vector, and SV is a set of support vector, and αi is a positive number representing the
contribution of x̃i , and δ is a free parameter. We generalize Amari and Wu’s method as

f(x) = b0 +

NXV∑
n=1

bne(x, x̃n), (10)

where e(x, x̃n) = e−δ‖x−x̃n‖
2

, and δ is a free parameter, and x̃n are called the ”expansion
vectors (XVs)”, and NXV is the number of XVs, and bn(n = 0, 1, 2, · · · , NXVs) are the
”expansion coefficients” associated with x̃n(n = 0, 1, 2, · · · , NXVs). The definition of the
data-dependent kernel shows that the geometrical structure of the data in the kernel
mapping space is determined by the expansion coefficients with the determinative XVs
and free parameter. The objective function to find the adaptive expansion coefficients
varied with the input data for the quasiconformal kernel. Given the free parameter δ and
the expansion vectors {x̃i}i=1,2,...,NXV s

, we create the matrix

E =

 1 e(x1, x̃1) · · · e(x1, x̃NXV s
)

...
...

. . .
...

1 e(xM , x̃1) · · · e(xM , x̃NXV s
)

 . (11)

Let β = [b0, b1, b2, ..., bNXV s
]T (i = 0, 1, 2, · · · , NXVs) and Λ = diag(f(x1), f(x2), ..., f(xM)),

the following equation is obtained

Λ1M = Eβ, (12)

where 1M is a M -dimensional vector whose entries equal to unity. The expansion coeffi-
cient vector β is solved through optimizing an objective function designed for measuring
the class separability of data in feature space with Fisher Criterion and Maximum Margin
Criterion [15].

Step 4. Feature exaction
For a set of training sample set, first we optimize the kernel function k′(x, y) with

the given the basic kernel function k(x, y), and then implement sparse KPCA, That is,

W = B′, g(zi, x) = k′(zi, x)− 1
N

N∑
q=1

k′(zi, xq), Vzx =
[
g(z1, x) g(z2, x) ... g(zNz , x)

]T
,

we can obtain,

y = WVzx (13)

Since w =
Nz∑
i=1

φ(zi)β
z
i , so
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Table 1. Recognition Performance of KPCA

Datasets
Number of Training samples Recognition Error(%)
KPCA SKPCA/ASKPCA KPCA SKPCA ASKPCA

Banana 400 120 13.6 14.2 13.9
Image 1300 180 4.8 5.4 5.1
F.Solar 666 50 31.4 34.2 32.8
Splice 1000 280 8.6 9.4 9.0

Thyroid 140 30 2.1 2.2 2.2
Titanic 150 30 22.8 23.2 24.4

y =
Nz∑
i=1

βzi

[
φ(zi)

T (φ(x)− uφ
)]
. (14)

Let βz =
[
βz1 βz2 · · · βzNz

]T
. For we choose m eigenvector α corresponding to

m largest eigenvalue. Let B =
[ (

βz
T
)
1

(
βz

T
)
2
· · ·

(
βz

T
)
m

]T
, the feature can be

obtained as follows.

z = BKzx. (15)

As above discussion from the theoretical viewpoints, Adaptive Sparse Kernel Principal
Component Analysis (ASKPCA) chooses adaptively a few of samples from the training
sample set but little influence on recognition performance, which saves much space of
storing training samples on computing the kernel matrix with the lower time consuming.
So in the practical applications, ASKPCA can solve the limitation from KPCA owing to
its high store space and time consuming its ability on feature extraction. So from the
theory viewpoint, ASKPCA is adaptive to the applications with the demand of the strict
computation efficiency but not strict on recognition.

3. Experimental results. In this section, we implement some experiments to testify
the feasibility and performance of Adaptive Sparse Kernel Principal Component Analysis
(ASKPCA) on UCI datasets, ORL, Yale, Wisconsin Breast Cancer database. For compar-
ison purpose, we implement Sparse Kernel Principal Component Analysis (SKPCA) with
the basic kernel under the same conditions. The number of training samples used in the
experiments is equal to the computing stress on computation and store space constrained-
based conditions in the practical applications. The system is to increase the recognition
accuracy and computing efficiency in the image processing under the hardware computing
platform on the limit training samples, the limited training sample number is to decrease
the computing time and saving space in the practical applications.

Firstly, we use the six UCI datasets popular widely in pattern recognition area to testify
the performance of the proposed algorithm compared with the KPCA algorithm using the
part of training samples and the whole size of samples. In the experiments, we randomly
the one hundred of training samples on each training sample set, especially 20 parts
on Image and Splice dataset. In the experiments, we choose the Gaussian kernel with
its parameters determined by the training samples. The experimental results are shown
in Table 1. The first column and second column are the number of training samples
for KPCA, SKPCA, and ASKPCA respectively. The results show that the proposed
algorithm achieves the similar recognition performance, but the proposed algorithm only
use the less size of training set. For example, only 8% training samples are used but
only error rate 2.8% higher than the common methods. Since only small size of training
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Table 2. Performance comparison on ORL face database

Algorithms Error rate (%) Training samples

KPCA 15.3 200
SKPCA 18.4 120(60%)

ASKPCA 17.5 120(60%)

Table 3. Performance comparison on Yale face database

Algorithms Error rate (%) Training samples

KPCA 17.8 75
SKPCA 20.4 45(60%)

ASKPCA 18.7 45(60%)

samples are applied in the proposed algorithm, so it will save some place for storing and
increase the computation efficiency for KPCA.

Secondly, we implement the algorithms on ORL database. To quantitatively assess and
fairly compare the methods, we evaluate the proposed scheme on ORL [5] and Yale [3]
databases under the variable illumination conditions according to a standard testing pro-
cedure. ORL face database, developed at the Olivetti Research Laboratory, Cambridge,
U.K., is composed of 400 grayscale images with 10 images for each of 40 individuals. The
variations of the images are across pose, time and facial expression. To reduce computa-
tion complexity, we resize the original ORL face images sized 112× 92 pixels with a 256
gray scale to 48× 48 pixels. So, the dimensions of the samples are 48× 48 and 100× 100
for Yale and ORL databases. The experimental results are shown in Table 2, ASKPCA
performs better than SKPCA under the same number of training samples.

Thirdly, we evaluate the algorithm on Yale face database. Also, we evaluate the pro-
posed scheme on Yale [3] databases under the variable illumination conditions according
to a standard testing procedure to quantitatively assess and fairly compare the methods.
The Yale face database was constructed at the Yale Center for Computational Vision and
Control. It contains 165 grayscale images of 15 individuals. These images are taken un-
der different lighting condition (left-light, center-light, and right-light), and different facial
expression (normal, happy, sad, sleepy, surprised, and wink), and with/without glasses.
Similarly, the images from Yale databases are cropped to the size of pixels. We randomly
choose one face image per person as the training sample, and the rest face images are to
test the performance of proposed scheme. That is, the rest 9 test samples are to test on
ORL face database, while 10 test samples per person are to test the performance on Yale
face database. The average recognition accuracy rate is to evaluate the performance of
the recognition accuracy, and we implement the experiments for 10 times and 11 times for
ORL and Yale face database respectively. As shown in Table 3, the experimental results
show that ASKPCA performs better than SKPCA under the same number of training
samples.

Finally, we elevate the performance on Wisconsin Breast Cancer database [4] consisting
of 569 instances including 357 benign samples and 212 malignant samples. And each one
represents FNA test measurements for one diagnosis case. For this dataset each instance
has 32 attributes, where the first two attributes correspond to a unique identification
number and the diagnosis status (benign or malignant). The rest 30 features are compu-
tations for ten real-valued features, along with their mean, standard error and the mean
of the three largest values (worst value) for each cell nucleus respectively. As shown in
Table 4, the recognition accuracy 5.4% and 3.8% are achieved by the common training
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Table 4. Performance comparison on Yale face database

Algorithms Error rate (%) Training samples

KPCA 3.8±0.4 300
SKPCA 5.4±0.3 110(37%)

ASKPCA 4.9±0.4 110(37%)

method and the proposed training method. But only 37% training samples are applied
in the training procedure. As shown in the Table 4, only 37% training samples are used
but only error rate 1.6% higher than the common methods. Some storing space is saved
and high computation efficiency is achieved for the practical applications.

As shown the above experimental results, on KPCA, Sparse KPCA (SKPCA) and
Adaptive Sparse Kernel Principal Component Analysis (ASKPCA) algorithm, SKPCA
saves much space of storing training samples on computing the kernel matrix with the
lower time consuming, but achieves the similar recognition accuracy compared with
KPCA. In order to increase the recognition accuracy under the same training samples
with SKPCA, ASKPCA achieves a higher recognition accuracy than SKPCA because it
uses kernel optimization procedure combined with SKPCA. So, ASKPCA is adaptive to
the applications with the demand of the strict computation efficiency but not strict on
recognition.

4. Conclusions. In this paper, we present a novel kernel learning namely Adaptive
Sparse Kernel Principal Component Analysis (ASKPCA) through reducing the training
samples with sparse learning based least squares support vector machine and adaptive
self-optimizing kernel structure according to the input training samples. ASKPCA has
solved two problems widely endured by kernel learning, one is that all training samples
need to be stored for the computing the kernel matrix during kernel learning, and sec-
ond is that the kernel and its parameter have the heavy influence on performance of
kernel learning. The experimental results testify the feasibility and effectiveness of the
proposed algorithm on saving consuming space and optimizing kernel structure. The
proposed ASKPCA algorithm has the potential applications in image classification, face
recognition, and speech recognition.
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