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Abstract. Discrete wavelet transform (DWT) provides a useful platform for hidden
digital information and copyright protection; therefore numerous DWT-based algorithms
have been proposed in recent years. Signal-to-noise ratio (SNR) and bit-error-rate (BER)
are commonly utilized performance indexes in measuring the fidelity, robustness and qual-
ity of watermarking algorithms. However, there is a tradeoff relationship between audio
quality and robustness. To overcome the drawback, this paper aims in proposing an
optimization-based watermarking scheme using optimal multi-coefficients quantization in
the wavelet domain. Compact PSO, which has excellent performance with less hardware
requirement, plays an essential role to obtain the optimal scaling factors. Experimental
results confirm that the embedded audio in the proposed method has high SNR and low
BER, indicating strong robustness against various attacks, such as re-sampling, ampli-
tude modification, and mp3 compression.
Keywords: Discrete wavelet transform; Signal-to-noise ratio; Bit-error-rate; Compact
PSO; Optimal scaling; Almost invariant feature.

1. Introduction. An audio watermarking scheme generally fulfills three IFPI (Interna-
tional Federation of Phonographic Industry) requirements [1-2]: (1) Watermarks have to
be imperceptible in the embedded audio. (2) The embedding design should offer more
than 20dB signal-to-noise ratio (SNR) and 20 bps (bits per-second) embedding capac-
ity for watermarked audio versus original one. (3) The embedded watermark should be
able to resist common attacks, such as re-sampling, filtering, amplitude modification,
time-scaling manipulation, and mp3 compression and so on.

Most audio watermarking techniques can be classified according to the type of water-
mark being used or the domain in which the watermark is applied. A number of methods
reported in literature involve in inserting watermarks in either time domain [3-12] or
frequency domain [2, 13-20]. Lie et al. [7] adopted the amplitude modification to im-
prove robustness in time domain; however, the capacity and SNR were extremely low.
Huang et al. [13] embedded watermark into discrete cosine transform (DCT) coefficients
and hid barcode (the user-defined information) in the time domain as synchronization
codes. Due to low embedding strength in the time domain, the synchronization codes
are not adequately robust. On the other hand, for those synchronization codes hidden
in the frequency domain, the computational complexity and cost increase explosively. To
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compensate the drawback, Wu et al. [2] used quantization index modulation method
to embed synchronization codes and watermarks into low frequency coefficients in the
discrete wavelet transform (DWT) domain. This technique achieves better robustness
against common signal processing procedures and noise corruptions; however, it is still
vulnerable to amplitude modification and time-scaling manipulation attacks due to the
single-coefficient quantization. Xiang et al. [16] modified Lies method in wavelet domain
and obtained slightly improved results.
There is a tradeoff relationship between fidelity and robustness of an embedded audio,

which are typically assessed by the signal-to-noise ratio (SNR) and bit error ratio (BER).
Chen et al. [18] proposed an optimization-based scheme to obtain the best embedded-
audio quality using fixed scaling DWT coefficients. Even though the hidden data are
robust against some common attacks in their approach, audio quality worsens with vari-
ation of modification factors and the embedded watermarks are inadequately robust to
amplitude modification attack. The purpose of this paper is to propose an optimization-
based scheme with the inclusion of scaling DWT coefficients in wavelet domain. This
novel method is designed to ensure the best fidelity of an embedded audio.
Experimental results confirm that such optimization-based scaling scheme indeed pro-

vides good audio quality and adequate robustness against common attacks.
The paper is organized as following. Overview of DWT and mathematical clarifica-

tion of Lagrange principle is presented in Section 2. In Section 3, introduction of the
proposed optimization-based scaling scheme, the wavelet-based functional connecting the
multi-coefficients quantization equation and the performance index are illustrated. The
optimization process for DWT coefficients and their corresponding scaling factors are
enlightened as well. The extraction technique and the almost invariant feature of the
optimal scaling factors under amplitude scaling attack are also derived in this section.
Experimental results are presented in Section 4; some remarks are concluded in Section
5.

2. RELATED WORKS.

2.1. Discrete Wavelet Transform. The DWT has been extensively employed in many
digital watermarking applications. In this section, we will briefly introduce concepts in
DWT. The wavelet transform maps a function in L2(R) onto a scale-space plane. Wavelets
are obtained by a single prototype function (mother wavelet) ψ(x) which is regulated with
a scaling parameter and a shift parameter [21, 22]. The discrete normalized scaling and
wavelet basis function are defined as

φi,n(t) = 2
i/2hiφ(2

it− n), (1)

ψi,n(t) = 2
i/2giψ(2

it− n), (2)

where i and n are the dilation and translation parameters; hi and gi are the low-pass and
high-pass filters. Orthogonal wavelet basis functions not only provide simple calculation
in coefficients expansion but also span L2(R) in signal processing. As a result, any audio
signal S(t) ∈ L2(R) can be expressed as a series expansion of orthogonal scaling functions
and wavelets. More specifically,

S(t) =
∑
ℓ

cj0(ℓ)φj0,ℓ(t) +
∑
k

∞∑
j=j0

dj(k)ψj,k(t), (3)
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where cj(ℓ) =
∫
R

S(t)φj,ℓ(t)dt and dj(k) =
∫
R

S(t)ψj,k(t)dt denote the sequences of low-

pass and high-pass coefficients, respectively; j0 be the integer to define an interval on
which S(t) is piecewise constant. Throughout this paper, the host digital audio signal ,
S(n), n ∈ N , denoting samples of the original audio signal S(t) at the nth sample time,
is cut into segments where DWT will be preformed. This can be done by exploiting
orthogonal basis to implement DWT through filter bank. Fig. 1 demonstrates how the
input digital audio signal S(n) is segmented into eight non-overlapping multi-resoluton
sub-bands by the seven-level DWT decomposition. For the consideration of robustness
of low-pass filtering, the synchronization codes and watermarks are embedded into the
seventh level low-frequency sub-band coefficients (i.e., the sub-band A7 in Fig. 4), which
will be referred as the lowest-frequency DWT coefficients in this paper.

Figure 1. Seven-level discrete wavelet transformation.

2.2. Compact PSO. Compact PSO [24] was proposed by Neri et al. in 2013. This
optimization algorithm was proposed based on novel search logic. It has features of
standard Particle Swarm Optimization (PSO) algorithms, but it is unlike classical PSO
algorithms, cPSO employs a probabilistic model to represent the swarms solution set.
Neither the positions nor the velocities were not stored. And only a particle was used in
the whole algorithm. Thus, a modest memory space is required. It was well suited for
the embedded equipment with limited hardware.

In cPSO, the probabilistic model is a Perturbation Vector PVlb, it consists of µ and
σ, which are respectively, mean and standard deviation values of a Gaussian Probability
Density Function (PDF) truncated within the interval [-1, 1] for each dimension of the
solution. The PVlb is used to generated a new solution which is considerate as the local
best xlb. So cPSO is based on virtual population. µ and σ is updated by formula (4) and
(5). The updated µ and σ will help to generated more efficient solution because of this
novel updating rule.

µt+1(i) = µt(i) +
1

Np

[winner(i)− loser(i)] , (4)

[
σt+1(i)

]2
=
[
σt(i)

]2
+
[
µt(i)

]2 − [µt+1(i)
]2

+
1

Np

{
[winner(i)]2 − [loser(i)]2

}
, (5)

Where Np is the size of the virtual population, and winner and loser are individuals with
better fitness and worse fitness between existed position and xlb or xgb.
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After new solution (particle) is generated, the movement of the particle in cPSO is
the same to the stand PSO algorithm, and the position x and velocity v are updated by
formula (6) and formula (7):

vt+1 = ϕ1v
t + ϕ2

(
xtlb − xt

)
+ ϕ3

(
xtgb − xt

)
, (6)

xt+1 = xt + vt+1, (7)

where, as mentioned in [5], xt indicates the current position of the particle, xlb is the
best position visited by the particle. the vector vt is also generated by the Perturbation
Vector, ϕ1, ϕ2, and ϕ3 are three weight factors which might be constant or randomized.
The details for cPSO are given below:
Step 1: initialize µ and σ of probabilistic model vector PVlb.
Step 2: generate the global best solution xgb by means of perturbation vector PVlb.
Step 3: randomly generate xt and vt for the particle.
Step 4: generate the local best solution xlb from PVlb.
Step 5: updating xt and vt according to the standard PSO algorithm updating rule.
Step 6: compare xlb and xt+1, let be the one with better fitness, and the is the other

one.
Step 7: updating µ and σ according to formula (6) and formula (7).
Step 8: compare xlb, xgb and x

t+1 , assign the best solution to xgb.
Step 9: if it is not meet the termination condition go to step 4.
Step 10: output the global best solution xgb.
The experimental results of this method show that cPSO display a pretty performance

than the corresponding population-based algorithms and compact algorithms. Because
of its modest memory requirement, it is used to solve the optimization problem in those
hard ware environments is limited due to cost and space limitations.

3. THE PROPOSED OPTIMIZATION-BASED EMBEDDINGAND EXTRAC-
TION. In this section, the proposed optimization-based embedding with optimal scaling
on DWT coefficients and extraction are presented.

3.1. Embedding Technique. Since the watermarked audio may suffer the attack of
shifting or cropping of a certain segment inside the audio signal, synchronization codes
need to be embedded jointly with the watermark. Through examination of the synchro-
nization codes, position of the embedded watermark can also be recognized. Prior to the
embedding process, synchronization codes and watermark are arranged into a binary pseu-
dorandom noise (PN) sequence {βi}, βi = 0 or 1. To ensure strong robustness, embedding
is not applied to all DWT coefficients; that is, {βi} is only embedded successively into the
lowest-frequency sub-band coefficients of each segment. Assemble every N consecutive ab-
solute DWT coefficients and put them in the vector form CN = [ |c1| |c2| · · · |cN | ]T .
The rule for embedding {βi} becomes:

• if the bit βi = 1 is embedded in CN , the group-amplitude
N∑
j=1

|cj| is quantized to

γ1 =

⌊
N∑
j=1

|cj|
/
Q

⌋
Q+

3

4
Q; (8)
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• if the bit βi = 0 is embedded in CN , the group-amplitude
N∑
j=1

|cj| is quantized to

γ0 =

⌊
N∑
j=1

|cj|
/
Q

⌋
Q+

1

4
Q, (9)

where {cj} be the sequence of DWT lowest-frequency sub-band coefficients of the original
signal; ⌊⌋ indicates the floor function, and Q is the quantization parameter.

3.2. Amplitude Scaling Factors. Consider a positive scalar matrixA = [ a1 a2 · · · aN ]
whose entries are arbitrarily assigned by an encoder; we need to determine unknown values
of watermarked lowest-frequency absolute DWT coefficients, C̄N = [ |c̄1| |c̄2| . . . |c̄N | ]T
, which relate to the original DWT coefficients CN , such that

(a) love song (b) symphony

(c) dance (d) folklore

Figure 2. The variation of SNR versus a2 for four types of songs when
N=2 and M=2.

N∑
j=1

aj |c̄j| =

{
γ1, ifβi = 1

γ0, ifβi = 0.
(10)

To avoid the situation that some entries in A may become arbitrarily large, without
loss of generality, we assume all entries of A sum up to a constant M . For example,
A =

[
0.9 1.2 1.2 0.7

]
represents a suitable selection for N = 4 and M = 4.



838 M. Zhao, J.-S. Pan, S.-T. Chen

To better illustrate the effect of scaling factors adjustment on SNRL, a case with
a1 + a2 = 2 and their relationship are shown in Fig. 2. It is clear that the SNRL drops
as a2 decreases and is maximized when a2 = 2, which corresponds to a1 = 2 as well. For
that reason, it is crucial to investigate the scaling factors so to ensure the SNRL attains
its maximum.

3.3. Optimal Embedding. The SNR between the original audio S(n) and the water-
marked audio S̄(n) is formulated as formula (11).

SNR = −10 · log


∑
n

∥∥S̄(n)− S(n)
∥∥2
2∑

n

∥S(n)∥22

 . (11)

By Parseval Theorem, the square sum of S(n) over all the samples is the same as the
square sum of all the corresponding DWT coefficients. Due to the fact that the DWT
coefficients are implemented with orthogonal wavelet bases

SNR = −10 · log

(∥∥C̄N −CN

∥∥2
2

∥CN∥22

)
= −10 · log


N∑
i=1

(|ci| − |ci|)2

k∑
i=1

|ci|2

 . (12)

Obviously, the formula (refE12) is a strictly deceasing function, the SNR is maximized

when
∑N

i=1 (|ci| − |ci|)2
/∑N

i=1 |ci|
2 is minimized. The expression (13) is subject to the

constraint (14).

minimize

N∑
i=1

(|ci| − |ci|)2

k∑
i=1

|ci|2
(13)

subjectto
N∑
i=1

ai |ci| = γ1 and
N∑
i=1

ai =M . (14)

3.4. The design for the compact PSO. The minimization of formula (14) is a con-
tinuous optimization problem; in addition, the application domain is MP3 player with
limited hardware. So compact PSO [24] can solve this problem well. We can use formula
(14) as fitness function of cPSO, and the designed variable is wavelet coefficient . Thus,
the problem can be described as follows:

A designed particle (x1, x2, ....xi) with fitness function
∑N

i=1 (|xi| − |xi|)2
/∑N

i=1 |xi|
2 is

subjected to
N∑
i=1

ai |xi| = γ1 and
N∑
i=1

ai = M . The global best particle xgb is required in

this case.

3.5. Extraction Technique. Since the proposed scheme is a blind watermarking, the
original audio may not be available in actual scenarios. The extraction process is simply
a direct reverse of the embedding procedure. We first divide the test audio into segments
and perform DWT on each section. Let ĈN = [|ĉ1||ĉ2| · · · |ĉN |]T denote the coefficients of
N consecutive absolute DWT low-frequency sub-band coefficients in the seventh level of
each segment from the test signal. The binary PN sequence including the watermark {β̂i}
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will be extracted from ĈN and optimal amplitude scaling factors a∗j , which are obtained
during the embedding process, according to the rules:

• If
N∑
j=1

a∗j |ĉj| −

⌊
N∑
j=1

a∗j |ĉj|
/
Q

⌋
Q ≥ Q

2
, then β̂i = 1;

• If
N∑
j=1

a∗j |ĉj| −

⌊
N∑
j=1

a∗j |ĉj|
/
Q

⌋
Q < Q

2
, then β̂i = 0.

4. EXPERIMENTAL RESULTS. The evaluation of the proposed optimization-based
amplitude quantization for audio watermarking is discussed in this section. Four types
of audio signals, love song, symphony, dance, and folklore, are to be tested. These audio
signals are 16-bit mono-type of length 11.6 seconds and sampling rate 44.1 kHz. Prior to
the embedding process, the original audio is cut into four segments and without loss of
generality, set M = N . Apply seven-level decomposition DWT to embed synchronization
codes and watermarks into the lowest-frequency sub-band coefficients. Accordingly, the
embedding capacities are set to be 2000, 1000, and 500 bits for N = 2, 4, 8, respectively.
The SNR in Wus approach [2] is measured under single-coefficient amplitude quantization
of size Q = 6500. In order to make a contrast, the values of Q in this study are set to be
13000, 26000 and 52000 for N = 2, 4, 8, respectively.

4.1. Quality Evaluation of Watermarked Audios. Table I contains information of
the embedding domain (DWT level), embedding capacity, and SNR for various methods.
Due to the fact that every N lowest DWT coefficients are optimized, one can see that
higher SNR appears in the proposed scheme. Even though such scheme is initially designed
to maximize the SNR, the data shows that it turns out to provide higher SNR comparing
to other approaches as well. Although the increase in group size of DWT coefficients can
give us higher SNR, but there is a limit. We note that the embedding capacity of our
scheme satisfies the IFPI requirement - providing at least 20 bps embedding capacity and
if the group size greater than 16 this requirement is violated. Hence in our study only
three kinds of group sizes, i.e., N = 2, 4, 8, are considered.

4.2. Robustness Measurement. After the embedding process, some common attacks
are applied to test the robustness which will be measured by the bit error rate (BER). The
BER, the ratio of bit errors to the total transferred errors during a tested time interval,
is usually expressed in percentage and can be formulated as

BER =
Berror

Btotal

× 100%, (15)

where Berror and Btotal denote the numbers of error binary bits and total binary bits during
a tested period. Five types of attacks that will be applied to the audio signals, including
re-sampling, low-pass filtering, amplitude modification, time-scaling manipulation and
mp3 compression, will be introduced below.

1) Re-sampling : The sampling rate of the audio signal in the re-sampling procedure can
be increased or decreased by a factor in three steps: (i) down-sample (ii) interpolation
(iii) up-sample. In this study, the watermarked audio was down-sampled from 44.1kHz
to 22.05kHz, and then increased back to 44.1kHz in the form of linear interpolation
filter. Similarly, the sampling rates were down-sampled from 44.1kHz to 11.025kHz
and 8kHz, and then moved back up to 44.1kHz following the steps (i)-(iii). The BER
results of re-sampling manipulation to four types of audios are presented in Table II.
These experimental results confirm that the proposed scheme has lower BER, which
corresponds to higher robustness, than those by Wu et al, [2] and Chen et al. [18]. In
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addition, comparing with works by Xiang et al [16] and Chen et al. [17], the proposed
method shows comparable robustness as but is definitely more robust in the case of
N = 8.

2) Low-pass filtering : Table III shows the effect of adopting a low-pass filter with the cutoff
frequencies 3 kHz and 6kHz. The proposed method is more resistant to such attack
than Wus work in [2] and has slightly lower robustness than Xiangs [16], Chens[17],
and Chens [18] even when N = 8, except for the audio type symphony. As we expected
that as the cutoff frequency increases the BER is getting better.

3) Amplitude modification: Since a bigger modification factor results in saturation, the
amplitude modification factor τ is set as 0.5, 0.8, 1.1, and 1.2 in the study. The
comparison data in Table IV clearly illustrate better performance and strong robustness
provided by the proposed scheme than Wus[2], Xiangs [16] and Chens [18] but slightly
less robustness than Chens [17]. This is simply due to the almost invariance property
those obtained optimal scaling factor holds.

4) Time-scaling manipulation: Experimental results of the watermarked audios under
time-scaling attack of ±2% and ±5% are listed in Table V. These outcomes evidently
indicate slightly better robustness our scheme presents than those in the approaches
of Wus [2], Chens [17] and Chen [18]. When comparing with Xiangs work, it is slightly
less robust with positive time-scaling attack but offers somewhat higher robustness
with negative time-scaling attack.

5) MP3 compression: MP3 compression is an audio compression method. Table VI show
the experiments of applying MP3 compression at different bit rates to the watermarked
audio. We find the proposed scheme has good performance and is more robust than
other methods.

5. Conclusions. This study presents an optimization-based quantization scheme with
optimal scaling on wavelet coefficients. To enhance the robustness, the watermarks are
embedded into grouped lowest-frequency DWT coefficient. These DWT coefficients, along
with corresponding scaling factors, are all optimized. Experimental results confirm that
the embedded audios have high SNR, small SDG, and better robustness against signal
processing and common attacks, such as re-sampling, amplitude modification and mp3
compression. For the low-pass filtering the result of our scheme is similar to those results
from related wavelet based schemes. However, similar to other previously developed
wavelet domain methods in literature, the proposed scheme is not that robust to the
time-scaling manipulation. Our future work will aim in proposing an invariant feature
in the wavelet domain to improve the low robustness from low-pass filtering attack and
time-scaling manipulation.
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Figure 3. Optimal watermark embedding process.
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Figure 4. Watermark extraction process.
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