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Abstract. Gaussian mixture model (GMM) has been successfully applied to image seg-
mentation. However, the drawback of GMM is that it lacks of robustness against noise
for image segmentation. To effectively reduce negative effects of the noise, in this paper,
we propose a variant of GMM which fully considers the spatial relationship between the
pixels and the label probability proportions are explicitly modelled as probability vectors.
At the same time, the component function of a pixel is also closely relative to its neigh-
boring pixel. In the inference process, gradient descend method is adopted to estimate
the parameters of the proposed model. The proposed model compares with some models
which are related to mixture models. Several experiments are conducted on both synthetic
grayscale images and real-world natural images. The experimental results show the ro-
bustness and accuracy of the proposed model outperform some state-of-the-art models.

Keywords: Spatially varying finite mixture model; Gaussian mixture model; Image
segmentation; Gradient descent

1. Introduction. Image segmentation is an important research field in image processing
and computer vision. Its target is to learn several parts which have a strong correction with
an object [1]. Many models based on various mathematical tools for image segmentation
have been proposed in past years and statistical models play an important role in these
models.

The finite mixture model (FMM) is one of the most widely applied statistical models
because it can model much complicated phenomena. In recent years, the FMM is receiving
more and more researchers’ attentions because of its simplicities and flexibility. The FMM
has been successfully applied to many fields, such as genetics, social science, astronomy,
data mining, image segmentation [2]. Its component function may be any probabilistic
distribution. We refer to the FMM as Gaussian mixture model (GMM) when Gaussian
distribution is chosen by its component function. In image segmentation, a pixel is pro-
duced by a GMM [2, 3]. Then the parameters of the GMM can be obtained according to

857



858 T. S. Xiong, Y. Y. Huang

the image. The K components of the GMM correspond to K clusters when it is applied
to image segmentation. According to the Maximum a posteriori (MAP) estimation, a
cluster label is assigned to the pixel.

The GMM can obtain good segmentation results for one image without noise, however
it usually obtains unsatisfied segmentation results under the noisy conditions. The main
reason leads to the unsatisfied segmentation results with noisy images for the GMM is that
it assumes that the relationship between the pixels in one image is statistical independent.
The spatial relationships between the pixels are not considered in the GMM when it is
applied to image segmentation.

To improve the robustness of the GMM against noise, a spatially varying finite mixture
model (SVFMM) is proposed in [4] which considers the spatial information of the pixels.
The main difference between the GMM and the SVFMM is the representations of the
label probability proportions (the probabilities of each pixel belonging to some clusters).
In the GMM, the label probability proportions are independent of pixels, but they closely
correlate with the pixels in the SVFMM. In general, expectation maximization (EM) algo-
rithm [5] is used to deduce the parameters of the SVFMM. However, the label probability
proportions cannot be directly obtained in closed forms. To obtain closed form solutions,
a reparatory step should be added in M step. In [4], the reparatory method is Gradient
projection. For the SVFMM in [4], convex quadratic programming is used in [6] instead
of the Gradient projection in the M step. The experiments in [6] show that the modified
model produces better segmentation results than [4]. However, the smooth parameter β
in the SVFMM [4, 6] cannot adapt to the image data. It requires a tedious trial-and-error
process to obtain an optimal value. To resolve this problem, a novel smoothness priors
based on the Gaussian-Markove random fields is proposed [7]. However, the solutions to
the label probability proportions cannot satisfy the constraints that they are nonnegative
and their sum equals to one. To preserve region boundaries of the segmentation results,
two models which consider the MRF priors are presented in [8] . Line process [9] is effec-
tively incorporated with the two models. To estimate the parameters of the two models,
variational inference and EM algorithm are applied to these two models, respectively.
However, the solutions to the label probability proportions are still not closed forms.

To improve the efficiency and robustness of model, we propose a variant of spatially
varying finite mixture model. Firstly, the label probability proportions of the proposed
model fully consider the spatial relationships between the pixels, furthermore, the com-
ponent function of a pixel is closely relative to its neighborhoods. Secondly, the compu-
tational cost is reduced because the representation of label probability proportions is a
probability vector. Finally, we adopt Gradient descend method to estimate the param-
eters of the proposed model. The experiments conducted on some images demonstrate
the robustness and correctness of the proposed model. The experimental results show the
superiority of the proposed model over some exist models.
The rest of this paper is organized as follows. The introduction of GMM and SVFMM
are given in Section 2. In Section 3, we describe the proposed model in detail. Experi-
mental results and the relative discussions are given in Section 4. Finally, we present the
conclusions in Section 5.

2. The Theoretical Background. In this section, the backgrounds of GMM and SVFMM
are discussed in brief. Let xn denote the nth pixel of an image throughout this paper.
We assume that there are N pixels in an image which belong to K clusters.
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2.1. Gaussian Mixture Model. The GMM is a superposition of K Gaussian distribu-
tions [2, 3] whose form is given by

f(x) =
K∑
k=1

πkN (x|θk), (1)

where N (x|θ) denotes Gaussian distribution and its definition is written as follows

N (x|θ) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x− µ)2

}
, (2)

where θ = {µ, σ2} and µ is the mean and σ2 denotes the variance. The coefficient πk must
satisfy the following constraints:

0 ≤ πk ≤ 1,
K∑
k=1

πk = 1.

The likelyhood of the N data can be written as follows

F (X) =
N∏
n=1

f (xn) =
N∏
n=1

K∑
k=1

πkN (xn|θk).

In general, the probability of one pixel’s distribution is very little, therefore, the value
of their product is even little and it may causes floating-point underflow in computation.
To resolve this problem, the logarithm of the likelyhood function is adopted, the log-
likelyhood function is written in this form.

lnF (X) =
N∑
n=1

ln
K∑
k=1

πkN (xn|θk).

A general technique for determining the parameters of GMM is EM algorithm [5].

2.2. Spatially Varying Finite Mixture Model. The SVFMM [4, 10] which is based
on Markov random field (MRF) and MRF prior is imposed on the label probability pro-
portions, is an extension of GMM. The label probability proportion πnk stands for the
probability that the nth pixel belongs to the kth cluster. The variable πnk must satisfy
the following constraints

0 ≤ πnk ≤ 1,
K∑
k=1

πnk = 1;n = 1, ..., N ; k = 1, ..., K.

The density function of the nth pixel is presented by [4]

f (xn|Π,Θ) =
K∑
k=1

πnkp (xn|θk) . (3)

The component function p (xn|θk) of (3) can be any probabilistic distribution. In gen-
eral, Gaussian distribution is adopted in (3). At the same time, Θ = θk, parameter
θk = {µk, σ2

k} where µk is the mean and σ2
k stands for the variance of Gaussian distri-

bution, respectively. Comparing (1) with (3), the SVFMM is a special case of GMM
when π1k = π2k = .. = πNk = πk and the component function of the SVFMM is Gauss-
ian distribution. Let X denote the whole observed data set {xn} in an image, where
n=1, ..., N . Let Π = {π1, π2...πN} denote the set of the label probability proportions
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where πn = (πn1, πn2...πnK) denotes a probability vector of the nth pixel. The probability
density function (PDF) of observed data [4] is defined as follows.

f (X|Π,Θ) =
N∏
n=1

f (xn|Π,Θ) =
N∏
n=1

K∑
k=1

πnkp (xn|θk) . (4)

The parameter set Π is assumed to follow a Gibbs distribution in [6]. Its probability
distribution is defined as follows

p(Π) =
1

Z
exp(−U(Π)), with U(Π) = β

N∑
n=1

V∂n(Π),

where Z represents a normalizing constant, at the same time, β plays a regularization role
in the distribution. The nth pixel’s clique potential function V∂n(Π) is closely related to
its neighborhood ∂n. Then the log-density function of data X can be written as follows [4]

log f(Π|X; Θ) =
N∑
n=1

log
K∑
k=1

πnkp
(
xn|µk, σ2

k

)
+ log p(Π). (5)

To determine the parameters in (5), the EM algorithm is usually chosen. However, the
M-step of the EM algorithm cannot be used to obtain the results of the πnk. The results
obtained directly do not satisfy the constraints that the label probability proportions
are nonnegative and their sum is equal to 1. To obtain the satisfied results of label
probability proportion πnk, an approximate step should be introduced in the M-step.
Therefore, the gradient project and convex quadratic programming are adopted in [4]
and [6], respectively.

3. The Proposed Model. In this section, a variant of spatially variant finite mixture
model which effectively considers the spatial relationships between pixels is presented.
At the same time, the representation of the label probability proportions is an explicit
probabilistic vector. A second order neighborhood system including itself is used in the
proposed model. There are 8 neighbor pixels in a second order neighborhood system, and
their positions can be divided into four different directional types which are horizontal,
vertical and two diagonal directions [16]. We adopt (6) defined in [16] to denote the weight
of the nth pixel belonging to the kth class.

ξk (xn) =
D∑
d=1

∑
xi∈∂n

Jnd(xn, xi) exp

(
−(xi − ckd)2

2b2kd

)
(6)

where the nth pixel’s neighborhood is denoted as ∂n and D is the number of directional
types. The value of function exp denotes the distance of xi and its neighborhood. ckd
and bkd stand for the mean and variance of neighborhood belonging to the kth class,
respectively. The value of D equals 4 in the proposed model. The definition of identity
function Jnd(xn, xi) is written as follows

Jnd(xn, xi) =

{
1, if xi ∈ ∂n and xi is dth adjacency type of xn
0, otherwise

(7)
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Then, the definition of the label probability proportion of a pixel [?] can be obtained in
the follow form

πnk =
ξk(xn)
K∑
j=1

ξj(xn)

=

D∑
d=1

∑
xi∈∂n

Jnd(xn, xi) exp
(
− (xi−ckd)2

2b2kd

)
K∑
j=1

D∑
d=1

∑
xi∈∂n

Jnd(xn, xi) exp
(
− (xi−cjd)2

2b2jd

) . (8)

Clearly, the label probability proportion πnk in (8) naturally satisfy these constraints that

0 ≤ πnk ≤ 1 and
K∑
k=1

πnk = 1. To consider the neighborhood information of a pixel, its

density function of the nth pixel is given by

f (xn|Θ) =
K∑
k=1

πnk
1

Nn

∑
xm∈∂n

N (xm|θk) , (9)

where Nn denotes the number of neighborhood of pixel n, its number may be 4, 6, 9.
xm is a neighborhood pixel of pixel n. N (xm|θk) is a Gaussian distribution of its neigh-
borhood whose definition is given in (2). Component function 1

Nn

∑
xm∈∂n

N (xm|θk) can be

normalized one, so it is a probabilistic distribution. Compared with the model in [16],
the Gaussian distribution has a simpler form than Student’s t-distribution. Therefore,
the inference process is also simpler than that of [16]. The component function plays a
smooth role because it considers pixel’s neighborhood. Furthermore

0 ≤ πnk ≤ 1,
K∑
k=1

πnk = 1;n = 1, ..., N ; k = 1, ..., K.

Given the prior probability f(θk) = πnk and the density function (9), we can derive the
posteriori probability in the follow form according to Bayes’ theorem.

f (θk|xn) =

πnk
∑

xm∈∂n
N (xm|θk)

K∑
j=1

πnj
∑

xm∈∂n
N (xm|θk)

. (10)

The log-likelihood function of the pixels in an image can be derived [4] according to
formulae 9

L(θ) =
N∑
n=1

log f (xn) =
N∑
n=1

log

(
K∑
k=1

πnk
1

Nn

∑
xm∈∂n

N (xm|θk)

)
. (11)

We maximize the log-likelihood function (11) with respect to the parameter set Θ =
{µk, λk, ckd, b2kd} to obtain the optimization solutions. In [3], the negative logarithm of
the log-likelihood function is called an error function. The error function monotonically
decreases because of the property of monotonically increasing of the logarithm function.
Therefore, we minimize the error function instead of maximizing the log-likelihood func-
tion.

J(Θ) = −L(Θ) = −
N∑
n=1

log

(
K∑
k=1

πnk
1

Nn

∑
xm∈∂n

N (xm|θk)

)
. (12)

Given the complete data, we use the new parameters ((t + 1)th iteration) to substitute
for the old ones (tth iteration) in [11]. Considering the posteriori probability (10), the
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change in the error function can be written [12]

J(Θ(t+1))− J(Θ(t)) =−
N∑
n=1

log


K∑
j=1

π
(t+1)
nj

∑
xm∈∂n

N (xm|θj)

K∑
k=1

π
(t)
nk

∑
xm∈∂n

N (xm|θk)
×f

(t) (θj|xn)

f (t) (θj|xn)

)
. (13)

Because the posterior probability f (t) (θj|xn) is always nonnegative and subjects to
K∑
k=1

f (t) (θk|xn) =

1. When the Jensen’s inequality is applied, from (13), we have

J(Θ(t+1))− J(Θ(t)) ≤ −
N∑
n=1

K∑
k=1

f (t) (θk|xn)× log


π
(t+1)
nk

∑
xm∈∂n

N (xm|θk)

f (t) (θk|xn)
K∑
j=1

π
(t)
nj

∑
xm∈∂n

N (xm|θk)

 .

(14)
The old parameters (at the tth iteration step) can be dropped according to [12] when we
minimize the error function with respect to the new parameters (at the (t+1)th iteration
step). The change in error function can be obtained in the following form.

E
(
Θ(t)|Θ(t+1)

)
=−

N∑
n=1

K∑
k=1

f (t) (θk|xn)× log

(
π
(t+1)
nk

∑
xm∈∂n

N (xm|θk)

)
. (15)

We refer to the function E in (15) as an error function. In the proposed model, to obtain
the optimization solutions, minimizing E in (15) is equivalent to maximizing the log-
likelihood function (11). The derivatives of the function (15) with respect to parameter Θ
is used to minimize the value of the error function E. The gradients of the error function
E(Θ) with respect to these parameters µj, σj, cjd, b

2
jd are derived as follows

∂E

∂µj
=−

N∑
n=1

f (t) (θj|xn)

∑
xm∈∂n

N (xm|θk) xm−µj
σ2
j∑

xm∈∂n
N (xm|θk)

(16)

∂E

∂σj
=

N∑
n=1

f (t) (θj|xn)

∑
xm∈∂n

N (xm|θk)
(

1
σj
− 1

σ3
j

(xm − µj)2
)

∑
xm∈∂n

N (xm|θk)
(17)

∂E

∂cjd
=

N∑
n=1

{
−f (t) (θj|xn) · 1

ξj (xn)
+

K∑
k=1

f (t) (θk|xn)
1

K∑
p=1

ξp (xn)

 · ρnjd, (18)

where

ρnjd =
∑
xi∈∂n

Jnd(xn, xi)
(xi − cjd)

b2jd
· exp

(
−(xi − cjd)2

2b2jd

)
. (19)

∂E

∂b2j
=

N∑
n=1

{
−f (t) (θj|xn) · 1

ξj (xn)
+

K∑
k=1

f (t) (θk|xn)
1

K∑
p=1

ξp (xn)

 · δnjd, (20)
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where

δnjd =
∑
xi∈∂n

Jnd(xn, xi)
(xi − cjd)

2b4jd
· exp

(
−(xi − cjd)2

2b2jd

)
. (21)

We can obtain the value of the posterior probability (10) after finishing the optimization
of parameters. We assign a class label to the nth pixel according to the maximum a
posteriori by solution of

arg max
k
{f (θk|xn)} , (22)

where the f (θk|xn) is the representation given in (10).
We refer to the proposed model as the spatially smooth relationships-based Gaussian

mixture model (SSGMM). The gradient descend method is applied to determine the
parameters based on the error function given complete data. The all steps of SSGMM is
outlined in algorithm 1.

Algorithm 1 SSGMM.

Initialize:

To determine the mean uj and the variance σ2
j of Gaussian distribution by Using K-

means. Then set cjd=uj and b2jd=σ
2
j .

Step 1:
Calculate the Gaussian distribution N (xi|θj) in (2).
Compute the weight function ξj (xi) in (6).
The label probability proportion πij can be updated using (8).
Compute the posterior probability f (θj|xi) using (10).
Step 2:
The gradient descend method is applied to update the parameters Φ = (µj, σj, cjd, b

2
jd)

T

Φ(t+1) = Φ(t) − η∇E(Φ(t)) (23)

where the value of η is enough small and it is the learning rate. η= 10−5 is selected for
all experiments in this paper. ∇E(Φ) is the derivative of the function E with respect

to Φ, where ∇E(Φ)=
[
∂E/∂µj, ∂E/∂σj, ∂E/∂cjd, ∂E/∂b

2
jd

]T
.

Step 3:
If the change of value of log-likelihood function (11) is significant, set Φ(t)=Φ(t+1), then
return to step 1, otherwise go to step 4.
Step 4:
To get the clusters labels of the pixels, formula (22) is adopted after the posterior
probability f (θk|xn) given in (10) is determined.

4. Experimental Results. In this section, some synthetic images and real-world grayscale
images are used to evaluate the performance of the proposed model. The performance
evaluation of the proposed model is compared with K-means, the standard GMM [3], Stu-
dent t-distribution mixture model (StMM) [13, 14] , model in [15] based on the maximum
of spatial likelihoods (MSL), DCASV [7], CLP, BLP [8], SVFMM [4] and spatially direc-
tional information-based Students t-distribution mixture model (SDIStMM) [16]. These
models are all implemented in the Matlab environment.

We choose two criteria to quantify the image segmentation results. They are the mis-
classification ratio (MCR) [17] and the probabilistic rand (PR) index [18], respectively.
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The definition of MCR is given by

MCR =
number of mis-classified pixels

total number of pixels
.

The value of MCR is lower and the result of image segmentation is better. The PR index
is used to quantitatively measure the real-world image segmentation results. The interval
of its value ranges from 0 to 1. The segmentation result is better if the value of PR is
higher.

4.1. Synthetic Images. In the first synthetic image experiment, we use a three class
(K = 3) synthetic image used in [17] which is generated by the Gibbs sample [9]. The
image has 128×128 pixels and its luminance values are 55, 115 and 225, respectively. The
original image is shown in Fig.1(a). The image shown in Fig.1(b) is corrupted by Gaussian
noise (0 mean, 0.01 variance). The image segmentation results obtained by K-means,
GMM, StMM, MSL, DCASV, CLP, BLP, SVFMM, SDIStMM and the proposed model
(SSGMM) are shown in Fig.1(c)-(l), respectively. It is a challengeable work to distinguish
the edges and contours of the regions for the corrupted image shown in Fig.1(b). It can be
seen from the segmentation results, the MRF-based models obtain better segmentation
results than K-means, GMM and StMM. It indicates that the spatial information plays
an important role in image segmentation. Furthermore, the proposed model reduces the
effect of the noise significantly. This experiment demonstrates that the robustness of the
proposed model is superior to the other models except for SDIStMM.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1. First experiment (128×128 image resolution).
(a)The original image, (b)Noisy image corrupted with Gauss-
ian noise(0 mean, 0.01 variance), (c)K-mean(MCR=7.68%),
(d)GMM(MCR=7.57%), (e)StMM(MCR=7.59%),(f)MSL(MCR=7.63%),
(g)DCASV(MCR=5.88%), (h)CLP(MCR=3.37%), (i)BLP(MCR=3.17%),
(j)SVFMM(MCR=4.64%), (k)SDIStMM(MCR=1.85%),(l)SSGMM(MCR=2.85%)

.

To further verify the correctness and robustness of the proposed model, we conduct
the experiments on the synthetic image shown in Fig.1(a) corrupted with varying levels
of noise. To lessen the effect of the randomness of the noise, we perform experiments ten
times at each noise level and the averages of the experimental results are given in Table 1.
We can obtain a conclusion from the Table 1 that the models which consider the spatial
relationship of pixels obtain better segmentation results than any other models which do
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not consider the spatial relationship of pixels. It proves that the spatial relationships of
pixels play an important role in image segmentation. Compared with any other state-
of-the-art model, the SSGMM produces relatively lower MCR values at each noise level.
From the Table 1, we can say that the MCR values of the proposed model increase
relatively lower than any other model at every noise level. This experiment shows that
the proposed model effectively captures the spatial relationships between the pixels and
is more robustness against noise than any other model.

Table 1. THE COMPARISON OF THE MCR FOR THE FIRST EXPERIMENT

Methods Gaussian Noise( 0 mean,var)
var=0.011 var=0.012 var=0.013 var=0.014 var=0.015 mean

K-mean 9.05% 10.00% 11.06% 11.83% 12.89% 10.97%
GMM 8.94% 9.82% 10.86% 11.69% 12.71% 10.80%
StMM 8.86% 9.71% 10.74% 11.50% 12.56% 10.67%
MSL 9.02% 9.97% 10.99% 11.82% 12.88% 10.94%

DCASV 7.04% 7.79% 8.76% 9.49% 10.45% 8.71%
CLP 4.36% 4.86% 5.62% 6.16% 6.94% 5.59%
BLP 3.91% 4.22% 4.94% 5.42% 6.14% 4.93%

SVFMM 5.48% 6.54% 6.99% 7.67% 8.65% 7.07%
SDIStMM 1.81% 2.28% 2.36% 2.44% 2.95% 2.37%
SSGMM 2.95% 3.09% 3.35% 3.65% 4.03% 3.41%

We apply another synthetic image shown in Fig.2(a) to the second experiment. The
128× 128 pixel image used in [16] has three classes (K = 3) and the luminance values are
[85, 170, 255]. The structure of image is more simpler than the structure of image used
in the first example. The image shown in Fig.2(b) is obtained by corrupting the image
shown in Fig.2(a) with Gaussian noise (0 mean, 0.015 variance). As can be seen from
the segment results shown in Fig.2(c)-(l), the proposed model reduces the effect of noise
clearly. It produces a lower MCR than the other models except for SDIStMM. The aver-
ages of the experiments with each noise level are given in Table 2 (ten times experiments
are performed on each noise level.). From Table 2, the lower MCR values obtained by
the proposed model on each noise level show that the proposed model produces better
segmentation results than those of the other models. From the table 2, we can see that
the differences of MCR obtained from the image shown in Fig.2(a) between the SSGMM
and the other models are larger on each noise level than the image shown in Fig.1(a). It
also shows that the proposed model can obtain better segmentation results under simpli-
fied image structure. From the synthetic image experimental results, we can see that the
proposed model can effectively reduce the Gaussian noise than some models.

4.2. Natural Grayscale Images. It is a challenge work to segment real-world outdoor
images because the objects in real-world images are various and complicated. To verify the
segment performance of the proposed model for real-world images, the Berkeley’s image
segmentation database [19] is chosen. There are 300 grayscale images in this database.
PR is chosen to quantitatively estimate the segment results. The segment results of image
291000 are shown in Fig.3. From the results, we can see that the result obtained by the
proposed model is more smooth than the results of the other models. To further test the
effectiveness and accuracy of the proposed model, the PR values of 20 images segment
results obtained by some models are given in table 3. We can see that the proposed
model obtains relatively better segment results than any other models. It proves that the
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2. Second experiment (128×128 image resolution). (a)The
original image, (b) Noise image corrupted with Gaussian noise (0 mean,
0.015 variance), (c)K-mean(MCR=14.25%),(d)GMM(MCR=19.17%),
(e)StMM(MCR=19.16%),(f)MSL(MCR=13.68%),(g)DCASV(MCR=9.47%),
(h)CLP(MCR=5.94%), (i)BLP(MCR=4.86%),(j)SVFMM(MCR=7.52%),
(k)SDIStMM(MCR=0.52%), (l)SSGMM(MCR=0.93%).

.

Table 2. THE COMPARISON OF THE MCR FOR THE SECOND EXPERIMENT

Methods Gaussian Noise( 0 mean,var)
var=0.016 var=0.017 var=0.018 var=0.019 var=0.020 mean

K-mean 15.64% 16.99% 17.95% 18.90% 19.87% 17.87%
GMM 13.63% 15.88% 16.02% 16.47% 17.68% 15.94%
StMM 19.55% 20.22% 20.59% 21.23% 21.55% 20.63%
MSL 14.83% 16.20% 17.18% 18.12% 19.07% 17.08%

DCASV 10.19% 11.17% 11.78% 12.61% 13.31% 11.81%
CLP 6.74% 7.80% 8.52% 9.33% 10.19% 8.52%
BLP 5.68% 6.69% 7.44% 8.24% 9.14% 7.44%

SVFMM 7.79% 8.28% 10.01% 10.72% 11.45% 9.65%
SDIStMM 0.93% 1.10% 1.13% 1.50% 1.57% 1.25%
SSGMM 1.29% 1.65% 1.95% 2.27% 2.81% 1.99%

proposed model (SSGMM) is more effective and corrective than some other models for
real-world images segmentation.

5. Conclusions. In this paper, we present a GMM which fully incorporates the spatial
relationships between the pixels. The component function of a pixel is also closely relative
to its neighboring pixels. To effectively inference the unknown parameters of the proposed
model, gradient descent method is introduced. Some experiments conducted on synthetic
and real-world grayscale images show that the proposed model outperforms some other
models for image segmentation. However, the proposed model can only deal with the
grayscale image. How to extend the proposed model to segment color images is one of our
future’s work. At the same time, the proposed model may be applied for medical image
segmentation.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Grayscale image segmentation(291000). (a)The original im-
age, (b) GMM(PR=0.676), (c) StMM(PR=0.675), (d)MSL(PR=0.676),
(e) DCASV(PR=0.678), (f) CLP(PR=0.679 ), (g) BLP(PR=0.680),(h)
SVFMM(PR=0.678 ), (i) SDIStMM(PR=0.687), (j)SSGMM(PR=0.691)

.

Table 3. COMPARISON OF IMAGE SEGMENTATION RESULTS
BASED ON BERKELEY GRAYSCALE IMAGES: PR.

Image K GMM StMM MSL DCASV CLP BLP SVFMM SDIStMM SSGMM

78004 5 0.766 0.765 0.769 0.767 0.769 0.769 0.771 0.771 0.771
78019 4 0.758 0.745 0.760 0.763 0.765 0.765 0.768 0.763 0.777
85048 5 0.752 0.740 0.758 0.755 0.756 0.757 0.761 0.756 0.758
207056 2 0.692 0.672 0.715 0.701 0.712 0.713 0.727 0.731 0.726
181091 4 0.755 0.753 0.758 0.759 0.760 0.760 0.758 0.768 0.761
97017 2 0.782 0.776 0.783 0.784 0.786 0.785 0.790 0.791 0.789
291000 6 0.676 0.675 0.676 0.678 0.679 0.680 0.678 0.687 0.691
147021 2 0.731 0.715 0.785 0.738 0.772 0.776 0.785 0.790 0.789
188005 5 0.744 0.739 0.749 0.747 0.747 0.749 0.750 0.748 0.750
145014 4 0.685 0.682 0.689 0.688 0.688 0.688 0.688 0.689 0.690
189011 2 0.761 0.760 0.779 0.762 0.777 0.779 0.777 0.77l9 0.780
239007 5 0.781 0.777 0.777 0.786 0.784 0.784 0.787 0.786 0.785
24063 3 0.858 0.844 0.828 0.860 0.853 0.850 0.688 0.857 0.857
246016 5 0.746 0.745 0.760 0.756 0.755 0.756 0.765 0.761 0.764
23080 5 0.741 0.731 0.752 0.746 0.747 0.748 0.756 0.747 0.752
38092 4 0.788 0.792 0.772 0.797 0.797 0.797 0.799 0.807 0.803
35010 5 0.713 0.714 0.720 0.719 0.720 0.719 0.722 0.722 0.722
55067 3 0.837 0.788 0.822 0.842 0.842 0.842 0.842 0.843 0.843
207056 2 0.692 0.672 0.715 0.701 0.712 0.713 0.727 0.731 0.734
181018 4 0.630 0.613 0.645 0.650 0.645 0.639 0.683 0.667 0.667
average - 0.744 0.735 0.751 0.750 0.753 0.753 0.751 0.760 0.762
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