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Abstract. This paper aims to propose a simple and fast approach to detect the fre-
quency of electrical signals based on zero-crossing point algorithms. First, we will use
the Fourier algorithm as a digital filter to fetch the fundamental signal of the acquired
signals, and then usea zero crossing algorithm technoogy which is then applied to the sine
or cosine signal of the fundamental signal to calculate the frequency of the fundamental
signal. It is intended to apply this theoretical development in personal computers to ana-
lyze the operation of the extracted signal with DAQ (Data Acquisition Card) device. This
system was developed by using a SCADA (Supervisory Control and Data Acquisition)-
based software, LabVIEW, to simulate a signal source with high-order harmonic and
noise signals combined together, and the program can be used to estimate the frequency
of fundamental sinusoidal signals. Experiment result has shown that the zero-crossing
point algorithm is an effective method of measuring the frequency.

Keywords: Frequency analysis, Zero crossing algorithm, Power signals, Fourier al-
gorithm, DAQ, LabVIEW

1. Introduction. Due to the convenience and diversity of the electrical products, peo-
ple find it extremely difficult to live without using electrical products. Although these
products are for people to enhance lifes convenience, they also affect the merits of power
supply quality. The electrical loading generated by electrical appliances will produce har-
monic currents which will result in polluting the power quality [1]. These pollutants are
likely to cause damage to the capacitor, communication interference, and transformer
and result in cable overloading and overheating accidents [2]. Power quality problems are
often noted when associated with industrial electricity issues [3], but these problems are
overlooked when associated with the people’s regular usage of electricity [4]. When elec-
trical products are damaged, few people think about whether the failures are the result
of contaminated electrical signal quality.

Over the past few years, a number of signal frequency detection methods [5-7] have been
proposed in the research literature. The bilinear principle is used for frequency deviation
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and is also an effective method for on-off nominal frequency estimation [8-9]. Moore et al
[10] also proposed a wide range of frequencies measurements using the adaptive algorithm.
Discrete Fourier transform and Kalman are also popular technoogy to be used in the
signal-filtering processing. In our research, we tried to develop a simple and fast way to
estimate power signal frequency. The measurement scheme is shown in figure 1, in which
we take advantage of the NI cDAQ-9174 & NI 9225 signal acquisition card so that not only
the development’s time is reduced but also the effects are quickly achieved as well. The
captured power signals are again applied with the proposed Fourier algorithms to filter
out harmonic signals and noise, which then are imposed with a zero crossing algorithm to
measure the frequency, phase, amplitude, and other signal parameters. The measurement
parameters on a LabVIEW platform could be passed through WiFi communication to
our intelligent cell phone by using data share technoogy, so that you can achieve real-time
monitoring of power quality measurements.

Figure 1. Measurement Schematic for fundamental frequency analysis of
the power signal.

2. Algorithm implementation.

2.1. Fourier algorithms. A measured signal of any voltage or current can be expressed
as an equation (1).

v̇(t) = C cos(ωt+ φ) +R(t) (1)

Where C is the amplitude of the fundamental wave, ω = 2πf is the fundamental angular
frequency, f is the fundamental frequency, φ is the phase of the fundamental wave, and
R(t) is the high harmonics and zero-mean noise signal.

If the exact value of the fundamental frequency is unknown, the supposed angular
frequency of the fundamental frequency is ωa and va(i) are the estimated amplitude of
the fundamental frequency of the signal, m is the number of samples taken by the supposed
fundamental frequency period, vn is the sample value of the n signal.

Each sample value of the fundamental frequency can be presented by a discrete Fourier
series (DFS) as follows:

V̇a(i) =
2

m
[
m+i−1∑
n=i

Vn cos(
ωaTa
m

n− j
m+i−1∑
n=i

Vn sin(
ωaTa
m

n] = A(i) + jB(i) (2)

Where fa = 1/Ta , Ta = 2π/ωa and ψ = (ωaTa)/m = 2π/m . For the i-th data window,
the sine and cosine components, A(i) and B(i) can be calculated as follows:
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Ȧ(i) =
2

m

m+i−1∑
n=i

Vn cos(ψn) (3)

Ḃ(i) =
2

m

m+i−1∑
n=i

Vn sin(ψn) (4)

Where C(i)a =
√
A(i)2 +B(i)2 is the estimate amplitude φf = B/A of the fundamental

frequency in the ith data window, and C(i) is accurate only when ωa = ω. Assume the
sampling frequency for the measured signal is fs = m/Ta = 1/Ts, where Ts is the sampling
period.

If the data window is swept by the signal, the equation (3) and (4) may provide A(t)

and B(t) with the corresponding value of one period. Sine and cosine components, A and
B, are the periodic functions of time if the frequency of the fundamental signal is equal to

the assumed fundamental frequency in the Fourier series equation (Ts•m = Ta = T =
1

f
).

Additionally, A(t) and B(t) are mutually orthogonal in the frequency f , where A(t) is a
pure cosine wave, and B(t) sine wave. When Ta 6=, A(t) and B(t) are not pure sine wave
and cosine wave, respectively. However, their fundamental frequency is still f .

Figure 2. The fundamental signal with its 3rd and 5th harmonics

Figure 2 shows a 60 Hz fundamental frequency and its higher harmonic signal, and the
electrical voltages of the harmonics are assigned to 100% of the 1st, 40% of the 3rd and
30% of the 5th harmonic waves. In practice, the cosine and sine signals of the equation
(3) and (4) can be represented as equation (5) and (6), a vector with length m.

˙cos =
2

m
[cos(ψ), cos(2ψ), . . . cos((m− 1)ψ), 1]T (5)

˙sin =
2

m
[sin(ψ), sin(2ψ), . . . sin((m− 1)ψ), 0]T (6)

The vector of signal samples is expressed as an equation (7).

ṠAMs = [v1v2v3v4v5 . . . . . . vn]T (7)
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By using auxiliary vectors of cosine and and sin, equation (3) and equation (4) are
calculated only by multiplications and additions without any trigonometric calculation,
so the calculation is very simple.

After each sampling, the sampling points should be re-arranged as an equation (8).

v̇1 = v2, v2 = v3, . . . . . . vn = vnew (8)

Thus, moving the data window and the signal sample values are considered as scalar
signal processing. For each data in the data window, according to the relationship of
equation (3) and equation (4), it can calculate their corresponding cosine (A(t)) and sine
(B(t)) components.

For example, suppose a signal is sampled with five periods, and one period has m=128
points. Then there will be 128 * (5-1) +1= 513 data windows in the calculations. The
cosine function (A(t)) can be computed as follows:

Ȧ(i) =
2

m

m•(5−1)+1∑
n=1

vn cos(ψn) (9)

Where m=128 and i = 1,2,3,. . . ,128(5-1)+1

2.2. Zero-Crossing Algorithm. The zero-crossing algorithm is an intuitional frequency
detection method, simple calculation method, and fast execution without the complex
mathematical formulas. For a periodic signal, the period between two zero-cross points
is half the signal period. Through calculating the numerical time units of two adjacent
zero-crossing points on the time axis, and finding its countdown, it can obtain the actual
frequency of the signal [11].

Consider an electrical signal, it can be expressed as a sinusoidal function in an equation
(10) and its zero crossing algorithm could be deduced by figure 3.

Figure 3. Schematic for zero crossing algorithm

Where, A is the amplitude, ω = 2πf is the angular frequency, and f is frequency of
the signal. When the signal is represented in a discrete manner, and even if t = kTs is
substituted, equation (10) can be expressed by the following equation

ẏ(k) = A sin(ωkTs) (10)
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In the signal sampling process, the X axis is represented in the scale of the degree of
diameter, the angular difference between successive sampling points [12, 13] is

∆̇θ = ωTs = 2πfTs (11)

Where Ts is the sampling time interval. Assuming a full cycle of sampling points is
m, signal periods are equivalent to sampling interval multiplied by the number of points.
Therefore, the signal frequency can be calculated by the following formula

ḟ =
1

mTs
(12)

In practical applications, since the sampling frequency is not an integer multiple of the
actual signal frequency, the signal period is not an integer multiple of the sampling period.
Therefore, Most of the exact m values are not integer values. As we investigate the Ti
period of the signal in figure 3, there are two zero crossing points(Ti, 0) and (Ti+1, 0) with
voltage magnitude transition from negative to positive in this period, where Ti is between
the points (θi−1, Yi−1) and (θi, Yi), and Ti+1 between (θi+m, Yi+m) and (θi+m+1, Yi+m+1).
The exact periodic of this sinusoidal wave can be expressed as

Ṫ = mTs + δ2 + δ3 = mATs = mA∆θ (13)

Where Ts = ∆θ is the sampling interval. Because the signal period is not an integer
multiple of the sampling interval, mA value is not set to an integer; according to Figure
3, mA can be obtained by equation (14).

ṁA = m+
δ2
∆θ

+
δ3
∆θ

= m+
δ2

δ1 + δ2
+

δ3
δ3 + δ4

(14)

Where, δ2 = θi − Ti is the time difference between the i sampling point (θi, Yi) and
zero point (Ti, 0), and δ3 = Ti+1 − θi+m the time difference between the last sampling
point(θi+m, Yi+m) and the zero point (Ti+1, 0). δ3 = Ti+1 − θi+m. Since we define the
time difference of two adjacent sampling points, ∆θ = Ts, the total sampling points
corresponding to one period (T ) from (Ti, 0) to (Ti+1, 0), are equal to mA. Therefore, the
entire period of sine wave can be a fraction of the number of samples, which makes the
signal period calculation more accurate. Applying the definition of equilateral Triangle
in figure 3, the following formula can be obtained

δ2
δ1 + δ2

=
|yi|

|yi|+ |yi−1|
(15)

δ3
δ3 + δ4

=
|ym|

|ym|+ |ym−1|
(16)

Equation (14) can be expressed as

ṁA = m+
|yi|

|yi|+ |yi−1|
+

|ym|
|ym|+ |ym+1|

(17)

The accurate frequency of the evaluated signal can be estimated as

ḟ =
1

mATs
= fa

m

mA

(18)
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Even (θi, Yi) and (Ti, 0), (θi+m, Yi+m) and (Ti+1, 0) are exactly overlapping each other,
the equation (17) and (18) can still be used for frequency detection.

The electric power measurement algorithms based on the zero crossing algorithms are
simple and fast, but there are many restrictions, such as the harmonic of larger amplitude,
non-integer harmonic wave, and noise, which are very easy to disturb the determination of
the zero-crossing points. Therefore, Fourier Series algorithms are proposed to filter out the
higher order harmonic and noise of the signal, then the zero crossing algorithms could be
implemented to calculate the fundamental frequency of the signal accurately. This article
will identify several items which will undermine the zero-crossing points determination and
verify whether adding a Fourier series-based filtering method can improve the accuracy
more.

3. Simulation and discussion.

3.1. Large Harmonics. We set up two experiments to show how the larger harmon-
ics distort the zero-crossing point and result in a wrong estimation of the fundamental
frequency. In table 1, comparing case 1 with case 2, where the signal is composed of the

Table 1. Zero-crossing influenced by large harmonics

fundamental frequency (60 Hz) and its 2nd, 3th and 4th harmonics, It is discovered, as
shown in table 1, that adding a greater harmonic could undermine zero crossing, which
will result in incorrect information calculation by only using zero-crossing algorithms.
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Due to the larger harmonic components presence in the Power signal, as shown in case
2, the overall signal generates an excessive zero-crossing point on each 60 Hz cycle that
makes the zero-crossing algorithm fail to determine the fundamental frequency. The same
result is shown in case 3 and case 4, if only the zero-crossing algorithm implemented for
this case, this will cause the error analysis of the results. Through our proposed Fourier
series-based filtering approach, the fundamental frequency component can be accurately
captured so to reduce the calculation errors caused by the excessive zero-crossing point.

If just a single higher harmonic is encountered with the fundamental frequency, it
also exhibits the excessive zero-crossing point. As investigating the applying voltage
magnitude of the harmonic signal in the simulations (shown in table 2), the excessive zero-
crossing points are more easily e generated by even multiples harmonics (120hz, 240hz,
360hz) than odd multiples harmonics (180hz, 300hz, 420hz). As the sampling points
are larger than the maximum sampling points, the excessive zero-crossing points will
still need to be determined. Even though the lower sampling rate sometime prevents the
disturbance of the excessive zero-crossing points, it discards the accuracy of the frequency
measurement.

Table 2. The minimum magnitude of the harmonic disturbing zero-
crossing point

According to the sampling theorem, high sampling frequency can get more sampling
points on each cycle of the signal and result in a more precise calculation of the recovered
fundamental frequency. It can be found as shown in figure 4 and figure 5 that even both
harmonic signals (120hz and 240hz ) superimpose on the 60Hz fundamental signal, where
the harmonic signals have an intersection at the zero- crossing point which is the same as
the fundamental signal, so the transition slope at the intersection is not so obvious and
fails to be observed. Further, the zero-crossing is calculated based on equivalent triangles,
so it will flatten the slope of zero-crossing point and lead the missed determination of the
zero-crossing points.

The disturbances of zero-crossing points for the odd harmonic signals (300Hz and
420Hz) are not quite the same way, as shown in figure 6 and figure 7, where the dis-
turbances require the larger amplitude, but the amplitude is too small to interfere with
the crossing point. However, if a larger than the critical magnitude of the amplitude
appears as shown in table 2, it will nterference the determination of the zero-crossing
point. The disturbance will happen since the zero crossing algorithm finds excessive zero
crossing points in the every cycle of the 60 Hz fundamental signal.
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Figure 4. The mixed signal of the fundamental signal and its second harmonic

Figure 5. The Mixed signal of the fundamental signal and its fourth harmonic

Figure 6. The Mixed signal of fundamental signal and its fifth harmonic

In figure 8, it can be found that the fundamental signal superimposing its high harmon-
ics could disturb the zero-crossing point of the fundamental signal, so the digital Fourier
series (DFS) can be applied to filter out the fundamental signal and facilitate the further
accurate zero-crossing algorithm calculation.
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Figure 7. The Mixing signal of fundamental and its senenth harmonic

From figure 8, it could be found that the sampling data is about 4.5 cycles of the
waveform, but the acquired fundamental signal will miss one cycle of the waveform after
the processing of the digital Fourier series (DFS).

Therefore, in the DFS implementation, the cycles of the sampling data must be brought
over more than three cycles in wavelength, because in the calculation of the zero-crossing
algorithm, it always makes a little modification on the length of the wave data.

Since it could be done by a single waveform calculation for the zero-crossing implemen-
tation, the original sampled data is suggested to be more than three cycles of the waveform
to make sure enough wave data could be provided for the zero-crossing calculation after
it was processed by the DFS algorithm. In our applications, we always provide about
10 cycles of the sampled data to assure we have enough wave data for the zero-crossing
calculation and we take the average of the summation of the zero-crossing points of each
cycle to improve the calculation accuracy.

Figure 8. The signal with DFS implementation

3.2. Adding Noise. Since the zero-crossing algorithm is a kind of time-domain analysis
technoogy, analysis accuracy is very susceptible to any interference on the zero-crossing
point of the signal. Therefore, in this study, before the zero crossing algorithm is applied,
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the digital Fourier series (DFS) will be applied to filter out unwanted information to get
an accurate fundamental frequency component without interference. In figure 9, we can
add a larger white noise on the fundamental signal and apply the DFS on the signal to
show the anti-noise performance of the DFS implementation in figure 10.

Figure 9. The fundamental signal with white noise

Figure 10. Signal processing using the DFS

We also set up a simulation, as shown in table 3, the magnitude of white noise is
varied from 1 volt to 13 volts, to investigate the influence of the white noise on the zero-
crossing calculation. When the magnitude of white noise increases up to 4% (6 volts) of
the fundamental signal, without the DFS implementation involved, the only zero-crossing
algorithm might fail to measure the fundamental frequency and show a measured error
much more than 18.4%. Even though the measurement errors might increase as well as
the magnitudes of the while noise increase, they are not in the proportional relationship,
and it depends how the noise disturbs the zero-crossing points of the 60hz fundamental
signal. With the implementation of DFS, the measurements are found to have an accuracy
of 99.8%, no matter how large the magnitude of the noise being added to the fundamental
signal.
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Table 3. Noise elimination with DFS enhancing the zero-crossing accuracy

Figure 11. The influence of inter-harmonics on the zero-crossing algorithm

3.3. Interference of inter harmonics. Non-integer multiples of the fundamental har-
monic is commonly known as inter-harmonics. When the power signal contains a harmonic
component, it may interfere with the position of the zero-crossing point, which results in
the zero-crossing method of failure. The paper proposed the Digital Fourier series algo-
rithm to filterout the inter-harmonics, and set up a few simulation conditions to prove its
effectiveness, where the fundamental frequency is 60Hz with amplitude of 150 volts. The
frequencies of the 3rd, 5th and 7th harmonics signal are varied synchronous from 180 Hz,
300 Hz and 420 Hz to 184 Hz, 304 Hz and 424 Hz with a increment of 0.1 Hz for each
step. The amplitude of 3rd, 5th and 7th harmonics signal was set at 45, 15 and 1 volts
individually.

It is found from figure 11 that the influences of inter harmonics on the zero-crossing
calculation is extremely severe.

From the information obtained from figure 11, it can be found that when the traditional
zero-crossing algorithm is encountered with this problem, the accuracy of the calculated
information is worse. However, added with Fourier algorithm in front, the inter-harmonic
is even too large, we can also accurately calculate the fundamental frequency of the power
signal.

4. Experimental results. In general, the simulated signal development for the engi-
neering experimental ways takes too much time. However, based on the principle of vir-
tual instruments, LabVIEW can simulate quickly and accurately to obtain the required
information in simulating a variety of situations.
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Figure 12. User interface I of Labview

Figure 13. User interface II of Labview

Prior to the real measurement, Labview is used to produce a variety of simulation
signals and stimulate the signal from the analog output port of NI-myDAQ [14], then
the stimulated signal is acquired from the analog input port of NI-9225 [15] to processing
the input signal and verifying the proposed algorithm. Since the real power signal of
general household electricity shows a voltage magnitude of about 155 volts, NI-9225 which
possesses a voltage acceptability of about 300 volts is selected and used to measure these
power signals.

The user interface of Labview is designed as shown in figure 12 and 13, then figure 14
is the hardware setup of this research where wiring setup for port AI0 of NI-9225 is wired
to the real power signal, port AI1 the Signals sent by the NI-myDAQ, port AI2 is Signal
sent by the function-generator. The function-generator can generate a specific signal
to test the measurement accuracy of NI-9225 and also can be correlated with the signal
output from the NI-myDAQ. Figure15shows the fundamental frequency determined by our
measurement system and shown on a mobile device though the data sharing technoogy
(data dashboard) of Labview.
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Figure 14. Hardware setup of the research

Figure 15. The fundamental frequency measure as shown by a cellphone

By taking advantage of the LabVIEW Web Publishing Tool, you can quickly publish
the program as a webpage to mobile devices. And you can not only achieve the real-time
monitoring remotely but also control the instrument to achieve some specific purposes. We
can also utilize the Data Dashboard APP on the mobile devices to monitor the calculated
values from the Labview program without spending time and extra-cost to develop the
other APP.

In this paper, the NI cDAQ-9174 [16] is used for power signal acquisition, and LabVIEW
is used to develop programs, where the NI cDAQ-9174 is a 4 slot USB chassis which is sold
with the NI 9225 and other analog and digital modules. The proposed Fourier algorithm
is used to get fundamental signals by filtering out signal noise and high harmonic signals.
And then the zero-crossing algorithm is used to calculate the frequency of measured
signals. LabVIEW and NI-DAQ are confirmed to effectively integrate hardware and
software, and can be used to implement a high-performance, portable, and real-time
monitoring platform of electrical signals.

5. Conclusion. In this paper, the digital Fourier series (DFS) and the zero-crossing of
the two algorithms are matched to validate whether it can achieve and solve the short-
comings and problems of only the zero-crossing algorithm.

Therefore, by using the virtual instrument technoogy of Labview, we set up a few
simulation conditions to verify the proposed algorithms which proves the reliability and
accuracy of the proposed hardware configuration, finally, the NI cDAQ-9174 & NI 9225
are used to measure real signals.

Verified by the above experiments, it can be found that the proposed method can
eliminate many problems of the only zero-crossing algorithm. The problems ruled out by
the research methods can be used in actual measurement.

In this study, LabVIEW programming technoogy is utilized to implement both the digi-
tal Fourier series and zero crossing algorithm. Then, the Fourier transform algorithm with
zero-crossing algorithms is proved being superior compared with the only zero-crossing
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algorithm in many experimental conditions. At last, the Data Dashboard app for the Lab-
VIEW applications are also implements to build a remote power frequency monitoring
system.
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