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Abstract. A proposed mathematical model is established for modal analysis of a micro
manipulator. According to the geometric characteristics of the manipulator, the model
is built by using finite element method with multipoint constraint equations, and the
corresponding displacement coordinate matrix is obtained after that. Considering that
the regular flexure hinge plays a key role, in this analysis process, the hinge is treated
as a varied cross-section Euler-Bernoulli beam element and the finite element model is
established by a new procedure which followed the element internal equilibrium principle
consequently. The stiffness matrix, the mass matrix and the exact shape functions of the
non-prismatic beam element can be obtained respectively. Furthermore, the influences of
geometric parameters on the fundamental frequency can also be discussed.
Keywords: Improving model; Micro manipulator; Natural frequency analysis.

1. Introduction. Micro manipulators are abundantly used in scientific instruments and
precision engineering applications, such as adjustable posture institution of microwave
antenna, scanning tunnel microscopy, bionic mechanism, micro-gripper, etc. These com-
pliant mechanisms are manufactured integrally without assembling; and other character-
istics include no friction, no backlash and low clearance make it easily to obtain high
accuracy and reliability. A novel flexure-based 3-DOF mechanism which can achieve dis-
placements in X,Y and φ in [1]. A proportion compliant mechanism is designed in [2]
and proposed an analytical model based on the principle of virtual work and PRBM.
A XY stage which is capable to scan over a relatively large range with high scanning
speed is designed in [3]. A high-performance nano-positioning stage for high-bandwidth
applications is presented in [4]. A parallel linear compliant mechanism is designed in [5]
which is chiefly implemented by monolithically flexure hinges for two axes ultra-precision
linear motion. 6-DOF flexure-based micro-manipulator is designed in [6] which is to be
used as a fiber optics aligner is assembled by two parallel stages and these two stages
have 3-DOF respectively. A large displacement precision XY positioning stage based on
a novel designed cross strip flexure joint is presented in [7]. The flexure hinge, regarded
as an essential factor for the micro manipulator, has been developed and investigated in
the pertinent literature. Some works focused on the geometric configurations of the hinge

1242



An Improving Analytically Model with High Accuracy for A Micro Manipulator 1243

[8]-[13], it is indicated that closed-form compliance equations for diverse type of flexure
hinges are very important. Accordingly, kinds of analytic approaches are utilized such
as unit-load method, Castiglianos second theorem, elastic strain energy method, empiri-
cal equations established by the simulation analysis, the integration of linear differential
equations, etc. Among those approaches used, finite element method drew much atten-
tion due to its some merits. The spatial stiffness matrix of the flexure hinge by using the
finite element method is established in [14]. Another work regarded the single-axis cir-
cular flexure hinge as a three-node line element with 12-DOF in [15]. Flexure hinge here
was taken as a varied cross-section in-plane Euler beam element with two-node in [16].
A similar work was followed in [17]. Second-order Hermite polynomial was utilized to
establish shape functions of three-node non-prismatic beam element in order to enhance
modal accuracy. In these researches, the flexure hinge was identified as a beam element
with variable cross-section profile. Unfortunately, traditional displacement interpolation
functions were not capable to describe unit displacement effectively [18], some researchers
are focused on other methods. In [19], the exact shape functions were obtained by the
analytical solutions of the beam governing differential equation, but this situation is only
comfortable for the beams with simply varied cross section profile. A new method by
using element-based equilibrium to obtain the exact displacement interpolation functions
was presented in [20]. A similar work [21] dedicated to propose the strain interpolating
functions rather than the shape functions of Euler and Timoshenko beam elements. The
aim of this research is to present the modal analysis of a classic micro manipulator by
using finite element procedure. The stiffness and mass matrices of the flexure hinge is
established based on the thought of [20], which is treated as an in-plane two-node beam
element with variable cross-section. The result of the mechanical modal analysis is com-
pared to the FEA result to validate its accuracy.

2. Free vibration analysis equations including multipoint restriction condi-
tions. The monolithic micro manipulator is composed of eight uniform-profile typical
flexure hinges. When the manipulator is assembled into the practical application equip-
ment combing with PZT, the dynamics analysis should be implemented. As a geometric
unit, the flexure hinge is treated as the non-prismatic beam by using an efficient procedure,
the stiffness and mass matrices will be discussed in the next section. Besides, eccentric
distances exist between some nodes. This, in this paper, will adopt the multipoint con-
straint equations to simulate the excursions. Based on the finite element method, one of
the most effective Energy principles, Hamilton principle, can be used to solve structural
dynamics problem, one yield:

δ

t2∫
t1

Ldt = 0 (1)

where L is Lagrange functional and yields:

L = Ep − Π + Wf (2)

where Ep,Π and Wf represent the system kinetic energy, strain energy and external work
respectively, and Ep = 1

2
DT
eMDe,

∏
= 1

2
DT
e KDe,Wf = DT

e F .
In this case, considering the nodal eccentric distances, some compatibility equations

should be added, it can be expressed by:

CDe −Q = 0 (3)
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Combining the Eq.2 and Eq.3 and the correction functional L* can be expressed as:

L∗ =
1

2
ḊT
eMḊe −

1

2
DT
e KDe +DT

e F − λT (CDe −Q) (4)

where λ is lagrangian multiplier.
Changing the sequences of the variation and integration, and by Hamilton principle one

can obtain that:

δL∗ = −δDT
eMD̈e − δDT

e KDe + δDT
e F − δλT (CDe −Q) − λTCδDe = 0 (5)

Considering that λTCδDe = δDT
e C

Tλ , and Eq.5 can be rewritten as:

δDT
eMD̈e + δDT

e KDe − δDT
e F + δλTQ+ δDT

e C
Tλ = 0 (6)

and

(δDT
e δλT )

[
M 0
0 0

](
D̈e

λ̈

)
+ (δDT

e δλT )

[
K CT

C 0

](
De

λ

)
=
(
δDT

e δλT
)(F

Q

)
(7)

considering that δDe and δλ are arbitrary and the system finite element equations with
the additional constrained conditions can be obtained as[

M 0
0 0

](
D̈e

λ̈

)
+

[
K CT

C 0

](
De

λ

)
= 0 (8)

3. Derivation of the system multipoint constraint equations and matrix C.
The traditional micro manipulator is symmetric, consequently, there are two groups of
situations need to establish the constraint equations. The key to establish the constraint
equations is to utilize the kinematic relationships of the nodal degrees of freedom. The
constraint equations can be obtained as:

di1 = q1 − lyq3
di2 = q2
di3 = q3
dj1 = q1
dj2 = q2 + lxq3
dj3 = q3

(9)

eliminating the degrees freedom of the rigid body q1, q2 and q3, we can obtain three
equations as:  di1 + lydi3 − dj1 = 0

di2 + lxdi3 − dj2 = 0
di3 − dj3 = 0

(10)

Another group can be performed to obtain another group of constraint equations: dm1 − lydm3 − dn1 = 0
dm2 + lxdm3 − dn2 = 0
dn3 − dm3 = 0

(11)

4. Derivation of the element matrices of the flexure hinge.
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4.1. Element stiffness matrix. The cross section height t, the area A and the moment
of inertia I of the hinge can express by means of functions of the length of the hinge x in
Eqs.12-14 respectively. It can be treated as a non-prismatic beam element with two nodes
in plane in the element coordinate system, and each node has three degrees of freedom.
Neither of boundary conditions applies on the beam element obviously, there are 3 DOFs
that relate to the rigid body motion consequently. For the purpose of eliminating the
rigid body motion, in the generalized element coordinate system, node 1 is restrained and
the beam element has three independent deformations.

t(x) = 2r + t− 2

√
r2 − (r − x)2 (12)

A(x) = bt(x) = b(2r + t− 2

√
r2 − (r − x)2) (13)

I(x) =
bt(x)3

12
=
b(2r + t− 2

√
r2 − (r − x)2)3

12
(14)

According to the beam theory, the displacement of an arbitrary node in the plane beam
element can be expressed as follows:

u(x, y) =

{
ux(x, y)
uy(x, y)

}
=

{
u(x) − yθ(x)

v(x)

}
(15)

where u(x), v(x) and θ(x) are the axial displacement, longitudinal displacement and angle
displacement with respect to x, respectively.
The corresponding strain ε( x, y) can be derived from Eq. 16 as follows:

ε(x, y) =

{
εxx(x, y)
γxy(x, y)

}
=

{
∂ux(x,y)

∂x
= du(x)

dx
− y dθ(x)

dx
∂ux(x,y)

∂y
+ ∂uy(x,y)

∂x
= −θ(x) + dv(x)

dx

}
(16)

According to the Euler-Bernoulli beam theory, shear deformation does not take part in
the strain vector, hence γxy(x, y)is equal to zero. Eq. 16 can be rewritten as:

ε(x, y) = εxx(x, y) = aεk (17)

Where a = (1 − y)T and εk = (du(x)
dx

dθ(x)
dx

)
T

The relationship between the internal force
σk and the axial deformation εk is:

σK ==

∫
A

aT caεKdA (18)

where σK = (N(x) M(x))
T

The tangent stiffness matrix of the cross section Ks(x) is obtained by:

Ks(x) =
∂σK
∂εK

=

∫
A

aTEadA (19)

Meanwhile, the element flexibility matrix in element coordinate system is then derived
by:

Ce =

∫ 1

0

b(x)TK
−1

s (x)b(x)dx (20)

where b(x) is the transformation matrix to obtain internal section forces in the generalized
element coordinate system:

σK = b(x)P (21)
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where P is the nodal forces P = (FxFyFz)
T and b(x) =

(
1 0 0
0 (2r − x) 0

)
The element

stiffness Ke is then computed by Eq. 22 after the nodal forces transformation matrix T
is obtained according Figs.4 (a) and (b).

Ke = TCe−1

T T (22)

where T =

[ −1 0 0 1 0 0
0 −1 −l 1 0 0
0 0 −1 0 0 1

]T
4.2. Element mass matrix and the shape functions. According to the previous
analysis, in the course of the derivation of the element stiffness matrix, there are no
displacement interpolation functions. Hence, the primary aim is to describe internal
displacement field by using the nodal displacements, then the mass matrix are established
naturally.

In the element coordinate system, the axial displacement ue(x), longitudinal displace-
ment ve(x) with respect to the arbitrary coordinate x can be expressed as:

ue(x) = N1(x)De
1 +N4(x)De

4 (23)

ve(x) = N2(x)De
2 +N3(x)De

3 +N5(x)De
5 +N6(x)De

6 (24)

where

N1 = 1 −
∫ x
0

1
EA(x0)

dx0∫ 2r
0

1
EA(ξ)

dξ

N2 = 1 −
∫ 2r
0

1
EI(ξ)

dξ
∫ x
0

(x−x0)(x0−2r)
EI(x0)

dx+
∫ 2r
0

(l−ξ)
EI(ξ)

dξ
∫ x
0

(x−x0)
EI(x0)

dx0∫ 2r
0

1
EI(ξ)

dξ
∫ 2r
0

(ξ−l)2
EI(ξ)

dξ−(
∫ 2r
0

(l−ξ)
EI(ξ)

dξ)2
− x

2r

N3 =
(−2r

∫ 2r
0

1
EI(ξ)

dξ−
∫ 2r
0

(l−ξ)
EI(ξ)

dξ)
∫ x
0

(x−x0)(2r−x0)
EI(x0)

dx−(2r
∫ 2r
0

(l−ξ)
EI(ξ)

dξ+
∫ 2r
0

(l−ξ)2
EI(ξ)

dξ)
∫ x
0

(x−x0)
EI(x0)

dx0∫ 2r
0

1
EI(ξ)

dξ
∫ 2r
0

(ξ−l)2
EI(ξ)

dξ−(
∫ 2r
0

(l−ξ)
EI(ξ)

dξ)2

N4 = 1 −N1 =

∫ x
0

1
EA(x0)

dx0∫ 2r
0

1
EA(ξ)

dξ

N5 =

∫ 2r
0

1
EI(ξ)

dξ
∫ x
0

(x−x0)(x0−2r)
EI(x0)

dx+
∫ 2r
0

(l−ξ)
EI(ξ)

dξ
∫ x
0

(x−x0)
EI(x0)

dx0∫ 2r
0

1
EI(ξ)

dξ
∫ 2r
0

(ξ−l)2
EI(ξ)

dξ−(
∫ 2r
0

(l−ξ)
EI(ξ)

dξ)2
+ x

2r

N6 =

∫ 2r
0

(l−ξ)
EI(ξ)

dξ
∫ x
0

(x−x0)(2r−x0)
EI(x0)

dx0+
∫ 2r
0

(ξ−l)2
EI(ξ)

dξ
∫ x
0

(x−x0)
EI(x0)

dx0∫ 2r
0

1
EI(ξ)

dξ
∫ 2r
0

(ξ−l)2
EI(ξ)

dξ−(
∫ 2r
0

(l−ξ)
EI(ξ)

dξ)2

Then, the element mass matrix can be calculated by:

M e =

∫ 2r

0

ρA(x)NT (x)N(x)dx (25)

where ρ is the material density, and N(x) =
[
N1 0 0 N4 0 0
0 N2 N3 0 N5 N6

]
Considering that the mass of rigid body in Fig.2 should be distributed to nodes, and the
mass matrix of the flexure hinge can be rewritten as:

M e =

∫ 2r

0

ρA(x)NT (x)N(x)dx+NT (x)

[
1
2
mx 0

0 1
2
my

]
(26)

5. Modal analysis with FEA and parameters influences analysis. In this section,
the analytical modal of the micro manipulator is validated by ANSYS modal analysis.
The operational structural parameters are the same as [22]. As the same procedures in
the previous static analysis, the mechanical amplifier 3D model is meshed by solid-186
element and the bottom of the amplifier is fixed. As shown in Fig.1, the first natural
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frequency is 74.58Hz by utilizing the theoretical model, comparing with 69.73Hz which is
obtained from the modal analysis, one finds that the result from the theoretical analysis
model is close to that of ANSYS simulation. It is found that the use of the theoretical
model is reliable, and it can be used to implement the optimal design.

Figure 1. The first forth mode frequencies of the micro manipulator

A parametric study is carried on to investigate the influences of the key geometric
parameters on the natural frequency of the mechanical amplifier.

Figure 2. Influence of the ratio r and neck thickness t on the first fre-
quency f

As shown in Fig.2, one can find that with the r is ascending; the first frequency is
descending, which is opposite to the variation tendency with respect to the t. Fig.3 shows
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Figure 3. Influence of the lx and ly on the first frequency f

the variation tendencies of the first frequency with respect to the geometric parameters
lx and ly. From Fig.3, one can find that with the parameters increase, both of lx and ly
would lead the first frequency to decrease. The difference is the tendency with regard to
the lx is more sensitive. Comparing results from these two groups, one can find that t
had a biggest impact on the first frequency, its value changes much considerable when t
varies at the range of 0.2mm− 1.2mm.

6. Conclusions. This research focuses on the issue of modal analysis of micro manipu-
lator. Flexure hinge is regarded as the non-prismatic beam elements, and the system fi-
nite element equations with multipoint constraint equations are established consequently.
After the model validation, the influences of the geometric parameters on the natural
frequency of the mechanical amplifier are discussed. The results indicate that, with the
increases of r, lx and ly, the natural frequency would decrease, and t has the biggest impact
on the frequency.
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