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ABSTRACT. The mitigation of epidemic spreading through complex networks has been
attracting more and more interest recently. The fundamental issue is how to effectively
allocate immunization resources due to their high cost. Previous works have considered a
lot of immunization strategies such as immunizing nodes in order of degree or between-
ness centrality. In this paper, we propose a new immunization strategy based on the
combination of closeness and betweenness centralities to find a subset of nodes whose
immunization efficiently reduces the network vulnerability. FExperiments show that for
networks with geometric and scale-free properties, our strategy can get higher efficiency
compared with the targeted immunization strategies based on single node centrality.

Keywords: Immunization, Complex networks, Vulnerability, Epidemic spreading.

1. Introduction. Many complex interacting systems such as social interactions and the
Internet can be modeled as networks where the components of the system are represented
by the nodes of the network and the interactions between the components are represented
by the links connecting nodes in the network [1]. Epidemic spreading processes such as
infectious diseases and computer viruses are resulting in severer damage in larger networks
of modern society. Due to limited budgets for network immunization, a well-established
strategy should identify a small subset of nodes whose immunization results in the minimal
network vulnerability.

Recently, several immunization strategies have been proposed. The most common
one is called the targeted immunization algorithm which first ranks nodes based on an
importance factor and then immunizes a fraction of nodes with the highest priority [2, 3, 4].
The importance factor of a node is also called node centrality. The most commonly used
node centralities are degree centrality, betweenness centrality, eigenvalue centrality and
closeness centrality. By far the largest amount of work has focused on the effect of
removing nodes uniformly at random or in decreasing order of their degree. [14, 15, 16]
study this question in considerable detail, and also discuss the related issue of percolation
on networks. However, less is known about how the structure of networks change when
nodes are removed according to non-local strategies of their importance. In [17] the effect
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of removing nodes both in decreasing order of degree and of betweenness centrality is
considered. Related work considering the effect of removing nodes based on betweenness
is also described in [18]. In this paper, we focus on how to find a limited subset of nodes
whose immunization minimizes the network vulnerability using adaptive strategies of node
centrality.
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F1GURE 1. The size of LCC, versus the number of immunized nodes for
HDA, HBA, HCA, HEA and our strategy for the power grid network with
4940 nodes.

2. Problem Statement and Preliminaries. Degree centrality defined as number of
links connected to a node estimates the immediate impact of node infection. The method
of immunizing nodes with highest degree centralities (HD) can efficiently reduce the
growth rate of epidemic diseases [5].

Betweenness centrality is the proportion of a node lying on the shortest path between
other nodes. It tests the level at which one given node connects to other nodes in the

network and is defined as: Pk )
. 7 a]
Cp(i) = jp(k B (1)
k.j ’

where k and j represent two nodes in the network, P(k,j) is the total number of short-
est paths between Node k and Node j in the network, and Pi(k,j) is the number of
those shortest paths that contain Node ¢. The method of immunizing nodes with highest
betweenness centralities (HB) can eliminate lots of disease transmission routes.

Closeness centrality describes the level at which a given node can on average reach all
other nodes in the network and is defined as:
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where 7 is a node in question and j is another node in the network, and d(i, j) is the length
of the shortest path between Node ¢ and Node j. The method of immunizing nodes with
highest closeness centralities (HC) can prevent disease transmission through the network
center.

Eigenvector centrality considers the importance of neighbors of a node and is defined
as:

Av=Av (3)

where A is the largest eigenvalue of the matrix A and v is the corresponding eigenvector.
A is called adjacency matrix which is a square matrix whose elements indicate whether
pairs of nodes are adjacent or not in the network. For simple network, its element A
is one when there is an link from node ¢ to node j, and zero when there is no link. The
diagonal elements of the matrix are all zero. The eigenvector centrality of Node 7 is the
i-th entry in this eigenvector. The method of immunizing nodes with highest eigenvector
centralities (HE) can prevent disease transmission among important nodes.

A simple improvement of the above strategies is to recalculate node centralities af-
ter immunizing a node. We call these adaptive strategies HDA, HBA, HCA and HEA
corresponding to HD, HB, HC and HE respectively [6, 7].

3. Proposed Scheme. As we know, the network vulnerability can be defined as the size
of the largest connected component (LCC) of a network. The reason is that in the worst
case, if there is a single source of infection, the maximum number of infected individuals
is equal to the size of LCC [8, 9]. A connected component is defined as a subset of nodes
which all are reachable from each other. The immunized nodes can be removed from
the network since they are neither infected nor infect others. Therefore, the problem of
network immunization with limited budgets can be translated into the question of how to
efficiently remove a certain number of nodes to reduce the size of LCC of a network. In
other words, we always hope that the size of LCC of the obtained network is as small as
possible after a fraction of nodes have been removed. Our question now becomes how to
remove a given number of nodes which results in the least size of LCC. It is notable that
the optimal node set to be removed is not necessarily composed of the k£ most optimal
individuals when considered alone[10]. In other words, the targeted immunization which
selects k£ most important nodes for immunization [6, 7] fails to solve the immunization
problem of finding an optimal set of k£ nodes whose immunization minimizes the network
vulnerability. This kind of problem has been proven to be NP-hard[11].

Among the adaptive strategies using node centrality, HBA is the most impressive one.
It outperforms other strategies such as HDA, HCA and HEA in many kinds of network[12].
To our knowledge, there is no other strategy which is superior to HBA in terms of reducing
the size of LCC. In this paper, we do not intend to propose a strategy exceeding HBA
in any kind of network but to provide an alternative strategy when HBA do not perform
optimally in some networks.

Our strategy is essentially a revised version of HBA strategy, which can be described
as below:

Input: an undirected unweighted network G

Output: a set of immunized nodes

Repeat following steps until the size of LCC is smaller than p % .S, where p is the
threshold and S is the initial size of G.

Step 1. Calculate the highest betweenness centrality score of G and denote it by 5.

Step 2. Choose nodes whose betweenness centrality score is larger than [ *w, where w
is the threshold with 0 < w < 1.
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F1GURE 2. The size of LCC versus the number of immunized nodes under
HDA, HBA, HCA, HEA and our strategies(denoted by BC) for geometric
preferential attachment model networks of size 4000 with different param-

eters.

Step 3. For all the nodes chosen in Step 2, select the node with the highest closeness
centrality score and remove it.

In our experiments, we let the w and p values be 0.92 and 0.1 respectively as default.



Protection on Complex Networks with Geometric and Scale-Free Properties 573

4000 T T T T 4000
-7y e ——HBA
e our e ——Hur
3500 — — Hca |1 3500 ——HcA
e R HEA
- VDA *_HDA
30001 ~\ 4 3000
25001 . 1 2500
Q \'\
g =\ g -
S 8
% 2000 4 % 2000 L
o | o |
N 1 u \
L | g \
15001 (Average Degree: 3.824 { 1 o0 b
Diameter: 28 | H ’ﬁ%
Average Path length | Average Degree: 3.830 1
10001| 13.973 { 1 10001 Digmeter. 28 |
Modularity: 0.846 & Average Path length: 13.977 {
Number of 5 Modularity: 0.851 | =
500 -| Communities: 23 Y H 500/ | Number of Communities: 21 %
Averag_s Clustering v Average Clustering (I
Coefficient: 0.117 Coefficient: 0.125
0 - | | | | o I I | | | |
0 100 200 300 400 500 600 700 0 100 400 500 600

00 300
Number of nodes removed

(8) ()

Number of nodes removed

4000: — T T T T 4000 T
" ——HBA —HBA
e — Our ] o
3500+ —_— — A |1 3500 o HCA |
~— HEA P ——HEA
ol o *  HDA
3000 N HDA 3000 R
~ .
\ e\
25001 Y 1 2500 5\ i
\
- \
1 i | 8 K’%&
2 x =
% 2000 | 1 % 2000 U K
4 ~ 3 1%
1] 2 12} 1
1500 & 4 1500 B
\
i3 [
1000 FAverage Degree: 3.828 | * 1 1000 Faverage Degree: 3.829 | * ]
Diameter: 28 \ Diameter: 27 \
Average Path length: 13.930 N Average Path length: 13.855 X. %

500 Modularity: 0.848 % q 500 Modularity: 0.855 (% A
Nurmber of Communities: 21 % Number of Communities: 23 L
Average Clustering Average Clustering
Coefficient: 0.113 i I i i 0 Coefficient: 0.111 L L L L L

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Number of nodes removed Number of nodes removed

(i) (i)
F1GURE 3. The size of LCC versus the number of immunized nodes under
HDA, HBA, HCA, HEA and our strategies(denoted by BC) for geometric

preferential attachment model networks of size 4000 with different param-
eters.

4. Experimental Results. In this section, we evaluate the effectiveness of our strat-
egy by comparing it with HBA, HCA, HEA and HDA strategies in a so-called geometric
preferential attachment network[13] and a real-world network (the power grid network of
Western States of the United States). The geometric preferential attachment model com-
bines geometric random graphs and preferential attachment graphs. Nodes are sequen-
tially generated with random positions in space and therefore have a geometric distance
between each other. Then nodes are connected within a fixed distance using the well-
known preferential attachment method. We think this model is more precise to model
some real-world networks than the commonly considered model networks such as ER and
WS models. Here, for the geometric preferential attachment network, the size is 4,000
and the number of edges added to each node is 2 and the beta parameter which controls
the reachable distance of nodes is 0.1.

We test the effectiveness of each strategy by plotting the size of LCC versus the number
of nodes removed. We can see from Fig.1 that, in the power grid network, our strategy is
better than the betweenness strategy when the size of LCC is between about 4900(99.2%
of the initial size of LCC) and 1250(25.3% of the initial size of LCC). When the size of
LCC is reduced to 50%, the nodes needed to be removed by our strategy is almost as half
as it needed by HBA.
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Fig.2 and 3 show the numeric results of applying different strategies to 10 geometric
preferential attachment models with different parameters. In 4 cases (Figs.2(c), 2(e), 3(g)
and 3(i)), our strategy is completely worse than HBA. In 2 cases(Figs.2(a) and 2(b)), our
strategy has evident advantage over HBA and in the other 4 cases(Figs.2(d), 2(f), 3(h)
and 3(j)), our strategy is superior to HBA in limited intervals.

From Figs. 1 and 2, we can see that the HCA curve approximately bisects the LCC
size for each drop since a node with higher closeness centrality score is closer to the center
of a network. The reason why our strategy beats HBA in some networks is that HBA
always finds nodes with the highest betweenness but may fail to notice some center nodes
with relatively low betweenness due to the structure of a network and it is those nodes
that sharply reduce the LCC size. However, our strategy does not outperform the HBA
strategy in networks without geometric distance and preferential-attachment properties
such as ER and WS networks. One of the reasons is that there usually does not exist a
fragile center part whose nodes are much less than other parts in this kind of networks
due to the homogeneity.

5. Conclusion. In this paper, we have proposed a new strategy to find a subset of nodes
whose removal minimizes the LCC size of a network. Our strategy provides an alternative
to the HBA strategy when one deals with the immunization problem in networks with
geometric and scale-free properties. Simulation results show that our strategy outperforms
the HBA strategy under certain conditions. Although the statistics of the model networks
are of little difference, the results of our strategy differ from each other when comparing
with the HBA strategy. Which structure feature results in that is still unknown and thus
finding the reason will be our future work.
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