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ABSTRACT. Block truncation coding (BTC) is an efficient compression method for grayscale
images. Based on the basic concept of traditional BTC, Absolute moment block trunca-
tion coding (AMBTC), which utilizes the average value of each block as the threshold to
divide each block into two pixel groups and a corresponding bitmap, is widely used because
it is simple and efficient. However, the average value of each block value is not always
the best threshold to recover the original image. In this paper, we use particle swarm
optimization (PSO) to search the optimal threshold in order to minimize the distortion
of the recovered image. In the meantime, by using PSO algorithm, the speed of searching
the optimal threshold can be flexibly changed according to two coefficients, the population
of initialized particles and the mazimum iteration time of PSO. The experimental results
show that the restored image of our method has better visual quality than AMBTC and
1s especially efficient to find the near optimal threshold when the block size is large.

Keywords: Image compression; AMBTC; Optimal threshold; PSO

1. Introduction. With the rapid development of the Internet, digital images are widely
used in many fields. However, the large amount of data needed to represent digital images
makes its transmission slow and storage expensive. Therefore, it is necessary to compress
these images before they are stored or transmitted. There are two branches of image
compression, lossless compression [1, 2] and lossy compression [3, 4, 5, 6]. As one of lossy
compression techniques, BTC proposed by Delp and Mitchell in 1979 [7], is famous for its
efficiency because it has low computation complexity. Moreover, it can maintain a good
visual quality of the restored image. Owning to these advantages, BTC has been employed
in many fields, such as data hiding [8], edge detection [9], image retrieval [10, 11], and
secret sharing [12, 13].

In the process of BTC, the image is first divided into many non-overlapping blocks.
Then the first two sample moments of each block are preserved in order to divide this
block into two groups. Considering the average value of each block as a threshold, a
corresponding bitmap is generated. Finally, the average value of this block, the standard
deviation of the block and a corresponding bitmap can be used to reconstruct the original
image block.
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Many approaches have endeavored to improve the performance of BTC. The first cate-
gory of these schemes is focusing on preserving the moment characteristic of the original
image. In 1984, Halverson et al. [14] generalized a family of moment-preserving quantizers
with the potential for improved performance. Later, a modified BTC method [15] was
proposed which preserves only the first-order moment. This algorithm is optimal in the
mean-square sense for a particular class of BTC algorithms. The second category of these
approaches is focused on improving image quality. In 1984, Lema and Mitchell proposed
a simpler method named absolute moment block truncation coding (AMBTC) [16]. By
preserving two quantization values (i.e., two mean values of the pixel groups) instead of
the mean value and the standard deviation of the block, both computing speed and re-
stored image quality are improved. In 1990, Hui [17] proposed an adaptive BTC (ABTC)
method by designing a minimum mean square error quantizer for BTC algorithm. Com-
pared with the standard BTC and AMBTC, this method is very efficient and the visual
quality of restored image is much better. Also, three-level BTC algorithms [18, 19] have
been proposed to enhance the visual quality of restored image.

Both the standard BTC and AMBTC take the average value of each image block as
threshold to divide each block into two groups. The use of average value of each block
for pixel grouping is very efficiency, but the mean value is not always the best threshold.
In other words, the image distortion will be reduced further if we seek out the best
threshold for pixel grouping. In 1994, Chen and Liu [20] proposed an optimal BTC
(OBTC) method which exhaustively explores all possible values among the block to find
the optimal threshold. Although this method can find out the optimal threshold, the
computational cost is very expensive. Later, economical BTC (EBTC) [21] was proposed
by Yang and Lin in 1996. The goal of EBTC is to reduce the computation complexity of
OBTC. However, the optimal threshold sometimes cannot be found. In order to find the
optimal threshold with a low computational cost, Tsou et al. [22] proposed an efficient
optimal pixel grouping scheme for AMBTC in 2008. For the purpose of improving the
efficiency of searching the optimal threshold, we propose a new pixel grouping scheme for
AMBTC based on PSO. Meanwhile, by using PSO algorithm, the speed of searching the
optimal threshold can be flexibly changed according to the two coefficients, the population
of initialized particles and the maximum iteration time of PSO. The experimental results
show that our scheme is efficient to find a near optimal threshold when the block size is
large.

The rest of this paper is organized as follows. Section 2 reviews some related work. In
Section 3, our scheme is presented. Some experimental results are summarized in Section
4 and our conclusions are drawn in Section 5.

2. Related work.

2.1. AMBTC. First, a gray scale image is divided into non-overlapping blocks with size
nxn. Then take the average value of this block as the threshold to divide this block into
two levels. In order to mark the positions of different levels in a block, a corresponding
bitmap that only contains 0 or 1 is generated. If the pixel is larger than the average value,
this pixel belongs to the high level group and the corresponding bit in the bitmap is set
to 1. Otherwise, the pixel belongs to the low level group and the corresponding bit in the
bitmap is set to 0. After a bitmap is generated for this block, two mean values of the two
groups are computed and are taken as two quantization values. At the decoder, the two
quantization values combined with its corresponding bitmap are used to reconstruct the
original image block.
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The mean value u of each block is computed as follows:

1 n n
nxnzzxij' (1)

i=1 j=1

u =

where x;; represents the pixels in the block and nxn represents the block size. The two
quantization values, the high level h and the low level [ are calculated according to Eqgs.
(2) and (3).

1 o
h = n—h Z .I'ij,’l,] < 1,27...,')7,, (2)
Tij>U
1 o
[ = E Z< Tijy 1,7 S 1,2,...,77,, (3)
TijSU

where n; and n; are two numbers of the pixels belonging to the high level group and
the low level group, respectively. The bitmap B={b;;|b;; € {0,1},4,j € {1,2,...,n}} is
generated according to the following equation.

. 1, if Tij > U
bij = { 0, otherwise (4)
An example of AMBTC encoding and decoding procedures are shown in FIGURE 1.
FIGURE 1 (a) is an original image block with size 4x4. The mean value of this block is 57
according to Eq. (1). Then the mean value is taken as the threshold to divide this block
into two levels. If the pixel is greater than 57, the corresponding bit in the bitmap is set
to 1. Otherwise, the corresponding bit is set to 0. The bitmap is shown in FIGURE 1 (b)
and the two quantization values are calculated according to Eqs. (2) and (3), respectively.
Here, we can get h=68 and [=46. Finally, h, [ and the corresponding bitmap B can be
used to recover the original image block that is shown in FIGURE 1 (c).

82 176 | 70| 69 ] 1 1 1 68 | 68 | 68 | 68

65 | 43 | 45 | 65 1 o |0 1 68 | 46 | 46 | 68

53| 39 | 42 | 59 " 000 1 " 46 | 46 | 46 | 68

58 | 44 | 48 | 54 1 0|0 |0 68 | 46 | 46 | 46
{a) (b) (c)

FIGURE 1. An example of AMBTC encoding and decoding: (a) original
image block; (b) bitmap B; (c¢) reconstructed image block

2.2. Tsou et al.s scheme. A grayscale image is first divided into a number of non-
overlapping blocks of k pixels. A sorted sequence is generated by sorting these k pixels
in ascending order. If all the pixels of this block are equal, place these pixels into one
group. Otherwise, all pixels are divided into two groups. If the pixel value is smaller than
the threshold value, place it into group one. Otherwise, put it into group two. For each
block, there are k-1 possible ways to divide k& pixels into two groups. In order to find the
best threshold for each block, all the possible grouping ways are tried.

A sorted sequence of all pixels in a block is defined as S=(py,ps,...,px), Where p; <
p2 < ... < pg. Here the 7" pixel p, in the sequence is regarded as the threshold to divide
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the pixels into two groups. And the squared Euclidean distance SED(p,) which can
record the image distortion between the original image block and the compressed block
is calculated according to the corresponding threshold by Eq. (5).

T

k
SED(p,) = Z[pl - m(Plupr)]Q + Z [pi — m(Pr+17Pk)]2> (5)

=1 i=r+1

where my, ) and m,,,, p,) are two mean values of pixels ranged from 1 to r and r to k,
respectively. The two mean values are computed as in the following equations.

{ M(py,pr) = %2:21 Di

_ 1 k .
M(pry1,p6) = Tortl Zi:r-i,-l Di

(6)

In order to reduce the encoding time in finding the optimal threshold, a possible way is
to explore the relationship from SED(p,) to SED(p,+1). Instead of recalculate the two
mean values, the two new mean values can be computed according to its previous mean
values as in the following equations.

— Pr17M(py,pr)

M(p1,pri1) = Mprpy) T r+1 (7)
o M(pyy1,p)  Pr+l

M(pyi208) = Meprirpr) T k—r—1

Based on Eq (7), the new squared Euclidean distance SED,,

(8).

.. can be calculated as Eq

]2

rProe1 — My pr) _ (k = 1) [Mprya o) — Prsal? (8)
r+1 k—r—1 ’

The basic steps of this algorithm are summarized as the following.

Step 1. Generate a sequence of all pixels in a block in ascending order.

Step 2. Compute SED(p;) according to Eq. (5) and set r=1.

Step 3. If r < k+1, calculate SED(p,) according to Eq. (8). Otherwise, go to Step 4.

Step 4. Find the minimal squared Euclidean distance value SED(p;),
where SED(py)={min[SED(p,), SED(ps),...,SED(p,) so that the best threshold is
Di-

Step 5. The best threshold p; is used to divide the pixels into two groups with the least
distortion between the original image block and the compressed image block.

SED(py4+1) = SED(p,) +

2.3. Particle swarm optimization. Particle swarm optimization (PSO) was first pro-
posed by Kennedy and Eberhart in 1995 [23]. It is a kind of bionic algorithm that is based
on the social behavior of flocking birds and schooling fish when searching for food. In
PSO, individual members of its population can profit from the discoveries and previous
experience of all other members during the searching for food. And the social sharing
of information among conspecifics offers an evolutionary advantage. Recently, PSO has
attracted great attention in the fields of evolutionary computing, optimization and many
others [24, 25, 26, 27].

PSO is initialized with a population of random solutions. Each solution is called a
particle that initializes random position and the corresponding velocity. The fitness values
of all the initialized particles are computed and used to select the particle that has the
best fitness value as the global best solution gp.s;. Meanwhile, each particle is defined
as local best solution [l,.s. In each iteration, the position of each particle is updated
according to its velocity. The new velocity of each particle is updated as follows [28]:

vi(t+ 1) = wvi(t) + 171 (lhest — xi(t)) + cara(Grest — xi(t)), 9)
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where v;(t) and v;(t + 1) represent current velocity and updated velocity of particle i,
w) is inertia factor, ¢; and ¢y are two acceleration coefficients, and r; and ry are two
independent random numbers uniformly distributed in the range of [0,1]. The parameter
Umaz 18 used to limit the velocity of each particle as shown in Eq. (10). If the velocity is
too large, particle may fly past good solutions. The position of each particle is updated
according to the following equation.

| Vmazs Uit 1) > Ve,
vilt+1) = { v;i(t + 1), otherwise. (10)

where z;(t) and z;(t+1) represent the current position and the updated position of particle
1, respectively.

The entire process of standard PSO is summarized as the following steps:

Step 1. Initialize a population of particles with random positions and velocities.

Step 2. Define each particle as its local best particle ... Calculate the fitness value
of all the initialized particles, then find the particle that has the best fitness value and
define this particle as the global best particle gpes:.

Step 3. Update the velocity and position of each particle according to Eq. (9) to Eq.
(11).

Step 4. Compute the fitness values of the updated particles.

Step 5. For each particle, compare its new fitness value with that of [p.s. If the
new fitness value is better, the local best particle will be replaced by this new particle.
Otherwise, the local best particle will not be changed.

Step 6. For each particle, compare its new fitness value with that of gpes. If the
new fitness value is better, the global best particle will be replaced by this new particle.
Otherwise, the global best particle will not be changed.

Step 7. If the terminal condition is met, output the global best particle and its corre-
sponding fitness value. Otherwise, go back to Step 3.

3. Proposed scheme. In this paper, we propose a novel optimal pixel grouping scheme
for AMBTC based on PSO. The main idea of our scheme is to find a near optimal threshold
for each block in order to minimize the distortion of the whole image. PSO is applied
to search the optimal threshold for each block compressed by AMBTC. Illustration of
searching the optimal threshold for each block based on PSO is shown in FIGURE 2. The
details are described as follows.

Input: An original image block

Output: the near optimal threshold for this block

Step 1. Initialize a population of particles.

First, a gray scale image is divided into some non-overlapping blocks with size n x n.
For each block, find the minimum value min and the maximum value max. Initialize a
population of particles with random values between min and maxz that is shown in Eq.
(12).

pi(t) = rand(max — min) +min,1 <i < k, (12)

where rand represents a random number distributed in the range of [0,1], p;(¢) repre-
sents the value of i" particle, and ¢ represents the initial state. For each particle, the
corresponding velocity is initialized as the following equation:

v;(t) = rand(max — min),i = 1,2, ... k. (13)
Step 2. Determine the local best particle [ and global best particle gpes:.
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( Initialize particles )
7,(0,v, (1)
|
Determine
Lyest > Gbes

N

( Update a particle )
pi(t+1)

y

([ Compute fitness |
__value fip,t+1) )

]bm = pi (t+ 1)

Iff it+1 <fgbesz
(2, (t+ 1) <f{(Zser ) ~
Yes

gbm = pi(t+ 1)

Terminal
condition
Yes

End

F1GURE 2. The algorithm of searching optimal threshold for each block
based on PSO

Each particle is denoted as its local best particle lp.s;. The fitness function is defined
as the mean squared error between the original image block z;; and the recovered image
block zj; as in Eq. (14), and each particle is used as the threshold to reconstruct the
original image block.

f(pi(t)) = - i - Z Z(ﬂfu — ), (14)

where zi; is reconstructed by the following equation.

T = i
4 [ otherwise.

where h and [ are two quantization values of the reconstructed image block which are
defined in Eqgs. (16) and (17), respectively. If the original pixel is greater than p;(¢), this
pixel belongs to high level group. Otherwise, the pixel belongs to the low level group.
And n; and n; are two numbers of the pixels belonging to the high level group and the
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low level group, respectively.

1

Tij>P; (t)

1

x5 <pi(t)

After we calculate the fitness values of all the initialized particles, find the particle who
has the minimum fitness value and denote it as the global best particle gpes:.

Step 3. Update particles according to its updated velocity.

The velocity of each particle is updated as the following equation.

vi(t + 1) = wi(t) + c1r1(lpest — Pi(t)) + cara(goest — Pilt)), (18)

where w is set to 0.4, ¢; and ¢y are both set to 1. Then the value of each particle is
updated according to its updated velocity as Eq (19).

pi(t +1) = pi(t) + vt + 1), (19)

Instead of restricting the maximum velocity of each particle, the value of each particle
should be restricted among the values of pixels in this block that is shown in Eq. (20).
If the updated value is greater than the maximum value max, the value is replaced by
max. If the updated value is less than the minimum value min, the value is substituted
by min. Otherwise, the updated value is not changed.

mazx, if p;(t) > maz,
pi(t+1) =< min, if p;(t) < min, (20)
pi(t + 1), otherwise.

Step 4. Calculate the fitness value of the updated particle.

The updated particle is used as the threshold to divide the block into two groups.
Meanwhile, a bitmap is generated according to the pixel belonging to different groups.
Compute the two mean values of all pixels belonging to high level group and low level
group, respectively. The image block can be recovered by the two mean values and the
bitmap. Then the fitness value is calculated by using Eq. (14).

Step 5. Update local best particle lpes;.

Compare the new fitness value f(p;(t + 1)) with f(lpest). If f(pi(t +1)) < f(lpest), the
local best particle s is updated as p;(t + 1), as well as its fitness value. Otherwise, lpes
is not updated.

Step 6. Update global best particle gpes:.

Compare the new fitness value f(p;(t + 1)) with f(gpest). If f(pi(t +1)) < f(Gbest), the
global best particle gpes is updated as p;(t + 1), as well as its fitness value. Otherwise,
Jrest 18 not, updated.

Step 7. Termination.

If the iteration time achieves the maximum value m, output the near optimal threshold
which is the global best particle gpes;. Otherwise, go back to Step 3.

Finally, the near optimal threshold is used to perform BTC compression. By using
this value, the block is divided into two groups. The mean values of the two groups are
computed and are taken as two quantization values of this block. The bitmap is generated
according to the pixels belonging to different groups. And the two quantization values
and the corresponding bitmap are preserved to restore the original image block.
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4. Experimental results. In this paper, we proposed a novel pixel grouping scheme for
AMBTC based on PSO. Some experimental results are shown to prove the feasibility of
our scheme in this section. The simulation environment of our experiments was a PC with
a 3.4 GHz CPU and 8 GB RAM. The programming language was Matlab. FIGURE 6
showed the six grayscale images that were used in our scheme. From TABLE 1 to TABLE
6, the population of particles is set to 4 and the maximum iteration time is set to 8 in
the proposed scheme.

. S—

Ai}piane

Lena | J-I_’cppers |

FI1GURE 3. Six grayscale images

To measure the visual quality between the reconstructed image and the original image,
the peak signal to noise ratio (PSNR) was used. The higher PSNR value means the
better image quality. It is defined as follows:

2552
M—SE’)’
where M SE denotes mean squared error (M SE) between the original image O;; and the
recovered image R;; of M x N pixels as in Eq. (22).

PSNR = 10logio( (21)

1 2

N
i=1 j=1
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TABLE 1, TABLE 2, and TABLE 3 show the PSNR comparison of different schemes
when block sizes are set to 4x4, 8x8, and 16x16, respectively. From the experimental
results, AMBTC has the lowest PSNR values while OBTC and Tsou et al.s scheme achieve
the best image quality, and the proposed scheme achieves a near optimal image quality.
As the block size increases, the image quality decreases. The average image quality of our
scheme decreases only 0.14 dB, 0.16 dB, and 0.17 dB compared with OBTC and Tsou et
al.s scheme when the block size is set to 4x4, 8x8, and 16x16, respectively. However,
the average improvement of our scheme is 0.45 dB, 0.50 dB, and 0.65 dB compared with
AMBTC when the block size is set to 4x4, 8x8, and 16x16, respectively.

TABLE 1. PSNR comparison of different schemes when the block size is set

to 4x4 (dB)
Images Al\fll]?i]T C O];'.I,‘Scs[jl(g I/Il ’Ie‘s[o21;]et Proposed scheme
Airplane 31.98 32.75 32.62
Boat 31.55 32.11 31.97
Frog 28.63 29.04 28.89
Goldhill 32.87 33.43 33.28
Lena 33.23 33.78 33.64
Peppers 33.21 33.86 33.73
Average 31.91 32.50 32.36

TABLE 2. PSNR comparison of different schemes when the block size is set

to 8x8 (dB)
Images | AMBTC [16] O]:lr.l:scs[ci(g I/Il ZSE);;]et Proposed scheme
Airplane 28.85 29.74 29.59

Boat 28.60 29.22 29.05

Frog 26.52 26.88 26.72
Goldhill 29.93 30.47 30.32

Lena 29.93 30.58 30.43
Peppers 29.46 30.35 30.19
Average 28.88 29.54 29.38

TABLE 4, TABLE 5, and TABLE 6 show the encoding time of different schemes when
block sizes are set to 4x4, 8x8, and 16x16, respectively. When the block size is set to
4x4, the proposed scheme costs the most time than other schemes as shown in TABLE 4.
However, when block size increases, our scheme is more efficient than OBTC and Tsou et
al.s scheme. The average encoding time of our scheme is 2.24 s and 1.09 s when the block
sizes are set to 8x8 and 16x16, respectively, which is lower than the average encoding
time of OBTC and Tsou et al.s scheme.

Based on the above experimental results, AMBTC costs least time while maintaining
the worst image quality with different block sizes among these schemes. Both OBTC
and Tsou et al.s scheme achieve the best image quality, but Tsou et al.s scheme is more
efficient. As the block size increases, the encoding time of both OBTC and Tsou et al.s
scheme increases while the encoding time of our scheme decreases. Although the proposed
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TABLE 3. PSNR comparison of different schemes when the block size is set
to 16x16 (dB)

Images | AMBTC [16] O]SF:I;’SCS[Ci(l] I{’l ’i‘s[o;;]et Proposed scheme
Airplane 26.64 27.72 27.52

Boat 26.42 27.20 27.05

Frog 24.94 25.36 25.21
Goldhill 27.82 28.36 30.32

Lena 27.19 28.06 27.90
Peppers 26.07 27.26 27.12
Average 26.51 27.33 27.16

TABLE 4. Encoding time of different schemes when the block size is set to

4x4 (s)
Tsous scheme

Images | AMBTC [16] | OBTC [20] [22] Proposed scheme
Airplane 0.74 4.65 1.86 .77

Boat 0.72 4.46 1.84 7.79

Frog 0.72 4.70 1.82 775
Goldhill 0.73 4.76 1.82 7.87

Lena 0.72 4.49 1.84 7.88
Peppers 0.73 4.49 1.84 7.75
Average 0.73 4.63 1.84 7.80

TABLE 5. Encoding time of different schemes when the block size is set to

8x8 (s)
Tsous scheme

Images | AMBTC [16] | OBTC [20] [22] Proposed scheme
Airplane 0.74 4.65 1.86 7.77

Boat 0.72 4.46 1.84 7.79

Frog 0.72 4.70 1.82 7.75
Goldhill 0.73 4.76 1.82 7.87

Lena 0.72 4.49 1.84 7.88
Peppers 0.73 4.49 1.84 7.75
Average 0.73 4.63 1.84 7.80

scheme achieves the near optimal image quality, it requires the lower computational cost
than OBTC and Tsou et al.s scheme when the block sizes are set to 8x8 and 16x16.

In addition, our scheme is flexible because the population of initialized particles k
and the maximum iteration time m can be changed. This flexibility can provide flexible
tradeoff between the encoding time and recovered quality required. TABLE 7 shows
the PSNR and encoding time comparison of different population of initialized particles
when the block size is set to 8x8. And TABLE 8 shows the PSNR and encoding time
comparison of different maximum iteration time when the block size is set to 8 x8. From
the experimental results, either the population of initialized particles or the maximum
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TABLE 6. Encoding time of different schemes when the block size is set to

16x16 (s)
Tsous scheme

Images | AMBTC [16] | OBTC [20] [22] Proposed scheme
Airplane 0.33 5.52 2.61 2.28

Boat 0.29 5.37 2.60 2.22

Frog 0.31 5.57 2.59 2.21
Goldhill 0.29 5.54 2.64 2.27

Lena 0.32 5.21 2.61 2.23
Peppers 0.31 5.55 2.62 2.22
Average 0.31 5.46 2.61 2.24

iteration time increases, the image quality will be improved, as well as the encoding time.

TABLE 7. PSNR and encoding time comparison of different population of
initialized particles when the block size is set to 8x8

Images k:2,m=4 k=4,m:4 k:8,m:4
PSNR(dB) | Time(s) | PSNR(dB) | Time(s) | PSNR(dB) | Time(s)
Airplane 28.45 1.38 29.59 2.28 29.62 3.72
Boat 28.00 1.39 29.05 2.22 29.09 3.58
Frog 25.70 1.36 26.72 2.21 26.74 3.63
Goldhill 29.10 1.37 30.32 2.27 30.37 3.65
Lena 29.13 1.34 30.43 2.23 30.46 3.62
Peppers 28.95 1.39 30.19 2.22 30.22 3.63
Average 28.22 1.37 29.38 2.24 29.42 3.46

TABLE 8. PSNR and encoding time comparison of different maximum it-
eration time when the block size is set to 8x8

Images k:4,m:2 k:4,m:4 k:4,m:§
PSNR(dB) | Time(s) | PSNR(dB) | Time(s) | PSNR(dB) | Time(s)
Airplane 29.16 1.74 29.59 2.28 29.62 3.35
Boat 28.59 1.63 29.05 2.22 29.10 3.34
Frog 26.40 1.54 26.72 2.21 26.75 3.30
Goldhill 29.81 1.52 30.32 2.27 30.36 3.34
Lena 29.86 1.50 30.43 2.23 30.47 3.32
Peppers 29.78 1.52 30.19 2.22 30.24 3.29
Average 28.93 1.58 29.38 2.24 29.42 3.32

5. Conclusions. In this paper, we propose a novel pixel grouping scheme for AMBTC
based on PSO. First, the image is divided into many non-overlapping blocks. Second, we
adopt PSO to search the optimal threshold for pixel grouping to minimize the distortion of
compressed images. By using PSO algorithm, the speed of searching the optimal threshold
can be flexibly changed according to two coefficients, the population of initialized particles
and the maximum iteration time. When the near optimal threshold is found, each block is
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divided into two groups depending on whether the pixel value is larger than the threshold.
The mean values of two groups are taken as two quantization levels of the block and the
corresponding bitmap is generated according to the pixels belonging to different groups.
Finally, the two quantization values and the corresponding bitmap are used to recover
the original image block. The experimental results have shown that the proposed scheme
achieves a near optimal image quality with a low computational cost when the block sizes
are set to 88 and 1616, respectively. Moreover, our scheme can provide flexible tradeoff
between the encoding time and recovered quality required. In the further, our scheme
is suiTABLE for the practical multimedia applications for its efficiency and good visual
quality.
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