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Abstract. Tensor Compressive Sensing (TCS) is an emerging approach for higher or-
der data representation, such as medical imaging, video sequences, and hyperspectral im-
ages. In this paper, we present a Truncated TCS (TTCS) for noisy Three-dimensional
(3D) video sequences. Inspired by the Marcenko-Pastur Probability Density Function
(MPPDF) for the estimation of an unknown noise level, we extend a MPPDF-based op-
timal hard thresholding of singular value for noisy matrices into its tensor counterpart.
Further, an asymptotic estimation of the optimal hard threshold is used for recovery of
low-rank tensors from noise data. Finally, we apply this truncation strategy to a Tucker-
based TCS for representation of noisy 3D video sequences and demonstrate experimentally
that it outperforms state of the art.
Keywords: Tensor compressive sensing; Optimal hard threshold; Truncated higher-
order singular value decomposition

1. Introduction. During the last years there has been an increased interest in Com-
pressed Sensing (CS) , which provides a general signal acquisition framework that enables
the reconstruction of sparse signals from a small number of linear measurements [1]. Most
of the development of CS was focused on problems involving 1D signal or 2D image data
encoded in vectors [2]. However, many important applications involve higher dimen-
sional signals or tensors such as video sequences, 3D medical images and hyperspectral
images. In areas other than CS, a lot of interests have been conducted on tensor-based
approaches for higher dimensional data analysis. Therefore, the higher-order extension of
CS theory for multidimensional data has become an emerging topic. Recently, Cesar et al
[3] provides a direct reconstruction formula to recover a tensor from a set of multilinear
projections that are obtained by multiplying the data tensor by a different sensing matrix
in each mode. Compared to existing sparsity-based CS methods [4-6], this Tucker-based
tensor CS (Tucker-TCS) does not require to assume sparsity neither a dictionary based
representation. In addition, it is super fast because it does not involve iterations making
it potentially suitable for large-scale problems.
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Above multidimensional CS are all for clear images. However, real world images may
suffer from serious random noise, which affects the image quality and decrease the reli-
ability of low-rank representation. As current TCS methods do not consider the effect
of noise on low-rank representation of tensors, we develop a Truncation strategy of TCS
(TTCS) for 3D noisy video sequences: (1) Inspired by the Marcenko-Pastur Probability
Density Function (MPPDF) for the estimation of an unknown noise level, we extend a
MPPDF-based optimal hard thresholding of singular value for noisy matrices into its ten-
sor counterpart; (2) We use an asymptotic estimation of the optimal hard threshold to
design TTCS for recovery of low-rank tensors from noise data.

This paper is organized as follows: in Section 2, the related notation, definition and
basic results used throughout the paper, are introduced; in section 3, TTCS are proposed
along with its detailed profs; in Section 4, several numerical results based on 3D video
sequences are provided, validating our theoretical results and evaluating the stability and
robustness of our proposed scheme, in section 5, the main conclusions of the present work
are outlined.

2. Notations.

2.1. Compressive Sensing. Traditional CS is a framework for reconstruction of signals
that have sparse representations [7]. A vector x ∈ RM is called s−sparse if it has nonzero
entries. The CS measurement protocol measures the signal x with the measurement
matrix A ∈ Rm×M where m < M and encodes the information as

y = Ax (1)

The decoder knows A and attempts to recover x from y .

2.2. Tensor notations. A tensor is a multidimensional array [8-9]. The order of a
tensor is the number of modes. For instance, tensor X ∈ RM1×···×Md has order d and
the dimension of its n th mode is Mn. The decomposition and reconstruction of can be
written as follows: {

W = X ×1 Φ(1)T ×2 Φ(2)T ×3 Φ(3)T

X =W ×1 Φ(1) ×2 Φ(2) ×3 Φ(3)
(2)

3. Proposed TTCS system. In this section, we would like to introduce our TTCS
system. Before going into the details, we analyze the relationship between truncation and
low-rank representation of the tensors from noise data. Then the whole TTCS system is
introduced step by step. Note that TTCS does not require to assume sparsity neither a
dictionary based representation similar to Tucker-TCS [3].

3.1. Truncation strategy. For a given 3D tensor X ∈ RM1×M2×M3 we have X = X0+E ,
where E is a noise tensor with independent and identically distributed zero-mean Gaussian
samples. Here we use the Tucker-TCS [3] which is more stable, robust and accuracy than
HOSVD to decompose and reconstruct X :{

W = X ×1 Φ(1)T ×2 Φ(2)T ×3 Φ(3)T

X =W ×1 Z1W†
(1) ×2 Z2W†

(2) ×3 Z3W†
(3)

(3)

The truncated MP pseudo-inverse W †
(n), i.e., the core part of the truncation strategy of

TCS may eliminate the noise and preserve the desired signal, which is discussed below.
By using the SVD, W(n) and W †

(n) can be defined as follows:

W(n) = UnSnV
T
n (4)
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with entries of the diagonal matrix Sn defined as s
(n)
i and

W †
(n) = VnS̃

τ∗

n U
T
n (5)

with entries of the diagonal matrix Sn defined as follows:

s̃
(n)
i =

{
1

s
(n)
i

, for s
(n)
i > τ ∗n

0, for s
(n)
i ≤ τ ∗n

(6)

where τ ∗n is the hard threshold. The other parameters of equation (3) are as follows:

Z(n) =


X ×2 Φ2 ×3 Φ3, for n = 1

X ×1 Φ1 ×3 Φ3, for n = 2

X ×1 Φ1 ×2 Φ2, for n = 3

(7)

Zn = (Z
(n)
(n)) (8)

Therefore, the design of TTCS will raise a question: how to choose an optimal hard
threshold.

3.2. Optimal hard threshold. Many researchers assume Marcenko-Pastur Probability
Density Function (MPPDF) for the estimation of an unknown noise level [10-11. [11]
defines an optimal hard threshold for a 2D matrix X ∈ Rm×Mobserved in unknown noise
level, with β = m

M
. We extend the method into its 3D tensor counterpart as follows:

τ (n)∗ =
λn√
µn
τ

(n)
med (9)

where σ(n)∗(n = 1, 2, 3)is the estimated noise variance, σ
(n)
m ed is the median singular value

of W(n) , and µn is the median of the Marcenko-Pastur distribution, namely, the unique
solution in βn,− ≤ x ≤ βn,+ to the equation∫ x

βn,−

√
(βn,+ − t)(t− βn,−)

2πβnt
dt =

1

2
(10)

where βn,± = (1±
√
βn)2 . As described in 2.2 and 3.1, the dimension of Wn is

W(n) ∈


Rm1×m2m3 , for n = 1

Rm2×m1m3 , for n = 2

Rm3×m1m2 , for n = 3

(11)

The corresponding βn is

βn =


m1

m2m3
, for n = 1

m2

m1m3
, for n = 2

m3

m1m2
, for n = 3

(12)

Inspired by the optimal threshold coefficient for matrices [11], the optimal threshold co-
efficient λn for 3D tensors can be defined as follows:

λn =

√
2(βn + 1) +

8βn

(βn + 1) +
√
β2
n + 14βn + 1

(13)



986 Q. Z. Wang and W. J. Kang

Algorithm 1. Chosen of optimal threshold  

Input:  

(1) n ( 1,2,3n  );

(2) The number of stepsK .

Output: 

The optimal hard threshold
*

n .

Start: 

for n=1,2,3, do 

Initial sets I and J;

for k=1:K , do 

compute 
,n ky as (14); 

update sets I and J as (15) ; 

update 
( )

,

k

n ! and
( )

,

k

n !
as (16); 

end for 

update  ! as (17); 

Compute 
( )*n

 as (9), (13) and (17); 

Compute 
*

n  as (18)-(20); 

end for 

End

Algorithm 2. TTCS system 

Input:  

(1) Noisy video sequences tensor 1 2 3
M M M
R

  

! ;

(2) Sensing matrices 
( ) n nm Mn R

 

! " ( 1,2,3n  ).

Output: 

Low rank reconstruction
 

 .

Start: 

(1) Compute ( )nW of  and the corresponding n according to formula (12) ; 

(2) Compute the optimal hard threshold 
*

n corresponding to
( )nW by algorithm 1; 

(3) Compute the truncated MP Pseudo-Inverse 
†

( )nW according to 
*

n by equations (4)-(6); 

(4) Reconstruct 
 

 according to (3); 

End

Figure 1
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As the median µn is not available analytically, we make available an asymptotic method
to solve it. Consider

yn,k = 1−
∫ βn,−+k∆

βn,−+(k−1)∆

√
(βn,+ − t)(t− βn,−)

2πβnt
dt (14)

where K is the number of steps, ∆ = βn,+−βn,−
K

and k = 1, · · · , K . Let the initial sets
J = {0}andI = {0} . Update J and I for yn, k as follows:{

J = {J, k}, for yn,k <
1
2

I = {I, k}, for yn,k >
1
2

(15)

Further update β
(k)
n,− and β

(k)
n,+as follows:{

β
(k)
n,− = maxJ

β
(k)
n,+ = minI

(16)

After K steps, µn could be obtained as

µn =
βn,− + βn,+

2
(17)

The σ(n)∗ can be solved through equations (9)-(17). We compute the optimal hard
threshold through the proportion of the singular values which are lager than σ(n)∗(j =
1, · · · ,mn). Let

ln =
mn∑
j=1

vj (18)

where

vj =

{
1, for σ

(n)
j > σ(n)∗

0, for σ
(n)
j ≤ σ(n)∗ (19)

The optimal threshold can be defined as follows:

τ ∗n = sn([
ln
Ln

]) (20)

where sn = diag(Sn) , Ln is the number of all singular values and [·] is rounding function.
The chosen of the optimal threshold and complete TTCS system are shown in algorithms1
and 2, respectively.

4. Simulation Results and Analysis.

4.1. Experiments setup. KCS [4] outperforms several other methods including inde-
pendent measures and partitioned measurements in terms of reconstruction accuracy in
tasks related to compression of multidimensional signals. CP-TCS-P [5] stands out for
its reconstruction efficiency compared with a Multi-way CS (MWCS) [6]. Tucker-TCS
[3] has significant advantages compared to existing sparsity based CS methods. For the
above reasons, we experimentally compare TTCS with KCS, CP-TCS and Tucker-TCS on
the reconstruction of 13 commonly used video test sequences in QCIF formats [12]. Each
frame of the video sequence is preprocessed to have 128128 and we choose 128 frames. To
evaluate the performance under different noise levels, the videos are added with varying
levels of Gaussian noise (mean zero, the variance varies from 0 to 40 with an increase of
1). The quantitative measure is the Peak Signal Noise Ratio (PSNR).
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Tab.1 PSNR (dB) comparison of TTCS and state of the art methods  

Noise Level
Video Name Sampling ratio Methods 

0
v

 ! 10
v

 ! 20
v

 ! 30
v

 !

KCS 46.65 28.19 22.37 18.93 

CP-CS 30.58 26.22 21.60 18.43 

Tucker-CS 49.18 29.39 23.20 19.60 

3

3

(120)
0.82

(128)
 

TTCS 49.18 34.06 29.78 26.66 

KCS 42.58 28.19 22.61 19.24 

CP-CS 30.50 26.19 21.59 18.42 

Tucker-CS 44.87 29.64 23.80 20.32 

3

3

(112)
0.67

(128)
 

TTCS 44.87 33.24 30.12 27.05 

KCS 40.51 27.64 22.61 19.24 

CP-CS 30.36 26.12 21.55 18.42 

Tucker-CS 41.98 29.88 24.36 20.98 

3

3

(104)
0.54

(128)
 

TTCS 41.98 32.70 29.05 26.96 

KCS 33.47 27.64 22.94 19.80 

CP-CS 30.26 26.09 21.54 18.39 

Tucker-CS 39.46 29.95 24.89 21.71 

Mother and 

Daughter

3

3

(96)
0.42

(128)
 

TTCS 39.46 32.00 29.03 26.90 

KCS 42.58 27.93 22.35 19.09 

CP-CS 24.26 27.87 22.19 18.76 

Tucker-CS 44.96 28.97 22.96 19.43 

3

3

(120)
0.82

(128)
 

TTCS 44.13 30.61 28.50 26.39 

KCS 37.23 27.56 22.40 19.29 

CP-CS 24.79 27.94 22.08 18.76 

Tucker-CS 40.48 28.79 23.38 19.95 

3

3

(112)
0.67

(128)
 

TTCS 40.48 29.17 27.96 25.88 

KCS 33.61 27.02 22.39 19.45 

CP-CS 24.53 27.72 22.18 18.75 

Tucker-TCS 37.71 28.52 23.61 20.49 

3

3

(104)
0.54

(128)
 

TTCS 37.71 29.11 27.03 25.41 

KCS 30.73 26.26 22.24 19.52 

CP-TCS 24.46 27.94 22.18 18.76 

Tucker-TCS 34.92 28.20 23.74 20.97 

Foreman 

3

3

(96)
0.42

(128)
 

TTCS 34.92 27.81 26.38 24.93 

Figure 2
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Tab.2 Computation time (s) comparison of TTCS and state to the art methods 

Video Name Sampling ratio Methods Average computation time (s)

KCS 1923 

CP-CS 1146 

Tucker-CS 15 

3

3

(120)
0.82

(128)
 

TTCS 16 

KCS 2907 

CP-CS 1399 

Tucker-CS 9 

3

3

(112)
0.67

(128)
 

TTCS 10 

KCS 2493 

CP-CS 1565 

Tucker-CS 9 

3

3

(104)
0.54

(128)
 

TTCS 9 

KCS 2916 

CP-CS 1140 

Tucker-CS 8 

Mother and 

Daughter

3

3

(96)
0.42

(128)
 

TTCS 9 

KCS 1901 

CP-CS 1347 

Tucker-CS 14 

3

3

(120)
0.82

(128)
 

TTCS 15 

KCS 4117 

CP-CS 1312 

Tucker-CS 12 

3

3

(112)
0.67

(128)
 

TTCS 13 

KCS 2586 

CP-CS 1396 

Tucker-TCS 13 

3

3

(104)
0.54

(128)
 

TTCS 13 

KCS 2631 

CP-TCS 1432 

Tucker-TCS 8 

Foreman 

3

3

(96)
0.42

(128)
 

TTCS 10 

Figure 3
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Fig.1 Illustration of reconstruction performances for video with different sampling ratio and noise level 

Fig.2 Illustration of reconstruction performances for “Foreman” with different sampling ratio and noise level 

Figure 4
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Fig.3 The original Mother and Daughter video frames 

Fig.4 Noisy video frames 

Fig.5 Reconstructed video frames by KCS 

Fig.6 Reconstructed video frames by CP-TCS 

Fig.7 Reconstructed video frames by Tucker-TCS 

Fig.8 Reconstructed video frames by proposed TTCS 

Figure 5
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4.2. Results analysis. Tables 1 and 2 compare the PNSR and the computation time at
some noise levels of above methods on two of the videos mentioned in 4.1 respectively.
The superiorities of TTCS are highlighted. TTCS shows outstanding performance in com-
parison with KCS and CP-TCS, in terms of both accuracy and speed. What needs to be
stressed is that Tucker-TCS and TTCS are super fast compared with KCS and CP-TCS.
TCS requires slightly more computation time in comparison with Tucker-TCS and can
be safely ignored. It can also be found that the advantage of TTCS over Tucker-TCS
increase with the noise levels. Figs.1-2 compare the PSNR for the two videos when , , and
. As noise level increases, TTCS tends to outperform others in term of reconstruction
accuracy. Figs.3-8 provide a visual evaluation of reconstruction results under video ”Mo-
bile and Daughter” with noise level. Original and noisy frames are shown in Figs.3-4.
We specifically look into the recovered frames of all methods when . Recovered frames
1, 33, 65, 97, 128 of KCS, CP-TCS, Tucker-TCS and TTCS are depicted as examples in
Figs.5-8.

5. Conclusion. TTCS is a novel truncation strategy of TCS that takes advantages of
both MPPDF and Tucker-TCS. The former efficiently eliminates the noise; the later im-
proves the reconstruction performance of desired signal. TTCS is applied and compared
with current state-of-the art methods on commonly used video test sequences. The exper-
imental results demonstrate that the proposed TTCS outperforms other multidimentional
CS algorithms in noisy 3D video sequences.
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