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Abstract. The extend structure tensor (EST) is a valuable descriptor for the texture
feature of image. However, EST is highly dimensional data which would bring more
computational complexity and local minimum in some image. Traditional dimension
reduction approaches for EST may not full use of the inherent characteristics of image. In
order to solve this problem, a new scalar texture descriptor based on invariant of the EST
is presented in this paper. The scalar texture descriptor is composed of the eigenvalues
of EST, and used the relationship between the eigenvalues and the element of the EST
to avoid direct the computation . Then the scalar texture descriptor is embedded into the
segmentation model we proposed which utilizes both global and local image information.
The fast energy minimization algorithm instead of the level set method is applied to solve
the model. Finally, the experiments on some synthetic and real images are show the
efficiency and robustness of the our model.
Keywords: Image segmentation, Dual method, Texture descriptor, Active contour,
Dual method.

1. Introduction. Texture image segmentation is a challenging problem in computer vi-
sion and image process areas, which usually relies on the extraction of suitable features
from the image. The segmentation algorithm based on weighted sub region color his-
togram [1], and based on robust Gaussian mixture modeling with spatially constraints [2]
has a good segmentation effect for the image with local background change, but they also
have their own shortcomings, the adaptive parameters too much or can only to divided
gray image, and the above segmentation algorithm for texture image segmentation results
is poor, in order to solve the problem of texture feature description, Gabor filters are used
to extract texture features for the segmentation [3, 4, 5] has proposed. Unfortunately,
Gabor filter have the decisive drawback that they induce a lot of redundancy and feature
channels, Bigun et al. [6, 7] proposed the structure tensor (ST) to discriminate textures.
ST is computed by applying a Gaussian smooth function to gradient tensor. The Gaussian
filters not only perform the desirable integration of multiple edge responses from com-
plicated structure responses, such as corner, but also lead to an undesirable blurring of
structure information. In [8], a nonlinear structure tensor (NLST) has been proposed,
the Gaussian smooth function is replaced by the nonlinear diffusion, a vector-valued im-
age based on the three components of nonlinear linear structure tensor (NLST) and the
image intensity information embedded in the Geodesic Active Regions (GAR) models [9].
The method computation is very complicated due to consider the relations of the four
channels during segmentation. In [10], only one feature based on the eigenvalue of NLST
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is used to segment the complex texture image. Although the texture segmentation based
on LST or NLST information has shown relatively good results, this kind of segmentation
suffers from a major drawback, the LST or NLST does not include any intensity informa-
tion (or color information) from the image, a significant information misuse or loss. The
problem was partially solved in [11] by introducing a compact extended structure tensor
(EST). Compared to the traditional structure tensor, the extended structure tensor has
six characteristic channels, and the three channels contain the intensity information. The
principal components analysis method (PCA) is used to reduce the dimension to the two
dimensional tensor, and the segmentation speed is still very slow. In order to improve
the performance, a mean texture is designed for image segmentation by using the local
ChanCVese (LCV) model [12]. Once the features are extracted, a segmentation model
can be formalized by the general variation framework, for example, GAR models. The
GAR segmentation model, which combines the boundary and regional features, is free
from the initial conditions, can automatically deal with topological changes, and can be
used to deal with various frame partition problems. In this papera novel scalar texture
descriptor based on EST is presented and used as region information to segment texture
images. We also propose a combinational segmentation model which utilizes both the
texture information and the intensity information to improve the performance of texture
segmentation. The energy functional for the proposed model consists of three terms, i.e.,
global term, local term and regularization term. The texture term is constructed with the
GAR model, the intensity term is designed with the well-known CV model [13], and the
regularization term is based on the length of evolving curve. A fast and easy implemen-
tation algorithm instead of the level set method to drive the active contour toward the
minimum in ourproposed energy model. The algorithm is based on the global minimum
of active contour problems [14, 15, 16] and the dual formulation [17] of the Total Variation
(TV) norm. The paper is organized as follows: the scalar texture descriptor based on the
EST of an image is proposed in Section 2. A combinational segmentation model based
on the GAR model and the CV model is addressed in Section 3. Then the fast algorithm
to determine the minimum solution is developed in Section 4. Our algorithm steps are
described in the section 5.Experimental results and analyses are presented in Section 6.
Finally, the summary is given in Section 7.

2. Scalar texture descriptor. Structure tensor or extended structure tensor is highly
dimensional data. Although it has a good texture description, but complex computation is
required. In order to improve the efficiency of the image segmentation algorithm, it is nec-
essary to reduce the dimension and the scalar quantity effectively. The original evidences
show that the scalar type structure tensor and the extended structure tensor descriptors
not only have a good ability to describe the texture, but also improve the efficiency of the
algorithm. In this section, we give a new scalar method for the extended structure tensor,
which makes full use of the invariance of tensor distance, and also improves efficiency of
the algorithm.

2.1. Previous works. Given a gray image I : Ω→ R,the the traditional structure tensor
is defined as follows:

Jσ = Kσ ∗ (∇I∇IT ) =

(
Kσ ∗ I2

x Kσ ∗ IxIy
Kσ ∗ IxIy Kσ ∗ I2

y

)
, (1)

Where Kσ is a Gaussian kernel with standard deviation σ, ∇I is vector ∇I = (Ix, Iy)T ,
vector ∇IT is transpose of vector ∇I, and subscripts denote partial derivatives. For
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vector-valued image, the above definition can be extended as:

J = Kσ ∗ (
m∑
i=1

∇Ii∇ITi ), (2)

The Gaussian smoothing may make the structure tensor suffer from the dislocation of
edges, leading to inaccurate segmentation results near region boundaries. In order to
overcome this drawback, the Gaussian smoothing with nonlinear diffusion can be applied.
For example, the nonlinear diffusion equation may be obtained by:

∂tui = div(g(
n∑
k=1

|∇uk|2)∇ui), (3)

Where ui is the three components of the structure tensor. Applying ( 3) with initial
conditions (u1, u2, u3) = (I2

x, I
2
y , IxIy) one can obtain the nonlinear structure tensor:

Ĵ =

(
û1 û3

û3 û2

)
, (4)

Wherêcomponents denote the nonlinearly diffused components. From the above defini-
tions, we can find that both ST and NLST have a disadvantage of not using any intensity
information at all. In order to make full use of intensity information of image, the ex-
tended structure tensor (EST) was proposed in [12]. For a scalar image I : Ω → R, the
EST is defined as follows:

JE = Kσ ∗
(
vvT
)

= Kσ ∗

 I2
x IxIy Ix

IxIy I2
y IyI

IxI IyI I2

 , (5)

With v = [Ix, Iy, I]T ,Similarly, applying (3) with initial conditions u = [I2
x, I

2
y , IxIy, IxI, IyI, I

2],
one can obtain a nonlinearly extended structure tensor (NLEST):

ĴE = D(vvT ) =

 Î2
x ÎxIy ÎxI

ÎxIy Î2
y ÎyI

ÎxI ÎyI Î2

 , (6)

The formulae (5) and (6) can be extended to vector-valued images like (2) easily and they
not only contain the texture information but also the intensity information. Therefore,
both EST and NLEST have stronger ability for the discrimination between different tex-
tures. However, both EST and NLEST are 3×3 matrix which has six different components.
This implies that the segmentation with either EST or NLEST has to be implemented in
a higher dimensional space and thus results in complex computation and multiple local
minima. In order to reduce the computation complexity and the number of dimensions,
we map tensor data into scalars for further segmentation. For example, a mean texture
is introduced as the following:

Tm =
1

9

3∑
i=1

3∑
j=1

Jij, (7)

Where Jij are components of the EST matrix ĴE. The mean texture is only the average

of all the components of the EST ĴE without considering the relations of each channel of

the EST ĴE. where Jij are components of the EST matrix ĴE. The mean texture is only

the average of all the components of the EST ĴEwithout considering the relations of each

channel of the EST ĴE.
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2.2. A novel scalar texture descriptor. Since this kind of scalarization texture ap-
proach is too rough, a more reasonable scalar textural feature has to be added. In [18], a
new anisotropy measure for tensor field which is rotationally invariant has been proposed
for DTI-MRI Brain data. The measure can be easily applied to the extended structure

tensor. It is well known that the eigenvalues of the extended structure tensor ĴE are tensor
invariant. Given the EST matrix widehatJE, the characteristic equation as following:

λ3 − A1λ
2 + A2λ− A3 = 0 (8)

Where

A1 = J11 + J22 + J33,
A2 = J11J22 − J12J21 + J11J33 − J13J31 + J22J33 − J23J32,
A3 = J11(J22J33 − J32J23)− J12(J21J33 − J31J23) + J13(J21J32 − J31J22).

(9)

Denote the eigenvalues of JE by λ1, λ2, λ3, it is easy to prove that:

A1 = λ1 + λ2 + λ3,
A2 = λ1λ2 + λ1λ3 + λ2λ3,
A3 = λ1λ2λ3.

(10)

Instead of describing texture using λ1, λ2, λ3, a new scalar texture is defined withA1, A2, A3

as follows:

Ta =
1

6
[
A1A2

A3

− 3], (11)

It is easy to show that Ta is always λmax/λmin and measures the magnitude of the intensity.
The comparison between the mean texture Tm and the new texture Ta is given in FIGURE
1

Figure 1. Comparison between Tm and Ta

3. A noval combined segmention model. Once the texture feature has been selected,
a segmentation model can be designed with energy minimization method. Given a gray
image I(x, y) : Ω→ R, let C be a closed contour in the image domain Ω, which separates
Ω into two regions: Ω1 = inside(C) and Ω2 = outside(C). ϕ (x) is the level set form of
C, i.e.C = {x |ϕ (x) ≡ 0} . Embedding the texture descriptor Ta into the GAR model, we
can obtain energy function:

ET = −
∫
x∈Ω1

log p1(Ta(x))dx−
∫
x∈Ω2

log p2(Ta(x))dx, (12)
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Where pi is the probability density function of texture descriptor Ta in Ωi . Inserting the
intensity I into the CV model, one can obtain energy function:

EI =

∫
x∈Ω1

|I(x)− c1|2dx+

∫
x∈Ω2

|I(x)− c2|2dx, (13)

Where ci is the mean of image in Ωi. In order to overcome the inhomogeneous intensity
distribution in some images segmentation, Imitate [12], we mixing ET , EI and adding
the regular term as usual, a new energy function is obtained as the following:

E1 = λ

∫
Ω

ds+ (1− ω)ET + ωEI , (14)

Where λ is a constant parameter, and ω is a parameter which balances the interactions
of the texture T and the intensity I . Here, we set ω=0.01.

4. Fast energy minimization algorithm. Instead of using the level set method, a fast
energy minimization algorithm is described, which is based on the global minimum of
active contour problems [15, 16] and the dual formulation of the TV norm as proposed
by Chambolle in [17]. The level set form is defined as:

E2 (ϕ(x)) = λ

∫
x∈Ω

|∇H (ϕ (x))| dx

+ (1− ω)[−
∫
x∈Ω

H (ϕ (x)) log p1(Ta(x))dx−
∫
x∈Ω

(1− H (ϕ (x))) log p2(Ta(x))dx]

+ ω[

∫
x∈Ω

H (ϕ (x)) |I(x)− c1|2dx+

∫
x∈Ω

(1− H (ϕ (x))) |I(x)− c2|2dx],

(15)

Where H (ϕ (x)) is the Heaviside function. Replacing the function H (ϕ (x)) with a fuzzy
function u (x) = [0, 1] in ( 15), one can obtain

E3(u) = λ

∫
x∈Ω

|∇u(x)| dx

+ (1− ω)[−
∫
x∈Ω

u(x) log p1(Ta(x))dx−
∫
x∈Ω

(1− u(x)) log p2(Ta(x))dx]

+ ω[

∫
x∈Ω

u(x)|I(x)− c1|2dx+

∫
x∈Ω

(1− u(x)) |I(x)− c2|2dx],

(16)

Now, we introduce another function v (x) to approximate u (x), the ( 16) becomes

E4 (u, v) = λ

∫
x∈Ω

|∇u(x)| dx+
1

2θ

∫
Ω

(u(x)− v(x))2dx

+ (1− ω)[−
∫
x∈Ω

v(x) log p1(Ta(x))dx−
∫
x∈Ω

(1− v(x)) log p2(Ta(x))dx]

+ ω[

∫
x∈Ω

v(x)|I(x)− c1|2dx+

∫
x∈Ω

(1− v(x)) |I(x)− c2|2dx],

(17)

Where u, v ∈ [0, 1], and θ should be small enough to ensure that the solution u and v
are almost equivalent. In the following, Equation ( 17) is solved with the Chambolle dual
method. We compute u as:

u(x) = v(x)− λθdivP(x), (18)
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Where the vector P = (P 1, P 2) is obtained by

P 0 = 0

P n+1 = Pn+τ∇(divPn−v/θ)
1+τ |∇(divPn−v/θ)| ,

(19)

Where τ is the time step, and div is divergence operator. Iterating v with

v(x) = max {min {u(x)− θr(x), 1} , 0} , (20)

Where

r(x) = (1− ω)[− log p1(Ta(x)) + log p2(Ta(x))]+ω
[
|I(x)− c1|2 − |I(x)− c2|2

]
, (21)

Besides, the parameters c1, c2, p1, p2 are updated as follows:

c1 =

∫
Ω
u(x)I(x)dx∫
Ω
u(x)dx

, c2 =

∫
Ω

(1− u(x))I(x)dx∫
Ω

(1− u(x))dx
, (22)

p1(T (x)) =

∫
Ω

u(x̂)Gσ(T (x̂)− T (x))dx̂∫
Ω

u(x̂)dx̂
, p2(T (x)) =

∫
Ω

(1− u(x̂))Gσ(T (x̂)− T (x))dx̂∫
Ω

(1− u(x̂))dx̂
,

(23)
Where Gσ is a two-dimension Gaussian function.

5. Description of algorithm steps. Now, we can describe the steps of our segmenta-
tion model as follows:
Step 1Input the original image I. If the image is texture image then compute the corre-

sponding extended structure tensor ĴE according to (6).
Step 2 Based on (11) compute the scalar texture descriptor Ta corresponding to extended

structure tensor Extended structure tensor ĴE and replace I with Ta .
Step 3 The obtained scalar texture descriptor is embedded into the model of the combi-
nation of our design in (14).
Step 4The above model is solved by the dual method.

6. Experimental results. In this section, the experimental results of our segmentation
model are presented on some synthetic and real images. The compared experiments
using the synthesized texture images and the real images are carried out to reveal the
powerful texture discriminating capability of our proposed model. The proposed model
was implemented by Matlab 7.10.0 on a computer with Intel Core i5-2400 3.10 GHz
CPU 4G RAM, and Windows 7 operating system. We used the same parameters of
τ = 0.01, θ = 1/120, λ = 1

θ
× 5 × 10−5. FIGURE 2 shows the segmentation results with

different iterations for a synthetic texture image by our proposed model.

The comparisons between texture descriptors Ta and Tm for several images with the
new model are given from FIGURE 3 to FIGURE 5.

To further show the advantage of the texture descriptor Tm , the number of iterations,
CPU time and Dice Similarity Coefficient (DSC) [19] based on Ta and Tm with our model
for the images listed in Table 1. Table 1 shows that the CPU times with Ta are slightly
increased at the same number of iterations while the DSCs are improved significantly.

Other tests have been implemented for two synthetic scale texture images based on Ta
with our model, the segmentation results are given in FIGURE 6.
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Figure 2. Comparison between Tm and Ta

Figure 3. Comparison between Tm and Ta

Table 1. CPU time and DSC based on Ta and Tm with our model for the
some images

Images texture Iterations CPU times(s) DSC

Image2
Tm 200 422.32 0.93
Ta 200 429.72 0.96

Image3
Tm 200 402.96 0.92
Ta 200 404.44 0.96

Image4
Tm 100 251.46 0.95
Ta 100 217.79 0.97

As for real texture images, some segmentation results with Ta are shown in FIGURE 7
and FIGURE 8.

7. Conclusions. In this paper, we propose a new approach which is based on the ex-
tended structure tensor to map the tensor data into a scalar without requiring computation
of eigenvalues. A mixing segmentation model for texture image is introduced by applying
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Figure 4. Comparison between Tm and Ta

Figure 5. Comparison between Tm and Ta

the Chan-Vese(CV) model and the Geodesic Active Regions model(GAR) to the derived
scalar texture characters. A fast energy minimization algorithm is then proposed with
the fast dual method and used for quantitative analysis with the mean texture. Finally,
the experiments on some synthetic and real images have demonstrated the efficiency and
robustness of our method.
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Figure 6. Comparison between Tm and Ta

Figure 7. Comparison between Tm and Ta
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