
Journal of Information Hiding and Multimedia Signal Processing c©2016 ISSN 2073-4212

Ubiquitous International Volume 7, Number 5, September 2016

Analysis of Volatilities and Correlations for Chinese
Stock Markets

Jilin Zhang

School of Mathematics and Physics,
Fujian Provincial Key Laboratory of Big Data Mining and Applications

Fujian University of Technology
350108, Fuzhou, China

jilinzhang1976@fjut.edu.cn

Yongzeng Lai

Department of Mathematics
Wilfrid Laurier University

75 Universit Ave. E., Waterloo, Ontario, Canada, N2L 3C5
ylai@wlu.ca

Pei-Wei Tsai

College of Information Science and Engineering,
Fujian Provincial Key Laboratory of Big Data Mining and Applications

Fujian University of Technology
350108, Fuzhou, China

pwtsai@foxmail.com

Received May, 2016; revised June, 2016

Abstract. In this paper, GARCH, EGARCH and GJR models are used to fit the volatil-
ities of stock returns for two markets in China, namely, the Shanghai Stock Exchange
(SSE) and the Shenzhen Stock Exchange (SZSE) in both the developing and the developed
stages. We also compare the performance of the volatilities and the leverage effects both
across and within the two markets. Furthermore, we use VAR model to detect the correla-
tion between the targeted markets based on impulse response and variance decomposition
analyses. The experimental results indicate that the markets are less volatile and posi-
tively skewed in the developing phase while these are more volatile and negatively skewed
in the developed phase. Another finding is that one standard-deviation innovation im-
pulses die out after 7 days in the targeted markets and the impact of the SSE on the
SZSE is stronger than that of the SZSE on the SSE.
Keywords: Return volatility; Stock return; GARCH, EGARCH; GJR Model; VAR
Model.

1. Introduction. Investors, brokers and even regulators are concerned for the volatile
equity market in recent years. The volatilities of stock returns may not only hold back eco-
nomic progress through consumers?spending but also influence the investment outcomes
of enterprises. Moreover, the original financial system that functions smoothly may be
destroyed, bringing about changes in structure or regulation. An appropriate quantitative
model is needed for the new development of financial econometrics, in which way investors’
attitudes towards returns, risks, and volatility can be explained. Therefore, any involved
party in the market ought to understand the importance of risk management with regard
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to volatility, under which situation effective models are needed [15]. Due to the possibil-
ity of unexpected events, price (or return) uncertainties and the discrete financial market
variances, financial analysts began to set models and to offer explanations about the per-
formance of returns and the volatilities for stock markets through econometric models.
Autorgressive Conditional Heteroskedasticity (ARCH) together with Generalized ARCH
(GARCH) models established by Engle [7] and further developed by Bollerslev [3] can be
taken as the most significant tools to observe the variances. The GARCH family models
can grasp the two significant characteristics concerning financial time series, i.e. fat tails
and volatilities that may cluster or pool ([1] and [15]). Clustered volatility can be re-
garded as the clustered variance with respect to the residual term. Specifically speaking,
the variance of error with regression this time is closely related to the decreasing trend
of variance next time. The error which shows the time-varying heteroskedasticity can be
reflected by the clustered volatility, on the basis of non-constant unconditional deviations
of standard.

There are some studies on volatilities of world stock markets (except for Chinese mar-
kets) in the literature. Horng and Lee [11] find evidence of asymmetric volatility in the
German stock market and pay attention to the relationship among USA, U.K and German
stock markets using threshold-GRACH(1, 1) model. Horng and Huang [12] find empirical
evidence against the above hypothesis of asymmetric volatilities in Malaysia and Singa-
pore stock markets using bivariate GARCH(1, 1) model. Celik and Ergin [4] discuss about
volatility calculation using traditional GARCH models. Mohamed, et al. [13] and William
[18] used Vector Autoregressive (VAR) models to examine volatilities for GCC countries.
Nevertheless, there are very few studies on the topic for the Chinese markets. Qi and
Chen [19] examine and forecast the out of sample volatility using GARCH models. Pan
[15] analyzed the volatilities of Chinese stock markets based on GARCH family models
and find evidence of stationarity and strong ARCH effect in the return series.

The exploration of patterns of volatility for stock returns of a stock market is quite
intriguing at different phases of its development. In this paper, we attempt to focus
on the volatilities of stock returns for the two stock markets in China - the Shanghai
Stock Exchange (SSE) and the Shenzhen Stock Exchange (SZSE), at two stages. We also
investigate the correlation between the two stock markets. The whole data set of index
for the SSE includes data from Dec. 19, 1990 to Dec. 31, 2015, and that for the SZSE
includes from Dec. 19, 1995 to Dec. 31, 2015 (the composite index of SZSE started only
on Dec. 19, 1995). Each data set is divided into two parts. The first part is the stock
return series of the first ten years, which marks the developing phase of the stock market
(developing phase). In the first phase the market has transformed from purely closed to
open market to a certain extent. The second part consists of the data for the rest of years
(developed phase).

The main contribution of this paper includes: (1) to calculate and to compare the
statistical characteristics of stock return series in the developing and the developed phases
of the two Chinese markets; (2) to fit and to compare the volatilities and leverage effects
of the stock markets by using GARCH(1,1) model as well as EGARCH and GJR models
at different phases of the two stock markets; and (3) to detect the correlation between the
two stock markets based on impulse response and variance decomposition analyses using
VAR models.

The rest of the paper is organized as follows. The methodology of the ARCH, GARCH,
EARCH and GJR models is introduced in Section 2. The data sets used in the empirical
studies are described in Section 3, and the econometric models and estimation results
are also presented in the same section. The VAR model is run to detect the correlation
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between the two stock markets in Section 4. The conclusions are summarized in Section
5.

2. Methodology. With the conditional models of heteroskedasticity as a primary tool
for evaluating and predicting the volatile asset returns, there have been several models
proposed over time.

2.1. ARCH Model. For the purpose of understanding the conditional dynamics of vari-
ances, Engle [7] put forward ARCH model which models variances of the series and makes
it possible for variances of the error term vary with the use of disturbance in the past:

yt = θ0 +

p∑
i=1

(θiyt−i) + εt, (1)

and

δ2t = α0 +

p∑
i=1

αiε
2
t−i, (2)

where εt = δtzt and zt are i.i.d standard normal random. Therefore, under certain con-
ditions the variances δ2t of error term relies on the squared error previous values. This is
known as an ARCH(p) model.

An ARCH model provides a framework to analyze and to develop volatility series. On
the other hand, there are some drawbacks for ARCH models: There is no fixed method to
settle q which is the lag number concerning the squared residual within the model. One
solution is to use a ratio test of likelihood, but there is no such thing as the best approach.
The value of q, the number of lags of the squared error term required to capture all of the
dependence in the conditional variance, might be very large. Non-negativity constraints
might be violated.

2.2. GARCH Model. A natural extension of the ARCH model, which overcomes some
of these problems is the GARCH model. One of the disadvantages of an ARCH model
is that it often needs lots of parameters as well as a q with high order for the purpose of
grasping the process of volatility. To remedy this, Bollerslev [3] proposed the process of
the ARCH by granting the conditional variance with a function of squared errors in prior
periods and its conditional variances in the past ([5], [2] and [17]). Therefore, owing to the
GARCH model in the basis of a limitless specification of ARCH, we are able to decrease
in number with regard to evaluated parameters through the use of nonlinear restrictions.
Since it is possible for the stock index conditional variance to rely on previous lags based
on the GARCH, its (p,q) model is given by:

yt = θ0 +

p∑
i=1

(θiyt−i) + εt, (3)

and

δ2t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
k=1

βkδ
2
t−k, (4)

where p is the GARCH order, q is the order of the ARCH process,εt is the error term
considered to be normally distributed with mean zero and conditional variance δ2t .

Although the GARCH model seems to be superior to the ARCH model to some extent,
the former still has certain limitations. Firstly, its response to both good and bad news is
the same just like the ARCH model. Secondly, even with student t-innovations that are
standardized, the GARCH model may bring about short tail behavior on the basis of the
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Figure 1. Leverage Effect-Reaction of good and bad news.

data with high frequency [6]. Neither the ARCH model nor the GARCH model takes the
asymmetry into account.

In a GARCH model, both the squared error and conditional variance can include any
lags number. The GARCH (p,q ) model has lags of p on the term of conditional variance
and lags of q on the term of squared error. Generally speaking, however, a GARCH (1,1)
model suffices.

2.3. GARCH Models of Asymmetry. GARCH models of asymmetry are required
owing to the effect of leverage based on the prices of asset, under which situation a
positive shock exerts a smaller effect on conditional variance than a shock of negativity.
Symmetric GARCH model does not succeed in controlling the effect of leverage, and
therefore, a GARCH model that can take care of asymmetry is needed, The leverage
effect, as discovered by Black, indicates that stock market volatility increases with bad
news and decreases with good news. The leverage effect is illustrated in Figure 1.

2.3.1. GJR Model. One possible way of incorporating this asymmetry into GARCH model
is the use of a dummy variable, which was put forward by Glosten, Jangathann and Runkle
[10]. They proved that the adjustment of asymmetry was a significant consideration based
on asset prices. It is a simple extension of the GARCH model when an extra term is added
to explain possible asymmetries. The model is of the form:

δ2t = α0 + αε2t−1 + βδ2t−1 + γε2t−idt−1, (5)

where dt−1 is a dummy variable that takes the value of 1 when the shock(εt−1) is less than
0 (negative) and 0 otherwise, α0 is constant.The last term is important to decide whether
there should be an adjustment of asymmetry on using the t-statistic.

2.3.2. EGARCH Model. The alternative to the above model is the use of Exponential
GARCH model (EGARCH) by Nelson [14], which is blessed with a lot of advantages
compared with the fundamental GARCH model, as the constraint of non-negativity does
not require to be utilized and the asymmetries are also possible in this model. It takes
the form:

ln(δ2t ) = ω + βln(δ2t−1) + γ
εt−1

δt−1

+ α

[∣∣∣∣ εt−1

δt−1

∣∣∣∣−
√

2

π

]
, (6)

where ω is a constant. This model has several advantages over the simple GARCH
specification ([7], [8] and [9]). Since we consider the logarithm of δ2t , it will be positive
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even if the parameters turn out to be negative. Thus, constraints of non-negativity may
not be needed. Moreover, asymmetries between positive and negative shocks are possible
in this model, because if the relationship is negative between the volatility and the return,
then γ will be negative.

3. Fitting and Comparing Stock Return Volatilities Using GARCH Type Mod-
els at Different Phases. Consider a time series of asset returns. It can be shown below:

var(yt|yt−1, yt−2, . . .) = var(εt|εt−1, εt−2, . . .).

So the conditional values of yt, given its previous values, is the same as the conditional
values of εt, given its previous values. In other words, modeling δ2t will offer models and
predicts for the variance of as well. Thus, if the dependent variable in a regression is an
asset return series, predictions of δ2t will be that of the future variance of yt. As a result,
the primary usage of GARCH models is in the volatility prediction.

3.1. Daily Returns as Stock Time Series. Daily returns are defined as the differences
in the natural logarithm of the closing index value for the two consecutive trading days,
i.e., rt = lnpt − lnpt−1 where rt is the daily return of the logarithm at time t, pt and pt−1

are the daily closing prices of an asset during the two days t−1 and t, respectively. For the
purpose of analyzing the time series, transformation of original series is required depending
upon the type of series when the data is in the level form, i.e. the raw data. In this paper,
the return series is transformed by using natural logarithm of the series. Some scholars
(e.g. [3]) have pointed out two advantages of this type of series transformation. Firstly,
it eliminates the possible dependence of changes in stock price index on the price level
of the index. Secondly, the change in the log of the stock price index yields continuously
compounded series.

3.2. Data. The data used in our study consists of daily closing prices for the two indices,
SSE and SZSE. The daily return prices of each of the stock markets are being analyzed
in two phases for each of the stock markets. The first part (developing phase) involves
the analysis of first ten years of the closing prices i.e. from December 1990 to December
2000 for the Shanghai stock market and from Dec. 1995 to Dec. 2005 for the Shenzhen
stock market and the second part (developed phase) of the analysis deals with the data
of the rest of the years i.e up to December 2015 for both the Shanghai and the Shenzhen
stock market.

3.3. Descriptive Statistics. Some summary statistics of the returns of the two indices
are shown in Table 1, where numbers with * are those whose probabilities of J-B tests are
smaller than 5%. The mean of the returns rt is positive implying the fact that two price
series have increased over the period. Also, the means are close to zero, which indicates
that they are mean-reverting.

Table 1. Summary of statistics of returns rt

Index Mean Std Dev. Skewness Kurtosis Jarque-Bera*

SSE
Part 1 .000528 .013773 5.562223 117.7232 1376991.*
Part 2 6.39E-05 .007221 -.305390 7.209037 2737.475*

SZSE
Part 1 .000154 .007940 -.257553 8.380316 2952.961*
Part2 .000037 .008618 -.702905 5.273105 722.9622*

The statistics show that returns are positively skewed in the first part while negatively
skewed in the second part of SSE and the two parts of SZSE index series. These implies
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that the returns of the shares traded in the markets have higher probability of earning
negative in the second half of SSE and two parts of SZSE while returns in the first half
might probably be positive in SSE. The value of the kurtosis is greater than 3 in all series,
and the probability of J-B test is smaller than 5%, this implies that they have sharp peak
and fat tail (leptokurtosis). These results strongly illustrate that the stock returns are
much more impulsive than the major macroeconomic variables.

3.4. Volatility Clustering. Figures 2 and 3 depict the return series of the SSE index
part 1 (Dec. 1990 to Dec. 2000) and part 2 (Jan. 2001 to Dec. 2015) of the whole dataset,
respectively. While Figures 4 and 5 depict the return series of the SZSE index that again
divided into two parts. From these figures, it appears that there are stretches of time where
the volatility is relatively high and stretches of time where the volatility is relatively low
which suggests an apparent volatility clustering in some periods. Statistically, volatility
clustering implies a strong autocorrelation in squared returns; so, a simple method for
detecting volatility clustering is to calculate the first-order autocorrelation coefficient in
squared returns.

One may be curious to know about the reasons for this volatility clustering. Researchers
provide two possible explanations about this phenomenon: first, if information arrives in
clusters, returns may exhibit clustering. Nominal interest rate, dividend yield, money
supply, oil price, margin requirement, business cycles, and information patterns are the
sources of volatility clustering; second, if participants have different prior beliefs and if
they take time to digest the information shocks and resolve their expectation differences,
market dynamics can lead to volatility clustering.

3.5. ADF Test. We use ADF test method to test the stability of the daily returns data
of SSE and SZSE, the testing results are displayed in Table 2.

Table 2. ADF test results of returns γt

Index ADF test statistics 1% level 5% level 10% level Prob.

SSE
Part 1 -47.02250 -3.432780 -2.862500 -2.567326 .00001
Part 2 -58.51186 -3.431964 -2.862139 -2.567326 .00001

SZSE
Part 1 -25.55385 -3.432854 -2.862532 -2.567344 .00000
Part2 -44.90412 -3.432849 -2.862530 -2.567342 .00001

The ADF statistics are all smaller than the test critical values of 1%, 2% and 5% level,
and the probabilities are also smaller than corresponding critical value. Therefore, it is
concluded that the data of SSE and SZSE are stationary.

3.6. ARCH-LM test. From the above, we note that the data of SSE and SZSE are
stationary through ADF test, we now investigate the heteroscedasticity of the data using
ARCH-LM test, and the result is listed in Table 3.

From the ARCH-LM testing result, excluding the heteroskedasticity of part1 of SSE is
not so critical, the other three parts i.e., the part 1 of SSE and both parts of SZSE, are
very critical. So it is appropriate to use a GARCH model to fit the variances of return
series.

3.7. GARCH(1,1) Model. Once volatility clustering and heteroskedasticity of the re-
turn series are confirmed, we focus on determining the fitted GARCH model applicable to
the return series. The parameters α0, α1 and β were fitted for the GARCH (1,1) model.
The GARCH(1,1) fitting results are listed in Tables 4-7.

(1) Fitting Results
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Figure 4. SZSE Returns Part 1

While running the GARCH(1,1) process, we get the following fit conditional variance
equations:
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Table 3. Heteroskedasticity Test using ARCH-LM

SSE
Part 1

F-statistics:2.742170 Prob.F(4,2483): 0.0271
Obs*R-squared: 10.94243 Prob.Chi-square(1): 0.0272

Part 2
F-statsitics: 109.2702 Prob.F(1,3628): 0.0000

Obs*R-squared: 106.1339 Prob.Chi-square(1): 0.0000

SZSE
Part 1

F-statistics:259.1698 Prob.F(1,2421): 0.0000
Obs*R-squared: 234.3017 Prob.Chi-square(1): 0.0000

Part 2
F-statistics:118.8764 Prob.F(1,2421): 0.0000

Obs*R-squared:113.4126 Prob.Chi-square(1): 0.0000

Table 4. Estimation results of Part 1 for the SSE index

Variable Coefficient Std. Error z-Statistics Prob.
Variance Equation

α0 1.43E-06 9.94E-08 14.34142 0.0000
α1 0.494878 0.008693 56.93144 0.0000
β1 0.706702 0.004102 172.3026 0.0000

Table 5. Estimation results of the Part 2 for the SSE index

Variable Coefficient Std. Error z-Statistics Prob.
Variance Equation

α0 5.91E-07 8.85E-08 6.681987 0.0000
α1 0.074472 0.005067 14.69886 0.0000
β1 0.915833 0.005271 173.7504 0.0000

δ2t = 0.000143 + 0.494878ε2t + 0.706702δ2t−1, (7)

for the first part of the return series of SSE index;

δ2t = 0.0000591 + 0.074472ε2t + 0.915833δ2t−1, (8)

for the second part of the return series of SSE index;
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Table 6. Estimation results of the Part 1 for the SZSE index

Variable Coefficient Std. Error z-Statistics Prob.
Variance Equation

α0 1.21E-06 1.49E-07 8.136956 0.0000
α1 0.132756 0.006882 19.28888 0.0000
β1 0.855067 0.003839 222.7126 0.0000

Table 7. Estimation results of the Part 2 for the SZSE index

Variable Coefficient Std. Error z-Statistics Prob.
Variance Equation

α0 7.86E-07 1.78E-07 4.418928 0.0000
α1 0.061527 0.006747 9.119102 0.0000
β1 0.928114 0.007212 128.6985 0.0000

δ2t = 0.000121 + 0.1327566ε2t + 0.855067δ2t−1, (9)

for the first part of the return series of SZSE index; and

δ2t = 0.0000786 + 0.061527ε2t + 0.928114δ2t−1, (10)

for the Second part of the return series of SZSE index.
From the above results we observe the following. The coefficients of the variance equa-

tions are highly significant. The fits of β1 are always markedly greater than those of α1

and the sum α1 +β1 is very close to but smaller than unity except for the SSE index part
one. The sum of α1 +β1 indicates the persistence of the shock effects on volatility of error
term εt. It is observed that α1 + β1 is equal to 1.201 and 0.990 for SSE index Parts 1 and
2, respectively. While for the SZSE index it is 0.988 and 0.989, respectively. This is less
than unity indicating error term εt process is stationary with the exception of Part 1 of
the SSE index, which maybe the result from nonstandard and small scale stock exchange
in the first two years from 1992 to 1993 in SSE. So we cannot investigate further on part
1 of SSE index series on the same guidelines since it violates one of the basic assumptions
of GARCH model. The sum of α1 + β1 of Shanghai stock market is higher than that of
Shenzhen stock market in the second part, this indicates a longer persistence of shocks
in volatility in SSE. The lag coefficient of conditional variance β1 is higher than the error
coefficient α1. This implies that volatility is not spiky in both stock markets. It also
indicates that the volatility does not decay speedily and tends to die out slowly.

(2) Conditional Variance Figures 6-9 show the time series plot for these fit series of
conditional variances. It is clear that the volatility behavior in the Figures is qualitatively
like the apparent volatility variation in the returns of Figures 2-5, respectively. We can
notice that the fit volatility is high for some periods and low for other periods. We may
recall that β1 is close to one, α0 and α1 are small for both indices.

Since δ2t = α1 +α0ε
2
t−1 +β1δ

2
t−1, we see that δ2t tends to δ2t−1. Both big and small values

of δ2t gather together. Also, a big value of lag coefficient β1 demonstrates that it may take
a long time for conditional variance shock to disappear, which results in the persistence
of volatility. As to the comparatively small value of error coefficient α1, it infers that big
market shock can influence the comparatively small change about the volatility in the
future. Thus, in both figures, we find strong evidence of time-varying volatility. We also
find that periods of high and low volatilities tend to cluster. Moreover, volatility shows
high persistence and is predictable.
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3.8. GJR model and EGARCH Model. The above fitting results of GARCH(1,1)
models indicate the autocorrelation of conditional variances of error term εt and describe
the relationship between them and their lag terms. However, the leverage effects could not
been detected by GARCH model. We use asymmetric econometric models, such as GJR
model and EGARCH model to detect the leverage effects in SSE and SZSE in different
parts of them (except part 1 of SSE).

The results are displayed in Tables 8-9, it can be observed that the coefficient γ in
the EGARCH model is negative for both indices, which indicates that there are leverage
effects in different parts of SSE and SZSE, This also states that a negative shock has a
greater impact than a positive shock. Similarly, in the GJR model, the coefficient γ of the
dummy variable is significantly different from zero, which again indicates that a negative
shock has a greater impact than a positive shock. Thus, we find evidence of leverage
effects, and they are considerably significant.

Table 8. The Results of GJR model in SZSE and SSE

Index α0(constant) α1(ε
2
t−1) β(δ2t−1) γ(ε2t−1 ∗ dt−1)

SSE Part 2 6.34E-07 0.060505 0.914342 0.028537
SZSE Part 1 1.09E-06 0.106464 0.860487 0.045424
SZSE Part 2 8.39E-07 0.057873 0.926913 0.007522

Table 9. The Results of EGARCH model in SZSE and SSE

Index ω(constant) α(|εt−1/δt−1|) β(δ2t−1) γ(εt−1/δt−1)
SSE Part 2 -0.271503 0.166365 0.985304 -0.024467

SZSE Part 1 -0.449794 0.254575 0.974059 -0.022397
SZSE Part 2 -0.242538 0.140949 0.986092 -0.014676

4. Correlation Detection Between SSE and SZSE Based on VAR Model. We
have analyzed different parts of SSE and SZSE and have found different characteristics
in the developing and developed parts of each stock market. The interaction relationship
between SSE and SZSE in the past 20 years can be explored by the VAR model, In
particular, we use impulse response analysis and variance decomposition to detect the
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correlation between SSE and SZSE during the period from Dec. 19, 1995 to Dec. 31,
2015.

A VAR model allows all the variables to be endogenous. We run a VAR model for
detecting the correlation. We fit the extent to which unpredictable changes or innovations
are determined with respect to these two stock markets. In general, a VAR model is of
the form:

Yt =

p∑
i=1

AiYt−i +BXt + εt, (11)

where Yt = m×1 is a vector of endogenous variables, Xt = q×1 is a vector of deterministic
and exogenous variables,Ai and B are m×m and q× q coefficient matrices, respectively.
The following function presents a VAR(5) model for the indices of SSE and SZSE during
the period from Dec. 19, 1995 to Dec. 31, 2015. In the VAR specification we end up
with five lags in the estimations based on the lag order selection. The VAR test result is
displayed in Table 10, the results indicate the model is appropriate.[

SSE
SZSE

]
t

=

[
0.0002
0.0003

]
+

[
0.0714 −0.0508
−0.0251 0.08

] [
SSE
SZSE

]
t−1

+

[
0.0222 −0.045
−0.0299 −0.0419

] [
SSE
SZSE

]
t−2

+

[
0.0896 −0.0423
−0.0434 0.0237

] [
SSE
SZSE

]
t−3

+

[
0.001 0.0393
0.0678 −0.016

] [
SSE
SZSE

]
t−4

+

[
0.04588 −0.0385
0.1664 −0.1259

] [
SSE
SZSE

]
t−5

+

[
ε̂1
ε̂2

]
.

The model diagnostics is shown in Figure 10 and the residual correlation matrix is
shown in Table 11. The unit root test result shows that VAR model is stationary and
high correlation between SSE and SZSE, which is 0.901655. However, we only find a
few significant variables in the VAR estimations, and the R2s is not high. To analyze
the interaction between the two stock markets, we ran an impulse response analysis and
variance decomposition analysis. In an impulse response analysis one tries to

Table 10. VAR Test Statistics

SSE SZSE
R-squared 0.007578 0.015534

Adj. R-squared 0.005527 0.013500
Sum sq. resids 0.274629 0.327925

F-statistics 3.695070 7.635484
Log Likelihood 16832.39 16402.28

Akaike AIC -6.936655 -6.759290
Schwarz SC -6.921943 -6.744578

determine the impact of an unexpected change (shock) in one variable on the variable
itself and on the rest of the variables in the VAR model over time. Variance decomposition
measures how much of the variance of the variable in question is based on different shocks
and it thus helps to analyze the exogeneity of the variables.

Figures 11-12 show the generalized impulse responses and the accumulated impulse
response functions between SSE and SZSE. The point impulse responses are all not sta-
tistically significant and die out to zero after 7 days. However, the accumulated impulse
responses are statistically significant, and tend to non-zero constants. We have a stable
process and the VAR model is applicable. That is, the cumulative between SSE and SZSE
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Figure 10. The Unit Root Test result of VAR(5) model.

Table 11. Residual Correlations of VAR

SSE SZSE
SSE 1.0000 0.901655

SZSE 0.901655 1.0000

are finite and measurable, except the cumulative effects of SSE to SZSE are negative, they
are all positive.

The variance decomposition result is displayed in Table 12. It shows the shares of
information that each variable contributes to the others. Variance decomposition reveals
two interesting results. First, the results show, in line with the impulse responses, a
rather stable process. The decomposition of the variances stabilizes after 7 periods: that
is, there is no statistically significant difference from period 7 to period 10 in variance
decompositions. Second, we observe that SZSE has relatively small contributes to SSE,
but SSE has strong effect on SZSE.

5. Conclusion. In this paper, we calculate and compare the descriptive statistics for
the volatilities of the returns for the two Chines stock markets at different phases. We
fit the volatilities at different phases for SSE and SZSE using GARCH, EGARCH, GJR.
We also investigate the correlation between the two markets by impulse response and
variance decomposition analyses using VAR models. As it can be seen from the results
that volatilities of the stock markets have increased as the markets become more and more
globalizing. Means of the return series of both stock markets are positive. However the
mean return at developing phase is significantly larger than the developed phase at each
stock market. This phenomenon signifies the higher scope of growth in the developing
phases. Similarly, the markets are positively skewed in the developing phase whereas
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Figure 11. Responses of generalized one standard-deviation innovations
and confidence intervals.

Table 12. Variance decomposition Result

Variance decomposition of SSE Variance decomposition of SZSE
Period S.E. SSE SZSE S.E. SSE SZSE

1 0.00753 100.000 0.000 0.00823 81.298 18.702
2 0.00757 99.942 0.058 0.00825 81.246 18.754
3 0.00754 99.880 0.120 0.00825 81.230 18.770
4 0.00755 99.827 0.173 0.00826 81.291 18.709
5 0.00756 99.812 0.188 0.00828 81.340 18.660
6 0.00756 99.779 0.221 0.00830 81.085 18.915
7 0.00756 99.778 0.222 0.00830 81.070 18.930
8 0.00756 99.776 0.224 0.00830 81.070 18.930
9 0.00756 99.776 0.224 0.00830 81.070 18.930
10 0.00756 99.776 0.224 0.00830 81.070 18.930

negatively skewed in the developed phase again signifying the effect of growth of the
market in the returns.

Once the volatility clustering is confirmed, the GARCH(1,1) model and its extensions
are used to fit both indices. Our results show that the sum of the coefficients in the
GARCH(1,1) model is close to one in almost all cases. That implies persistence of the
conditional variance. A large sum of the coefficients in the conditional variance equations
implies that a large positive or a large negative return will lead to future forecasts of the
variance to be high. Finally, the fits of the persistence in the long run component are
significant, indicating that the long run component converges very slowly to the steady
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Figure 12. Accumulated responses of generalized onetandard-deviation
innovations.

state. In both markets, volatilities tend to die out slowly. Our results suggest that the
volatility is a little more persistent in the Shanghai stock market than the Shenzhen stock
market.

The results obtained using impulse response analysis and variance decomposition anal-
ysis based on VAR(5) model show that the one standard-deviation innovation impulse die
out after 7 days in the two markets. The results also show that the impact of the SSE on
the SZSE is stronger than that of the SZSE on the SSE.

These findings provide useful recommendations to financial managers and modelers
dealing with the Chinese stock markets. Future research should examine the performance
of multivariate time series models using daily returns of international mature and emerging
markets.
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