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Abstract. This work presents a compressed video enhancement algorithm based on
convolutional neural networks (CNNs), which aims to establish an end-to-end mapping
function between the compressed and the original video frames. Finally, the data is
stored or transferred in the form of video plus network parameters. We can get a quality
improved frame when taking the compressed frame as the input of CNN. Unlike some
traditional filtering methods, our method can utilize more prior information, and thus
can recover more details. Our algorithm relies on the training data, and independent of
the compression method itself. In this work, we adopt H.264/AVC as a typical encoder
to verify the effectiveness of our algorithm. Experimental results demonstrate that the
proposed algorithm provides better reconstructed quality than that of classical approaches.
Keywords: CNNs; Enhancement; H.264/AVC; End- to-end mapping.

1. Introduction. Transform-based coding has been widely adopted in many current
image and video compression standards, such as JPEG, JPEG2000, MPEG-X, and H.26X.
The major goal of these compression techniques is to efficiently compress a large amount of
visual information to fit the bandwidth limits of communication channels while preserving
acceptable quality. The idea of all these techniques is to quantize the transform domain
coefficients to reduce the volume of data. This approach will bring ringing artifacts,
especially at low bitrate compression. In addition, block artifacts are widely existed in
block based coding. As a result, the compressed images or videos suffer from noticeable
visual distortion.

Different from [1], the focus of our work is not the performance improvement of the
compression algorithm itself, but the post-processing of compressed video/image. Many
post-processing methods have been proposed in order to enhance the image quality un-
der limited bitrate situation. They can be broadly divided into two categories: image
enhancement approach and image restoration approach.

The goal of the image enhancement approach is to subjectively improve the perceived
image/video quality. A typical solution is to perform post-filtering to reduce the dis-
tortion, such as [2-6]. In [7], a no-reference quality metric for evaluating the blocking
artifacts was presented to reduce the impact of filtering on high frequency information.
In general, image enhancement approach aiming at smoothing visible artifacts, instead of
restoring original pixel value. The main advantage of this kind of approach is usually its
relatively low computational complexity.
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The way of image restoration approach to solve the artifacts removal problem based
on some prior knowledge and observed data at the decoder. Such methods include MAP
(Maximum a posteriori)-based method [8], POCS (Projection onto convex sets)-based
method [9] and SR (sparse representation)-based method [10], [11]. The method we pro-
posed also belongs to this category. Generally speaking, the image restoration approach
achieves better performance at the expense of higher computational complexity.

The rest of this paper is organized as follows. In Section 2, we present the proposed
video post-processing framework. In Section 3 experimental results and comparison are
demonstrated. Finally, Section 4 concludes this paper.

2. CNNs for compressed video enhancement. The purpose of our work is to estab-
lish an end-to-end mapping between the compressed frames and the original frames. It
can be expressed as:

Y = F(y,Θ) (1)

where Θ = {W1,W2...,Wn;B1, B2, ..., Bn} is the network parameters, n is the number of
layers and y is the compressed sequence.

CNN is a type of feed-forward artificial neural network in which the connectivity pattern
between its neurons is inspired by the organization of the animal visual cortex. CNNS
have wide applications in image and video recognition [12] and natural language processing
[13] etc. One major benefit of CNNs is that they are easier to train and have many fewer
parameters than fully connected networks with the same number of hidden units. We
choose it because the number of its parameters is few enough so that we can ignore the
influence of data volumes grow caused by the network parameters to the bitrate.

Figure 1. Structure of the network in our work

2.1. Structure of the Network in our work. As shown in Figure.1, the network
adopted in this paper is a two-layer CNN. The reasons why we choose the two-layer
model will be explained in the section 3. Each layer is conceptually represented as an
operator: patch extraction, representation operator and reconstruction operator. Then
we will introduce them in detail.

The first layer can be considered as a feature extraction layer, it is equivalent to con-
volving the input image by a set of filters. Partial feature maps of the first layer are
shown in Figure.2. Unlike some pre-defined operations, such as Laplacian operation, the
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operations here are defined by solving the optimization of the network. The relationship
between the input and output of the first layer can be expressed as:

F1(y) = max(0,W1 ∗ y +B1) (2)

where W1 and B1 represent the filters and biases respectively, the size of them are
n1 ∗ f1 ∗ f1 , n1 respectively. Here n1 is the number of filters, f1 is the size of every filter.
The symbol ’∗’ denotes the convolution operation, and the activation function adopted
here is ReLu (Rectified Linear Unit) due to these advantages to accelerate convergence.
The output F1(y) is composed of n1 feature maps.

In the second layer, we reconstruct the final output frame by convolving the feature
maps in the first layer with another filter. It can be expressed as:

F1(y) = W2 ∗ F1(y) +B2 (3)

Similar to the first layer, W2 and B2 represent the filters and biases respectively. The
size of them are n1 ∗ f2 ∗ f2 ∗ n2 and n2 respectively, and n2 = 1 if we only consider
the luminance channel. So far, we have established the end-to-end mapping between the
input frames and the final output, Y is the desired result.

Figure 2. Partial feature maps of the first layer

Figure 3. An illustration of SR-based methods in the view of a convolu-
tional neural network

The two-layer network is similar to traditional transform-based image restoration meth-
ods, such as DCT transform, wavelet transform and the SR-based method. Take SR-based
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method as an example, as shown in Figure.3, we can regard SR-based method as a kind
of CNN. If the dictionary size is n1 , sparse coding is equivalent to applying linear filters
(f1 ∗ f1) on the input image. For a patch (f1 ∗ f1), its sparse coefficient (n1) in SR-based
method can be regarded as the results of the first layer in CNN. The atoms of the low-
resolution dictionary are equivalent to the filters in the first layer. This is illustrated
as the left part of Figure.3. The above n1 coefficients are then projected onto another
(high-resolution) dictionary to produce a high-resolution patch. The overlapping high-
resolution patches are then averaged, which is equivalent to linear convolutions on the n1
feature maps, as illustrated in the right part of Figure.3. However, the SR solver is an
iterative algorithm, not feed-forward. On the contrary, our method is fully feed-forward
and can be computed efficiently.

2.2. Network training. The premise of network training is to generate training samples.
The general approach of deep learning is to take a special image set as the training samples.
But experiments suggest that the network trained with a given set does not have good
generalization performance because given compression parameters have different effects
on different sequences due to the special structure of artifacts. Therefore, we train a
set of parameters for each pair of original and compressed videos in order to improve
the performance. The data is stored or transferred in the form of video plus network
parameters. However, training a network for each pair of sequences greatly increases the
workload. So we adopt following methods to improve the training speed when sampling
training set:

a) Sampling one in three frames to accelerate the training because of the similarity
between adjacent frames. Finally, train the network using all frames to enhance the
performance when the network converges.

b) Post-processing is just applied to the luminance channel because the human eye is
not sensitive to the color channel.

c) Randomly divide the video frames into patches.
d) Exclude the smooth patches because we find that the network is hard to converge if

the samples are smooth.

Finally, the training samples are composed of set {Yi, yi}. Here Yi and yi respectively
represents the patch sampled from luminance channel of original and compressed frames.
To avoid border effects during training, all the convolutional layers have no padding, so
the size of output Yi((fy − f1 − f2 + 2)2) is smaller than input yi(f

2
y ).

The next step is network training, and it is achieved through minimizing the loss be-
tween the reconstructed frames F(yi, Θ) and the corresponding ground truth original
frames Yi. The loss function we choose is MSE (Mean Squared Error), because using
MSE as the loss function favours a high PSNR. It can be expressed as:

min
Θ
L(y,Θ) =

1

n

n∑
i=1

||F(yi, Θ)− Yi|| (4)

where n is the number of training samples. The loss is minimized by stochastic gradient
descent with the standard back-propagation. Detailed mathematical derivation can be
referred from the literature [14].

We implement our model using the Caffe package. And we use the parameters that
have been trained with the same sequence but compressed by different quality factor to
initialize the network in order to accelerate training.

3. Experiments and comparison. In our experiments, the testing platform is the
desktop computer with Intel Core i3-2120 CPU 3.30GHz and 4.00G RAM.We set f1 = 9,
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Table 1. Performance for H.264/AVC compressed sequences (coded in
Quality-based mode)

sequences Size
Bitrate
(Kbit/s)

H264
(dB)

Processed
(dB)

PSNR Gain
(dB)

Foreman 352*288 106.51 32.27 33.66 1.06
Mobile 352*288 283.06 27.09 28.32 1.09
Highway 352*288 39.16 34.75 34.96 0.52
Stefan 352*288 224.18 29.04 29.94 0.84
BasketballDrill 832*480 413.86 32.16 32.74 0.59
SlideEditing 1280*720 1181.83 29.39 30.96 1.57
Johnny 1280*720 198.55 35.83 36.20 0.37
KristenAndSara 1280*720 254.38 35.35 36.07 0.72
Average - - 31.86 32.59 0.84

Table 2. Performance for H264/AVC compressed sequences (coded by dif-
ferent QP)

sequences QP
Bitrate
(Kbit/s)

H264
(dB)

Processed
(dB)

PSNR Gain
(dB)

Foreman
(352*288)

36 168.35 34.44 35.51 0.92
38 132.46 33.28 34.57 1.04
40 106.51 32.27 33.66 1.06

Stefan
(352*288)

40 224.18 29.03 29.94 0.84
42 173.05 27.61 28.49 0.75
45 116.38 25.65 26.38 0.57

f2 = 5, n1 = 64 and n2 = 1 because we only consider the luminance channel. The size of
input (f 2

y ) is set to 33*33, so the size of label ((fy−f1−f2+2)2) is 21*21. The filter weights
of each layer are initialized by drawing randomly from a Gaussian distribution with zero
mean and standard deviation 0.001 (and 0 for biases). According to the denoising [15]
and super-resolution [16] case, the learning rate is 10−4 for the first layer, and 10−5 for
the second one. The number of encoded frames of every sequence is 300. GOP size is set
to 16 with one I-frame, followed by 15 P-frames, and all the sequences are coded by 30
fps.

The peak signal-to-noise ratio (PSNR) is used to measure the objective quality in all
cases. We tested some compressed sequences (include various resolution, such as 352*288,
832*480, 1280*720) that coded in Quality-based mode, the objective and visual quality
results are shown in Table.1 and Figure.4 respectively. As can be seen in Figure.4, we
can find that our method can effectively remove the ringing artifacts. We also present the
experimental results of two sequences that encoded by different quantization parameters
in Table.2. Two video post-processing methods [5], [7] as well as the built-in H.264/AVC
in-loop filter [17] were used for the comparison, and here GOP size is set to 20 with one
I-frame, followed by 19 P-frames in order to keep in line with the comparison methods.
The test sequences for comparison are Foreman and Stefan with the CIF format and
coded in Bitrate-based mode. Experimental results show that our proposed algorithm
has great improvement compared with other methods as shown in Table 3. Moreover, we
can find that the performance of our method in Quality-based mode is better than that
of the Bitrate-based mode.
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Figure 4. Visual comparison of the proposed method. From top to bot-
tom: (a) Original; (b) Compressed (QP=40); (c) Processed frame using our
method

Table 3. Comparison (PSNR gain) of proposed method for H264/AVC
compressed sequences (coded in bitrate-based mode)

Methods
Foreman Stefan
64 Kbit/s 96 Kbit/s 96 Kbit/s 128 Kbit/s

Tais [5] 8*8 filter 0.11 0.05 -0.06 -0.14
Tais [5] 4*4 filter 0.08 -0.02 -0.19 -0.34
Loop filter [17] 0.29 0.40 0.06 0.06
Yehs filter [7] 0.14 0.13 0.04 0.03
Proposed method 0.69 0.68 0.32 0.41

It should be noted that our method is also better than some other methods. But we
cannot accurately compare the results because of the codes is unavailable. Such as SR-
based method [11], in the case of similar image quality, the PSNR gain of their method
for above two sequences are about 0.7dB and 0.4 dB respectively, but the results of our
method is about 1.0 dB and 0.7 dB respectively.

In addition, we compare the processing time and performance of two-layer and three-
layer model with other parameters is kept consistent in Table.4 and Figure.5 respectively.
The three-layer model is generated by adding one hidden layer between the first and
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second layer of the two-layer model. The filter number and size of the added layer are set
to 32 and 1*1 respectively. It is suggests that a reasonably more filters, layers and larger
filter size could lead to better results, but the speed will decrease at same time. As the
representative, we adopt two-layer networks considering that video processing has high
requirement of real time in most cases.

Figure 5. Comparisons (PSNR gain) between the two-layer and three-
layer models

Table 4. Time comparision between the two-layer and three-layer models

Sequences Size
Time(s)

Three-layer Two-layer

Foreman 352*288 3.74 0.37
BasketballDrill 832*480 17.75 1.35
Jonny 1280*720 40.40 2.96

4. Conclusions. We have presented a novel deep learning approach for compressed video
post-processing. The proposed approach learns an end-to-end mapping between the com-
pressed frames and the original frames. We compare the processing time and performance
of two- and three-layer model, and adopt two-layer model because of its substantial time
savings. We show the relationship between our method and traditional transform-based
method or sparse representation method. Experiments demonstrate that our method has
achieved superior performance than some classical methods. We conjecture that addi-
tional performance can be further gained by exploring more filters and different training
strategies. In addition, due to the limitation of time, the results of some sequences are
just temporary and we will improve the results by further iterations.
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