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Abstract. Vector Quantization (VQ) is one of effective image compression techniques.
High compression quality depends on designing a good VQ codebook. Based on two
optimality conditions, the conventional K-means algorithm is a widely used scheme to
generate a codebook. However, the initial codebook greatly affects both the convergence
speed and the quality of the generated codebook. Therefore, many researchers have pre-
sented all kinds of methods to obtain a good initial codebook, including splitting-based,
pruning-based, pairwise nearest neighbor-based, random initialization-based and maxi-
mum distance initialization-based schemes. However, all these techniques do not take
into account the features of the training vectors and some of them need high extra com-
putational load. This paper presents a simple classification based technique to obtain a
better initial codebook. During the initial codebook generation process, we classify the
training vectors according to their edge orientations (eight templates) and their contrast
information (binary decision), and thus we can obtain sixteen subsets. Then we just ran-
domly select several codewords from each subset proportionally to the number of training
vectors in the subset. Experimental results demonstrate that, compared with the conven-
tional and modified K-means algorithms under the random initialization strategy, our
scheme converges to a better codebook with fewer iterations.
Keywords: Vector quantization, Image compression, Codebook design, K-means algo-
rithm, Initial codebook generation.

1. Introduction. Vector quantization (VQ) [1] has been been widely applied in data
compression [2] and data clustering [3]. A vector quantizer Q of level K and dimension n
can be viewed as a mapping from the n-dimensional Euclidean space Rn into a finite set
C, i.e.,

Q : Rn → C = {y1,y2, . . . ,yK} (1)

517



518 X. D. Jiang, Z. M. Lu, and H. Li

where the set C is called the codebook, K is the codebook size, and yi = (yi1, yi2, · · · , yin)T,
1 ≤ i ≤ K, are called the codewords. After quantization, any n-dimensional input vector
v = (v1, v2, . . . , vn)T can be quantized into a codeword in C, that is,

Q(v) ∈ {y1,y2, . . . ,yK} (2)

A suitable distortion metric d(·, ·) is often used in vector quantization, and therefore the
quantization result Q(v) of v should be the codeword yj with the smallest distortion to v.
The squared error is widely used in VQ, assume that Q is designed based on the training
set X = {x1,x2, . . . ,xM}, where xi = (xi1, xi2, . . . , xin)T, 1 ≤ i ≤M , then we can evaluate
the quality of Q by the following average distortion

D = E[d(·, Q(·))] =
1

M

M∑
i=1

‖xi −Q(xi)‖2 (3)

VQ has simple decoding structure, and it can achieve high compression ratio while
maintaining acceptable reconstruction quality, and therefore becomes a popular data com-
pression technique. In general, the compression performance of VQ is dependent on the
quality of the codebook C. Thus, how to design an optimal codebook is very important
for a VQ-based compression system. Based on a training set X, the aim of optimal vector
quantizer design is to seek the codebook C of size K that minimizes the average distortion
over all possible codebooksof size K. As we know, there are two famous conditions that an
optimal vector quantizer should satisfy. One is called nearest neighbor condition which
assigns each training vector to the codeword that is closest to it. The other is called
the best codebook condition which requires that each codeword should be the centroid of
the training vectors that are mapped to it. The above two conditions can be easily used
to develop an efficient scheme named K-means algorithm for locally optimal codebook
design iteratively. This algorithm is also called the generalized Lloyd algorithm (GLA)
or the Linde-Buzo-Gray (LBG) algorithm [4].

The main disadvantages of GLA lie in two aspects, one is that it can only converge to
a locally optimal codebook, the other is that both the convergence speed and the quality
of the obtained codebook depend on the initial codebook. To overcome these problems,
many researchers [5] have been devoted to enhancing the performance of GLA in terms
of quality or speed. In order to improve the codebook quality, most scholars have tried to
use global optimal schemes to find a better solution for the codebook generation problem
[6, 7, 8]. However, the cost of these kinds of population-based schemes is too high to
be utilized in online codebook generation. With the increase of the image size and the
demand for online processing, the speed has become a severe problem in codebook design.
To improve the speed, many scholars have paid particular attention to speeding up the
codebook generation. Some approaches use more efficient codebook structures to reduce
the time required to assign training vectors to codewords such as tree-structured vector
quantization (TSVQ) [9]. Some methods reduce the number of comparisons required
to assign training vectors to codewords to which they belong [10, 11]. Some schemes
use new codeword updating steps rather than the conventional centroid-based updating
step[12, 13].

As we have known, not only the convergence speed but also the quality of the converged
codebook depend on the initial codebook, this paper focuses on generating a better initial
codebook. In the past several decades, many algorithms have been put forward to gen-
erate a good initial codebook, including splitting-based, pruning-based, pairwise nearest
neighbor design (PNN)-based, random initialization based and maximum distance ini-
tialization based schemes[14]. However, all these techniques do not take into account the
features of each training vector. Therefore, in this paper, we propose a simple and efficient
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initialization technique for the K-means algorithm used in image vector quantization by
classifying the input vectors into sixteen subsets by a simple edge classifier together with
a contrast classifier, then we randomly select several initial codewords from each subset
with the number of codewords being proportional to the number of training vectors in
the subset. Experimental results demonstrate that, compared with the conventional and
modified K-means algorithms with random selection initialization, the new initialization
technique converges to a better codebook with a relatively faster convergence speed.

The rest of the paper is organized as follows. Section 2 introduces conventional and
modified K-means algorithms in detail. The proposed edge and contrast classified K-
means scheme is presented in Section 3. The experimental results are given in Section 4.
Finally, we draw a conclusion in Section 5.

2. Related Works. Before describing our scheme, we introduce the conventional K-
means scheme and two modified K-means schemes that we will compare in the experi-
ments.

2.1. Original K-Means Scheme. The original K-means algorithm divides the set of
training vectors X = {x1,x2, . . . ,xM} into K clusters Vi in such a way that the two
necessary conditions for optimality are satisfied. In the algorithm description, m is the

iteration index and V
(m)
i is the i -th cluster at iteration m, with y

(m)
i its centroid. The

algorithm can be described as follows.
Step 1. Initialization Step: Load the training set X = {x1,x2, . . . ,xM} into memory.

Set m = 0. Choose a set of initial codewords y
(0)
i , 1 ≤ i ≤ K.

Step 2. Partitioning Step: Partition the set of training vectors X = {x1,x2, . . . ,xM}
into the clusters Vi, 1 ≤ i ≤ K based on the nearest neighbor condition as follows

V
(m)
i = {v ∈ X|Q(m)(v) = y

(m)
i } = {v ∈ X|d(v,y

(m)
i ) ≤ d(v,y

(m)
j ), allj 6= i, 1 ≤ j ≤ K}

(4)
Step 3. Codeword Updating Step: Update the codeword of each cluster by computing

the centroid of the corresponding training vectors in each cluster as follows

y
(m+1)
i =

1

|V (m)
i |

∑
v∈V (m)

i

v (5)

Step 4. Termination Test Step: If the decrease in the overall distortion dm+1 at iteration
m + 1 relative to dm is below the threshold e, stop the algorithm, i.e., stop if |dm+1 −
dm|/dm+1 ≤ e, where dm+1 is the average distortion after m+ 1 iterations defined as

dm+1 =
1

M

M∑
i=1

‖xi −Q(m+1)(xi)‖2 (6)

Otherwise, replace m by m+ 1 and go to Step 2.

2.2. Modified K-Means Schemes. Lee et al. [12] proposed a modified K-means algo-
rithm, which results in a better locally optimal codebook than K-means algorithm with
the same initial codebook. The modified K-means algorithm is almost the same as the
conventional K-means algorithm except for an improvement at the codebook updating

step. They update the current codeword y
(m)
i at iteration m to the new codeword y

(m+1)
i

at iteration m+ 1 as

y
(m+1)
i = y

(m)
i + s× [

1

|V (m)
i |

∑
v∈V (m)

i

v− y
(m)
i ] (7)



520 X. D. Jiang, Z. M. Lu, and H. Li

where s > 0 is a scale factor. Based on the squared-error distance measure, it has
been shown experimentally that the modified K-means algorithm converges slower in
comparison to the conventional K-means algorithm when s < 1. When 1 < s < 2, it
converges faster and results in better performance. When s > 2, the algorithm either
does not converge, or converges very slowly with poor performance. When s = 1, the
modified K-means algorithm is just the same as the conventional K-means algorithm.
Based on experiments, the best results lie in s = 1.8.

The use of a ”fixed” scaling for the entire range of iterations results in the use of step
sizes larger than the corresponding centroid-update at iterations closer to convergence and
causes undesirably high perturbations of the codewords which are otherwise converging
to some optimal configuration. This in turn has the effect of increasing the number of
iterations required to converge as well as perturbing the codebook convergence to a poorer
local optimum. Thus, Paliwal and Ramasubramanian [13] proposed the use of a variable
scale factor s in the codeword updating step which varies as a function of the iteration m
and is inversely proportional to m as follows:

s = 1 +
x

x+m
(8)

where x > 0. In this equation, s = 2 when m = 0, and s = 1 when m = ∞. thus, it
satisfies the aforementioned conditions. To see the effect of variable x used in the scale
factor equation, Paliwal and Ramasubramanian have studied the algorithm with various
values of x. According to their results, they finally adopt x = 9.

3. Proposed Edge and Contrast Classified K-Means Algorithm. In image vector
quantizer design, the feature distribution of the training set is very important for the
initial codebook generation. In this paper, we consider two types of features, i.e., edge
and contrast. During the initialization step, our algorithm classify the training vectors into
sixteen classes based on their edge orientations and contrast information. Assume that
the training set is composed of M image blocks of size 4× 4, i.e., X = {x1,x2, . . . ,xM},
the proposed scheme can be illustrated in Fig.1. The initial codebook generation process
can be described as follows:

Step 1. Each training vector xi(i = 1, 2, . . . ,M) is input into the edge classifier and
contrast classifier, and an overall index ti ∈ {1, 2, . . . , 16} is output to denote which class
the training vector belongs to.

Step 2. We collect all the training vectors belonging to the same class to generate a
subset, and thus we have 16 subsets Pj of sizes sj(j = 1, 2, . . . , 16) respectively, where
s1 + s2 + . . .+ s16 = M .

Step 3. We initialize K× sj/M initial codewords from each subset Pj based on random
selection, thus we can in total obtain K initial codewords.

Step 4. The modified K-means algorithm in [13] is used to generate the final codebook.
During the iteration steps, if an empty cell occurs, we just judge the classes that all
current codewords belong to and find the class with the least number of codewords, and
randomly select a training vector from this class as a new centroid.

Now, we turn to describing how to classify the training vectors based on our edge classi-
fier and contrast classifier. With regards to edge classification, inspired by the Structured
Local Binary Kirsch Pattern (SLBKP) in [15] that adopts eight 3 × 3 Kirsch templates
to denote eight edge directions, we propose eight 4 × 4 templates for edge classification
as shown in Fig.2. Assume the input image X is segmented into non-overlapping 4 × 4
blocks, the edge classification can be described as follows: First, we perform eight 4 × 4
edge orientation templates on each 4 × 4 block x(p, q), 1 ≤ p ≤ 4, 1 ≤ q ≤ 4, obtaining
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Figure 1. The block diagram of the proposed edge classified K-means algorithm.
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Assume the input image X is segmented into non-overlapping 4×4 blocks, the edge 

Figure 2. The eight 4× 4 edge orientation templates.

an edge orientation vector v = (v1, v2, . . . , v8) with its components vi(1 ≤ i ≤ 8) being
calculated as follows:

vi = |
4∑

p=1

4∑
q=1

[x(p, q) · ei(p, q)]| (9)

Where ei(p, q) denotes the element at the position (p, q) of Ei. Thus, an input block x(p, q)
is classified into the j -th category if

j = arg max
1≤i≤8

vi (10)

Thus, we can classify each training vector into one of eight categories according to its
edge orientation. For the contrast classifier, we first calculate the average value µ of all
components in each training vector as follows

µ =
1

16

4∑
p=1

4∑
q=1

x(p, q) (11)
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And then we calculate the contrast σ by the following formula

σ =
1

16

4∑
p=1

4∑
q=1

[x(p, q)− µ] (12)

And then we classify the input vector into the high-contrast or smooth class based on the
threshold 3.0. Thus, in total, based on above two classifiers, we can classify the training
vectors into 8× 2 = 16 categories.

4. Experiments and Analysis. To demonstrate the performance of the proposed edge
classified K-means algorithm, we compared our scheme with the traditional K-means
algorithm (KMeans), the modified K-means algorithm with the fixed scale value s =
1.8[12] (MKM F) and the modified K-means algorithm with a variable scale value and x = 9
[13] (MKM V). In our experiments, we used two 512 × 512 monochrome images with 256
gray levels, Lena and Peppers. We segmented each image into 16384 blocks, and each
block is of size 4 × 4. We tested the performance for different codebook sizes of 256,
512, and 1024. The quality of the compressed images is evaluated by PSNR. Because
the random selection is adopted for each algorithm, the performance is averaged over ten
runs.

All the algorithms are terminated when the ratio of the mean squared error difference
between two iterations to the mean squared error of the current iteration is within 0.0001
or 0.01%. In Table 1, the PSNR values and the numbers of iterations for the Lena image
with different codebook sizes are shown, where ‘Best’ and ‘Ave’ denote the best and the
average results over ten runs respectively. In Table 2, the PSNR values and the numbers
of iterations for the Peppers image with different codebook sizes are shown. From Table
1 and Table 2, we can see that, if the random selection technique is used, our scheme
requires the least average number of iterations than other algorithms and can also get
better codebooks than other algorithms on average.

Table 1. Performance comparison for Lena image with random selection
initialization (CBsize: codebook Size; itr: number of iterations)

CBSize 256 512 1024

Performance PSNR(dB) itr PSNR(dB) itr PSNR(dB) itr
KMeans: Best 30.447 25 31.293 29 32.138 27
KMeans: Ave 30.379 36 31.237 38 32.083 34
MKM F: Best 30.505 22 31.453 23 32.439 20
MKM F: Ave 30.465 26 31.420 27 32.387 26
MKM V: Best 30.470 16 31.420 14 32.452 17
MKM V: Ave 30.436 23 31.393 24 32.383 22

Our: Best 30.514 15 31.466 17 32.455 15
Our: Ave 30.472 22 31.434 23 32.401 19

5. Conclusions. This paper presents an improved K-means algorithm for image vector
quantization. The main idea is to classify the training vectors into 8 categories based on
the edge orientation of each vector, and then randomly select initial codewords from each
category with the number of codewords proportional to the number of vectors in each
category. The experimental results based on three test images show that our algorithm
can converge to a better locally optimal codebook with a faster convergence speed.
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Table 2. Performance comparison for Peppers image with random selec-
tion initialization (CBsize: codebook Size; itr: number of iterations)

CBSize 256 512 1024

Performance PSNR(dB) itr PSNR(dB) itr PSNR(dB) itr
KMeans: Best 29.863 32 30.591 24 31.368 19
KMeans: Ave 29.799 43 30.540 37 31.313 29
MKM F: Best 29.956 25 30.789 25 31.712 18
MKM F: Ave 29.917 37 30.714 33 31.625 24
MKM V: Best 29.912 20 30.758 19 31.732 16
MKM V: Ave 29.861 30 30.710 24 31.593 20

Our: Best 29.968 16 30.796 17 31.725 15
Our: Ave 29.923 24 30.720 23 31.636 19
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