
Journal of Information Hiding and Multimedia Signal Processing c©2017 ISSN 2073-4212

Ubiquitous International Volume 8, Number 3, May 2017

DOA Estimation Method for Two-Dimensional
Wideband Signals by Sparse Recovery in Frequency

Domain

Jia-Qi Zhen, Zhi-Fang Wang

Department of Electronic Engineering
Heilongjiang University

No.74, Xuefu Road, Nangang District, Harbin, China
zhenjiaqi2011@163.com

Received September, 2016; revised February, 2017

Abstract. The direction of arrival(DOA) estimation methods with sparse recovery need
to separate the searching space into some angle meshes, which will cause some error to
the result. Therefore, a novel approach for two-dimensional wideband signals by sparse
recovery is used, the iterative functions are constructed and calculated by output signal,
after that the support set is acquired according to the root finding and corresponding semi-
definite programming, then the DOA is acquired by integrating the data of all frequency
bins, meanwhile the signal can also be recovered in continuous frequency domain. It
avoids the error brought by sparse recovery in discrete domain and particularly performs
well when the number of snapshots is small.
Keywords: Direction of arrival (DOA) estimation, Sparse recovery, Wideband signals,
Frequency domain

1. Introduction. Direction of arrival(DOA) estimation is widely used in source local-
ization [1-6], radio monitoring[7-9] and electronic countermeasure[10-11], one of the tech-
niques is based on sparse recovery, it is a novel kind of super-resolution direction finding
methods arising in recent years, but most of them are only used for narrowband signals.
The joint sparse property of all frequency bins is a remarkable advantage for wideband
array signal processing based on fractional frequency[12]. Hyder[13] calculated DOA of
near wideband and narrowband signals combing norm when the sampling is small. Liu[14]
used the homotopy for basis pursuit, obtained the optimal adjust parameters and recov-
ery result by iteration. Liu[15] solved the wideband DOA under the condition of sparse
constraint, and reconstruct the signal by the spatial sparse property of multiple frequency
bins, this was a expansion of the standard sparse Bayesian learning algorithm. Eldar[16]
proposed the idea of block sparse, then Hu[17] calculated DOA of wideband signal based
on block sparse recovery, solved the complicated calculation of traditional sparse recovery.

The sparse recovery proposed in recent years have lowered the demand to number of
samplings relative to the traditional focusing methods, and increased the estimation ac-
curacy, but they are usually confined by off-line effect. So Tan[18] presented an iterative
grid optimization algorithm, determined the original signals and mesh mismatches syn-
chronously. Candes[19-20] studied the signal recovery with continuous model, avoided
off-line effect when signals were reconstructed with discrete model, then the estimation
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had been improved to a large extent, but he did not tell us the detail process of wideband
DOA estimation.

In this paper, a novel two-dimensional DOA estimation method is proposed, first, the
wideband signals are separated into some non-overlapped frequency bins, the iterative
functions are constructed and calculated by output signal, after that the support set is
acquired according to the root finding and corresponding semidefinite programming, then
the DOA is acquired by integrating the data of all frequency bins, meanwhile the signal
can also be recovered in continuous frequency domain. This method avoids the error
brought by sparse recovery in discrete domain, it particularly performs well when the
number of snapshots is small.

 

!

Figure 1. Array signal model

2. Array signal model. It is seen from FIGURE 1, consider an arbitrary array with
M sensors in X-Y plane, the phase reference of the array is defined as the origin, and the
coordinate of the mth sensor is (xm, ym) (m = 1, 2, · · · M). Assume that there are N far-
field wideband signals arriving at the array, angles of arrival are (φn, θn) (n = 1, 2, · · · N),
where φn and θn are respectively defined as the azimuth and elevation, so output of M
sensors can be written:

y(t) = [y1(t), · · · , ym(t), · · · , yM(t)]T = [
N∑
n=1

sn(t− τ1n), · · · ,
N∑
n=1

sn(t− τmn), · · · ,

N∑
n=1

sn(t− τMn)]T + [b1(t), · · · , bm(t), · · · , bM(t)]T (1)

where τmn = xmcosφncosθn+ymsinφncosθn
c

is the propagation delay for the nth signal arriving
at the mth sensor with respect to the reference of the array, ym(t) is the output of the
mth sensor, bm(t) is the corresponding additive Gaussian white noise, c is the propagating
speed of the signal.

Suppose number of the subband is K, the array output can be written as

Y (fk) = A(fk)S(fk) +B(fk) (k = 1, 2, · · · K) (2)
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the steering vector matrix at frequency fk is

A(fk) = [a(fk, φ1, θ1),a(fk, φn, θn),a(fk, φN , θN)]

=


e−j2πfkτ11 · · · e−j2πfkτ1n · · · e−j2πfkτ1N

...
e−j2πfkτm1 · · · e−j2πfkτmn · · · e−j2πfkτmN

...
e−j2πfkτM1 · · · e−j2πfkτMn · · · e−j2πfkτMN

 (3)

here, a(fk, φn, θn) is the direction vector of wideband signal coming from (φn, θn)(n =
1, 2, · · · N) at frequency fk, suppose S(fk) is composed by several spikes[21-22], define

ϕn(fk) =
fk
c

[1− (cosφncosθn + sinφncosθn)] (4)

so S(fk) can be expressed as the sparse form below:

Sk(fk) =


S1(fk)

...
Sn(fk)

...
SN(fk)

 =


υ1

2(fk)δϕ1(fk)
...

υn
2(fk)δϕn(fk)

...
υN

2(fk)δϕN (fk)

 (5)

and δϕn(fk) is a dirac measure located at ϕn(fk), define ϕ1(fk), · · · ϕN(fk) as the sparse
support set of the signals, υn

2(fk) is defined as its power.

3. Principle of the method.

3.1. Infinite samples. Suppose the received data Y (fk) is infinite, it is expressed by
(2), given a measure S(ϕ), the Fourier coefficients can be expressed as

q(m) =

∫ 1

0

exp(−j2πmϕ)S(ϕ)dϕ (m = 1, 2, · · · M) (6)

combine (5) and (6), we have

q(m, fk) =
N∑
n=1

exp(−j2πmϕn(fk))υn
2(fk) (m = 1, 2, · · · M) (7)

thus, equation(7) can simply be expressed as

Q(fk) = F (fk)S(fk) (8)

where

Q(fk) = [q(1, fk), q(2, fk), · · · q(M, fk)]
T (9)

and

F (fk) =


exp(−j2πϕ1(fk) · · · exp(−j2πϕN(fk)

exp(−j2π×2ϕ1(fk) · · · exp(−j2π×2ϕN(fk)
...

exp(−j2πMϕ1(fk) · · · exp(−j2πMϕN(fk)

 (10)

in order to reconstruct initial wideband signal, it is possible to solve the following question

min
S(fk)

K∑
k=1

‖S(fk)‖TV, s.t.Q(fk) = F (fk)S(fk), (k = 1, 2, · · · K) (11)
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where ‖S(fk)‖TV =
∑N

n=1 Sn(fk) =
∑N

n=1 υn
2(fk), it is the total-variation norm of a

measure, then we can recover the signal S(fk) if the distance between ϕα(fk) and ϕβ(fk)
is wider than 2/fk for 1≤α, β≤N , α 6=β; k = 1, 2, · · · K[19];

3.2. Finite samples. In fact, the received data Y (fk) is not always infinite, thus Y (fk)
is composed of finite samples, assume that the number of snapshots at every frequency is
KP , equation(2) needs to be modified as

Y (fk) = A(fk)S(fk) +B(fk), (k = 1, 2, · · · K) (12)

where
Y (fk) = [Y (fk, 1), · · · ,Y (fk, kp), · · · ,Y (fk, KP )] (13)

here Y (fk, kp) is the kpth sampling vector of the received data at fk, S(fk) and B(fk)
are respectively the finite signal and noise sampling vector. Remove the noise item from
both sides of (12), we have

Y (fk)−B(fk) = A(fk)S(fk) = A(fk)S(fk) +D(fk) (14)

here D(fk) can be deemed as a perturbing term, it reflects the error between infinite
and finite received data. Combining (14), we can deduce the Fourier coefficients of finite
samples

q(m, fk) = exp(−j2πmfk
c

)(Y m(fk)−Bm(fk))

= exp(−j2πmfk
c

)(
N∑
n=1

exp(j2πm
fk
c

(cosφncosθn + sinφncosθn)υn
2(fk) +

D(m, fk)))

=
N∑
n=1

exp(−j2πmfk
c

(1− (cosφncosθn + sinφncosθn)))υn
2(fk) +

exp(−j2πmfk
c

)D(m, fk)

= exp(−j2πmϕn(fk))υn
2(fk) + ω(m, fk) (15)

where ω(m, fk) = exp(−j2πmfk
c

)D(m, fk), so (15) needs to be modified as

Q(fk) = F (fk)S(fk) + ω(fk) (16)

where ω(fk) = [ω(1, fk), · · · ,ω(1, fk)]
T, similarly, initial signal can be recovered with the

data of all frequency bins by the following problem

min
S(fk)

K∑
k=1

‖S(fk)‖TV, s.t.
K∑
k=1

‖Q(fk)− F (fk)S(fk)‖2≤
K∑
k=1

|ς(fk)| (17)

the problem (17) above is a multiple convex program, they are complex to be calculated
directly, we can solve the following dual problem of (17) to simplify them[20]

max
φ(fk),Z

K∑
k=1

(Re[Q∗(fk)φ(fk)]− ς(fk)‖φ(fk)‖2) s.t.[
Z φ(fk)
φ∗(fk) 1

]
�0, k = 1, 2, · · · , K,

K∑
k=1

‖F ∗(fk)φ(fk)‖L∞
≤K (18)
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where
M−β∑
α=1

Zα,α+β =

{
1, β = 0
0, β = 1, 2, · · · ,M − 1

(19)

Z∈CM×M is a Hermitian matrix,and φ(fk) is the corresponding Lagrangian multiplier
matrix for Q(fk) = F (fk)S(fk) + ω(fk) , it can be acquired via semidefinite program
[23-24], which can be solved by SeDuMi[25] and CVX[26].

We can use the lemma below to indicate the relation between the solution of (17) and
(18):

(F̂ ∗φ̂)(fk) = sign(‖Ŝ(fk)‖TV), k = 1, 2, · · · , K (20)

where ‖Ŝ(fk)‖TV 6=0, F̂ (fk),φ̂(fk) and Ŝ(fk) are respectively the estimated vector of
F (fk),φ(fk) and S(fk).

Proof: Combining the Cauchy Schwarz inequality, there is

‖Ŝ(fk)‖TV =
N∑
n=1

Sn(fk) = Re < Q∗(fk), φ̂(fk) > −ς(fk)‖φ̂(fk)‖2

= < F̂ (fk)Ŝ(fk), φ̂(fk) > + < Q̂(fk)− F̂ (fk)Ŝ(fk), φ̂(fk) > −ς(fk)‖φ̂(fk)‖2
≤ < Ŝ(fk),F

∗(fk)φ̂(fk) > (21)

By Holders equality and ‖F̂ ∗(fk)φ̂(fk)‖L∞
≤1 , we have ‖Ŝ(fk)‖TV≥ < Ŝ(fk), F̂

∗(fk)φ̂(fk) >

, then ‖Ŝ(fk)‖TV =< Ŝ(fk), F̂
∗(fk)φ̂(fk) > , which holds (20).

As ‖Ŝ(fk)‖TV 6=0, take absolute value of both sides of (20), we have

|F̂ ∗(fk)φ̂(fk)| = 1 (22)

it can be seen from (22), if the information of F ∗(fk)φ(fk) corresponds to the signal, it
has modulus equal to one, otherwise, we have[19]

|F ∗(fk)φ(fk)| < 1 (23)

so using the data of all the frequency bins, we have

K∑
k=1

|F̂ ∗(fk)φ̂(fk)| = K (24)

then combining (4) and (10), we can estimate the DOA, meanwhile, the signal vector in
continuous frequency domain can be recovered by (5) if we do not consider their powers.

As the proposed two-dimensional sparse recovery method is accomplished in continuous
frequency domain, it can be called TSRF method for short.

4. Simulations. Here, we present some simulations with matlab below, consider several
wideband chirp signals impinging on a plane array with 8 omnidirectional sensors, the
center frequency of the signals is 4GHz, the coordinates are randomly given as (0,0), (-
0.16,0.12), (-0.049, 0.086), (-0.22,0.055), (-0.079,-0.032), (0.065, 0.13), (0.08,0.24), (0.037,-
0.044), unit is meter. two-sided correlation transformation(TCT) method[27], sparse re-
covery methods in discrete domain (SRD) and in frequency domain (TSRF) are respec-
tively used for the simulations, ς(fk)(k = 1, 2, · · · , K) in TSRF method is taken as 1. The
meshes of SRD are separated to (φ, θ) , the area of them are both (0◦∼90◦) , step size of
SRD and searching step size of TCT are both 0.4◦ , homotopy approach[29] is used for
basis pursuit in SRD, 200 Monte-Carlo simulations have run for each condition.
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4.1. Normalization Spectrum. Suppose three far-field wideband signals are respec-
tively arriving at the array with same power from (35.5◦, 63.5◦),(48.5◦, 50.5◦), (60.5◦, 40◦),
SNR is 1dB, number of sampling at each frequency is 25, the width of the band is 25%
of the center frequency, normalization spectrums are shown in FIGURE 2, 3 and 4. We
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Figure 2. Normalization spectrum of TCT
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Figure 3. Normalization spectrum of SRD
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Figure 4. Normalization spectrum of TSRF
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can see from FIGURE 2∼4, the normalization spectrum of TSRF is sharper than that of
SRD and TCT. Due to the off-line effect, there is certain error for SRD, and we can not
avoid it even if we use a more careful division.

4.2. Estimation Error versus SNR. Assume that SNR varies from -10dB to 10dB,
then the estimation error versus SNR is shown in FIGURE 5 when number of snapshots
at each frequency is 20. It can be seen from FIGURE 5, TSRF method can estimate DOA
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Figure 5. Estimation error versus SNR

more accurately than SRD and TCT, as the increase of SNR, they are all convergent at
last.

4.3. Estimation Error versus Number of Snapshots. Assume that number of snap-
shots at each frequency varies from 3 to 30, the estimation error is shown in FIGURE
6 when SNR is 4dB. We can see from FIGURE 6, TSRF method can estimate DOA
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Figure 6. Estimation error versus snapshots
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more accurately than SRD and TCT, as the increase of number of snapshots, they are all
convergent at last.

4.4. Resolution. Assume that two far-field wideband signals arrive at the array with
same power from (45◦, 59◦),(48◦, 56◦), SNR is 5dB, the normalization spectrum are given
in FIGURE 7, 8 and 9. We can see from FIGURE 7∼9, when the two signals are near,
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Figure 7. Normalization spectrum of TCT for two near signals
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Figure 8. Normalization spectrum of SRD for two near signals
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Figure 9. Normalization spectrum of TSRF for two near signals

only TSRF can resolve them accurately, but TCT and SRD have failed.
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4.5. Estimation Probability of Success versus Relative Bandwidth. Suppose
SNR is 5dB, the relative bandwidth ranges from 0 to 50% , if the estimation error is
less than 0.4, it is thought to be successful, estimation probability of success versus rela-
tive bandwidth is shown in FIGURE 10. It is seen from FIGURE 10, when the relative
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Figure 10. Estimation probability of success versus relative bandwidth

bandwidth is less then and equal to 30%, all the methods can estimate DOA successfully,
but the performance is deteriorating as the relative bandwidth increases, in contrast,
TSRF is the better than SRD and TCT.

5. Conclusions. The DOA estimation method for two-dimensional wideband signals
based on sparse recovery is proposed in continuous frequency domain in this paper, the
iterative functions are constructed and calculated by output signal, after that the support
set is acquired according to the root finding and corresponding semidefinite programming,
then DOA is acquired by integrating all frequency bins, meanwhile the signal can also
be recovered in continuous frequency domain. This method avoids the error brought
by sparse recovery in discrete domain, it particularly performs well when the number of
snapshots is small and SNR is low.
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