
Journal of Information Hiding and Multimedia Signal Processing c⃝2017 ISSN 2073-4212

Ubiquitous International Volume 8, Number 3, May 2017

Using Fault Infection and Propagation Mining Top
Important Function Nodes in Software Execution

Complex Network

Wanchang Jiang 1,2, Jiadong Ren 2, Yuan Huang 2

1School of Information Engineering
Northeast Dianli University
Jilin, 132012, P. R. China

2College of Information Science and Engineering
Yanshan University

Qinhuangdao, 066004, P. R. China
jwchang84@163.com, jdren@ysu.edu.cn, 757918272@qq.com

Received November, 2016; revised February, 2017

Abstract. Due to complicated relations of call and dependence between functions in
software, failure of one function may propagate and infect other functions. Software exe-
cution complex network is constructed based on complex network to demonstrate internal
complicated function call relations in software execution. Based on fault infection and
propagation with relation in the software network, especially with direct relation in local
network, a novel top-k important function nodes mining method is proposed to identify
important and influential nodes that are susceptible to infection and make the range of
fault wider and more serious. Firstly, a measure of fault infected degree (short as FID)
is proposed to analyze the infection degree directly caused by called nodes to the node.
On this basis, then a measure of fault infected index (FII) is designed to calculate how
one node is infected by both its called nodes and itself. Functions with recursive call
or mutual call are specially treated. Finally, with FII, fault infection capacity (FIC) is
proposed to obtain the fault infection capacity caused by one node to other nodes in the
network directly. Then a top-k important nodes mining algorithm is designed to mine
top k important functions in the software network. Experimental results on open source
software systems demonstrate that the method can reasonably mine top k important nodes
in software network, especially in the upgraded versions.
Keywords: Software complex network, Fault infection and propagation, Function calls,
Top-k important nodes

1. Introduction. The development of software techniques and increasing enhancement
of function requirements make the software systems increasingly complicated. The fault
of one entity may be propagated to other entities through the internal relation of the
software. If some key entities in software are suffered by deliberate attacks, the failure
may lead to collapse of the whole software system [1, 2]. Therefore, how to guarantee the
reliability and stability of the software becomes more and more important.

Techniques of different granularity are proposed to improve the software reliability in
the different phases of the software lifecycle. Fine-grained techniques of fault localization
are proposed to identify the location of faults in software. Program spectra-based suspi-
ciousness metrics Sokal and HAN are designed to compute suspiciousness value of each
statement to be fault [3]. To improve the effectiveness of spectrum-based fault localization

599



600 W. Jiang , J. Ren, Y. Huang

techniques, the ratio between non-violated and violated metamorphic test groups of test
suites is investigated [4]. The spectra of fail test cases beyond balanced test suite are
cloned to improve the performance of spectrum-based fault localization techniques [5]. A
learning-based approach is proposed to combine multiple metrics for fault localization [6].
In order to make software testing and maintenance more targeted, the coarse-grained

techniques are proposed to improve the reliability and stability of software. With features
of divide-and-conquer, modularization, high intra-module cohesion, and low inter-module
coupling, the software execution process is treated as a complex network [7, 8]. Based on
weighted networks from dynamic software execution, critical modules or critical routes
are used to improve testing efficiency and reduce testing cost [9]. With analyzing dynamic
execution path in software, a novel approach is proposed to mine similar execution path
to reduce software testing cases [10]. A new network growth model is developed to repro-
duce the particular features exhibited by software packages [11]. The fault of one function
may be transmitted to other functions of software network, which eventually leads to the
cascading failure [12]. To reduce the infection scope, In-degree metric is proposed to mea-
sure the importance of node in network [13]. The Laplacian-based centrality is extended
to the case of general directed networks, and then arbitrary nodes can be quantitatively
compared [14]. A graph-based characterization of a software system is used to capture
its evolution and predict bug severity [15]. The relations of function calls are mapped to
software execution networks, and node measurement score for measuring the importance
of functions is defined [16].
However, on the one hand, the direct relation and cascade relation in network are not

considered together in the above studies to measure fault infection and propagation. On
the other hand, functions with recursive calls or mutual calls are ignored, which may lead
to an accumulation of fault.
Therefore, software execution complex network is constructed to reflect the compli-

cated calling relations of functions in the process of software execution. With the local
and universal infection and propagation of one node, the degree of node being infected,
the degree of node infecting other nodes and the degree of infecting itself are utilized,
and then a measure of fault infection capacity FIC is proposed to measure the fault in-
fection of the node to the network. Then the FIC-based topk important nodes mining
algorithm is designed to identify influential nodes in the network. At last, the experiment
is conducted on three open source software systems, and top k important nodes in the
software complex network are obtained. It will help developers and maintainers to under-
stand the complicated software network, and then improve pertinence and effectiveness
of maintenance for software system, especially for the upgraded versions.
The remainder of this paper is organized as follows. The constructing of software

execution complex network is presented in Section 2. In Section 3, we propose fault
infection measure FI of node in the software execution network. Section 4 presents the
top important nodes mining algorithm. The experiments are designed on the typical
software in Sections 5. At last, we conclude the work and discuss the future work in
Section 6.

2. Construction of software execution complex network. Since the method of
modular and hierarchical design is used for software implementation, software consists
of both entities (such as functions and modules) and calls and interdependence among
entities. Software execution has the features of complex network, for example, it is not
a random network or a regular network, the degree distribution obeys a power law form
and so on. So the software execution complex network is built to reflect the complicated
relations of entities in software execution.



Using Fault Infection and Propagation Mining Top Important Function Nodes 601

Definition 2.1. Software execution complex network. As the basic unit of software sys-
tem, especially the process-oriented one, function is considered as the node, the relation
of function calls between functions is considered as the directed edge, and the number of
calls is considered as the weight of the corresponding edge. As a result, software execution
complex network is constructed, and represented as a weighted directed network as G=(N,
E, T). N represents the function node set {ni}, where ni is one of function nodes. E
represents the relations of the edge set {eij}, wherein eij = (ni, nj) is one edge made up of
an ordered node pair. That is to say, node ni directly calls node nj, which is represented
as ni → nj. T represents the edge weight set {tij}, where tij is the number of times that
ni directly calls node nj.

Definition 2.2. Local network of node nk. Local network of node nk is the weakly con-
nected sub-graph containing node nk in software execution complex network, which consists
of all nodes that can be reached the node nk and all nodes that node nk can reach. For ∀
node nj, if the network has a path of directed edges from node nk to node nj, all nodes
(including node nj) in the path is added into the local network of node nk. For ∀ node ni,
if the network has a path of directed edges from node ni to node nk, all nodes (including
node ni) in the path is added into the local network.

Take software package cflow-1.3 in the open source software library [17] as an example,
relations of function calls will be obtained when cflow-1.3 performs an analysis task of
C language code. And then the software execution complex network of cflow-1.3 is
constructed as a weighted directed network, shown in Figure 1 as follows.

As shown in the figure, the local network of node linked list append is included in the
figure on the lower right, function node linked list append calls node deref linked list,
and it is called by function nodes of add name, append symbol, reference, add reference
and call. With relations of function calls in the software network, if one function entity has
fault, then the fault may be propagated to other functions and even infect other functions.
As a result, we propose an importance measure of nodes in the software network based on
both local and universal fault infection and propagation. The important and influential
nodes involved in the fault infection and propagation are closely related to the software
stability and robustness.

3. Fault infection capacity measure of function nodes in software network. The
fault of one node may be propagated to other nodes in the software network with different
infection capacity. If the weighted directed network G = (N, E, T) has a path of directed
edges from node nk to nj, the fault of nj may be propagated to nk. In other word, node
nk can be infected by node nj through the path of edges.

Due to the specificity of software network, each function node in the software network
may realize its functionality with help of called nodes, especially directly called ones.
The fault mostly is propagated to a limited range of nodes in the network, that is, local
network of the node. Therefore, if there is a directed edge e ∈ E from node ni to node
nj and ni, nj ∈ N, then the fault of ni may be infected by nj. A measure named fault
infected degree is proposed to analyze the degree of infection to the node directly caused
by the called nodes.

Fault infected degree (FID). Node nj directly calls other nodes {njk} directly, {njk}
is called nodes set of node nj, the number of elements of the set is Nd

j . When one or some
of these called nodes have fault, the fault can be propagated to the node nj through the
calling relation, that is node nj may be infected. To measure the possibility of the fault of
the directly called nodes turning their calling node nj into fault, a measure named fault



602 W. Jiang , J. Ren, Y. Huang

Figure 1. Construction of software execution complex network of cflow-1.3.

infected degree is proposed, short as FID.

FID(nj) =

Nd
j∑

k=1

wj,jk ∗ FII(njk) (1)

Where FII(njk) is fault infected index (FII) of the node njk , and the fault infection
caused by the node itself and other nodes is reflected. To reflect different importance of
the called nodes in causing infection to the node nj, weight wj,jk of node njk is calculated
by using the edge weight tj,jk of the software network as follows.

wj,jk = tj,jk/

Nd
j∑

h=1

tj,jh (2)

Then the definition of fault infected index FII is given to measure fault infection caused
by the node itself and other nodes in the software network.
Fault infected index (FII). Node nk may fault with failure in the node itself. Fur-

thermore, it also may be infected by its called nodes. To measure how node nk infected
by both its called nodes and itself, the corresponding possibility of the node to be fault



Using Fault Infection and Propagation Mining Top Important Function Nodes 603

is defined as fault infected index, FII(nk).

FII(nk) = d ∗ FID(nk) + (1− d) ∗ FIID(nk) (3)

where FID(nk) is the fault infected degree of called nodes of nk, contains the infection
information of indirectly called nodes of nk. The local infection and propagation of one
node is considered in calculation the fault infected index. And, FIID(nk) is fault infected
itself degree, which is defined to obtain the degree of fault infected by itself. With the
adjustable factor d, the role FID(nk) and FIID(nk) in calculating FII(nk) is balanced.
Only FIID(nk) is used to calculate FII(nk), when one node has no called nodes, that is,
leaf node with In-degree being zero.
Furthermore, there are some special nodes in the software network with complicated

function calls, such as the node with function recursive call and the two nodes with
function mutual call. These kinds of function call should be processed to avoid calculation
of endless loop, and the calculation is as follows.

FII(nk) = d ∗ FIID(nk) (4)

FII(nk) = FIID(nk) + FIID(ni) (5)

Finally, some nodes call node nj in the software network. Once fault occurs in node
nj, the fault can be propagated to these nodes. A measure of fault infection capacity
(FIC) of node is proposed to measure the direct fault infection capacity of the node to
the network.
Fault infection capacity (FIC). Fault infection capacity is proposed to measure the

fault infection capacity of one node to its corresponding calling nodes in the network,
namely, the fault infection directly caused by the node to the network. The formula of
FI(nj) is shown as follows.

FIC(nj) =

Nc
j∑

m=1

ujm,j ∗ FII(nj) (6)

The fault of node nj can be propagated to nodes that call it through the directed edge,
the degree of the calling nodes to be infected is different. Therefore weight ujm,j is given
to reflect the weight of infection to each calling node, which can be obtained by using
edge weight tjm,j of software network with help of formula 7).

ujm,j = tjm,j/

Nc
j∑

h=1

tjm,j (7)

And fault infection capacity FIC is used to measure the direct infection influence of fault
of node to the software network.

4. Top k important nodes of software network mining algorithm FIC TINSNM.
We propose a top-k important nodes mining algorithm to mine important nodes (espe-
cially top ones) of software network through application of the measure of fault infection
capacity FIC, short as FIC TINSNM. The algorithm FIC TINSNM has three phases.
Firstly, with the constructed weighted directed software execution complex network, mea-
sures FI(nj), FII(nj), FID(nj), FIID(nj) and etc. of each node are initialized. Second,
all nodes that can arrive from node nj through one directed edge are traversed, FID of
nj is calculated. Then all nodes that can reach node nj through one directed edge are
traversed, FIC of node nj is calculated. At last, FIC is obtained as the measure of in-
fluence and importance of nodes in the network. As a result, top k important nodes are
identified.



604 W. Jiang , J. Ren, Y. Huang

The detailed steps of the top-k important nodes mining algorithm FIC TINSNM are
shown as follows.
In the top important nodes mining algorithm, the cascade relation is considered in

the process of calculating fault infection capacity FIC of each node, especially the direct
relation of local network of one node. Besides the information on fault caused by the node
itself(FIID in line 33), the relation of function calls between the node and its called nodes
(FID in line 29), and the relation of calls between its calling nodes and the node (FIC
in line 39) are also considered to obtain fault infection capacity FIC of each node. To
solve the problem of functions with recursive calls or mutual calls, lines 21 and 25 in the
algorithm are designed respectively. As a result, based on local and universal infection
and propagation, the obtained top k important nodes may contain nodes ignored by other
methods.

5. Experiment.

5.1. Experiment setup. To illustrate the reasonability of the FIC-based top-k impor-
tant nodes of software network mining algorithm FIC TINSNM, the performance with
other three measures of In-Degree, Degree and PageRank is compared. Three software
systems in the open source software library [17] are selected in the experiment, that is,
software gzip (for file compression), tar (for bundling more files into a single one) and
cflow (for analysis of a collection of C source files) respectively. And four versions of
program package of each software system are used.
The test source of instrument.c is used to track relations of function calls when each

version of gzip, tar, cflow is executed. The tool of Pvtrace to analyze the tracked file and
generate document that record relations of function calls. Then with the program realized
by Java, relations of function calls are mapped to a weighted directed network. That is,
the software execution complex network is obtained. The top-k important nodes mining
algorithm is used to obtain top k important function nodes in the software network. The
experiments are carried out under the environment of Linux system.

5.2. Experiment results. With the top-k important nodes mining algorithm FIC TINSNM,
FIC of each node in the software network is calculated firstly. With the number of nodes
in corresponding intervals of FIC, the FIC distribution of software network of cflow, gzip
and tar is shown in Figure 2, 3 and 4 respectively.
As shown in Figure 2, 3 and 4, the number of nodes versus FIC features unevenly

distribution, the overall distribution curve of FIC shows the number of corresponding
nodes decreases with the value of FIC. For example, FIC mostly distributes in the range
of small FIC of versions of software cflow, only a few nodes have high FI value. Therefore,
these nodes of software network can be distinguished from other ones in terms of FIC.
Comparing FIC of different versions of the software, we can find that FIC distribution
varies a little in process of upgrading software version.
By using FIC measure method, function nodes of software networks of gzip, tar and

cflow are ranked. The top 10 important nodes of each software network are listed in
Table 1, 2 and 3 respectively.
As shown in Table 1, ten functions with top FIC are slightly different in software

execution complex network of each version. With the maximum FIC, function nexttoken
is the most important node in network of each version, and so as the next important
function node gnu output handler.
Functions of linked list append, linked list iterate and linked list destroy in soft-

ware network of cflow-1.3 and cflow-1.4 are new top functions that do not emerge
in that of versions 1.1 and 1.2. These new top important function nodes offer reliable



Using Fault Infection and Propagation Mining Top Important Function Nodes 605

Algorithm:1
Input : software execution complex network G=(N, E, T)
Output : top k important nodes Ntop−k={ntm}
1. Initialize FIC(nj) and FID(nj) of each node with 0.
2. Initialize FII(nj) of each node with 0, and FII(nj) with 1/|N |.
3. Calculate in-degree and out-degree of each node
4. For each node
5. If(out-degree(ni)==0)
6. FII(ni)=FIID(ni)
7. End If
8. End For
9. For each node
10. If(out-degree(ni)==0 and in-degree(ni)==0)
11. FII(ni)=FIID(ni)
12. FIC(ni)=FII(ni)
13. End If
14.End For
15.While(∃nm, FIC(nm)==0)
16. For(i=1;i <= n;i++)
17. in num=0
18. If(FID(ni)==0)
19. If(rel[i, i] ̸=0)
20. in num++;
21. FII(ni)=d*FIID(ni)
22. End If
23. For(j=1;j <= n;j++)
24. If(rel[i, j] == rel[j, i])
25. FII(nj)= FIID(nj)+ FIID(ni);
26. End If
27. End For
28. If(in num==outDeg(ni))

29. FID(ni) =
∑Nd

i
k=1wi,ik ∗ FII(nik)

30. End If
31. End For
32. If(FII(ni)==0 and FID(ni) ̸=0)
33. FII(ni)= d*FID(ni)+(1-d)*FIID(ni)
34. End If
35. If(inDeg(ni)==0)
36. FIC(ni)=FII(ni)
37. End If
38. If(FII(ni) ̸=0 and FID(ni) ̸=0)

39. FIC(ni) =
∑Nc

i
m=1 uim,i ∗ FII(ni)

40. End If
41. End For
42.End While
43.Rank nodes on the basis of the measure FIC
44.Output top k important nodes Ntop−k={ntm} in the network



606 W. Jiang , J. Ren, Y. Huang

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

FI

T
he

 n
um

be
r 

of
 n

od
es

FI Distribution

 

 
cflow−1.1
cflow−1.2
cflow−1.3
cflow−1.4

Figure 2. FIC distribution of software network of each version of cflow.

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35

40

45

50

FI

T
he

 n
um

be
r 

of
 n

od
es

FI Distribution

 

 
gzip−1.3.3
gzip−1.4
gzip−1.5
gzip−1.6

Figure 3. FIC distribution of software network of each version of gzip.

guarantee for maintenance of the upgraded software versions. linked list append calls
deref linked list, and it is called by functions of add name, append symbol, reference,
add reference and call. Compare with the low versions, append symbol also is a new
function in version 1.3 as a called function of linked list append, which appends the sym-
bol to the tail of the table entry. If function linked list append faults, the fault may
be propagated to its five calling nodes. Function linked list iterate has the bigger FIC
value than function linked list destroy in cflow-1.3, and linked list iterate calls func-
tion linked list destroy. The fault of linked list destroy may be propagated to its calling
node of linked list iterate. The above three new functions should be paid more attention
in maintenance of versions in the future.



Using Fault Infection and Propagation Mining Top Important Function Nodes 607

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35

40

45

50

FI

T
he

 n
um

be
r 

of
 n

od
es

FI Distribution

 

 
gzip−1.3.3
gzip−1.4
gzip−1.5
gzip−1.6

Figure 4. FIC distribution of software network of each version of tar.

Table 1. Top 10 important nodes ranking of software executing network of cflow

cflow-1.1 cflow-1.2 cflow-1.3 cflow-1.4
1 nexttoken nexttoken nexttoken nexttoken
2 gnu output handler gnu output handler gnu output handler gnu output handler
3 install install linked list append linked list append
4 lookup lookup lookup lookup
5 append to list append to list yyrestart delete symbol
6 yyrestart yyrestart linked list iterate yyrestart
7 delete symbol delete symbol delete symbol linked list iterate
8 parse dcl parse dcl install install
9 scan tree scan tree linked list destroy linked list destroy
10 is last is last parse dcl parse dcl

Table 2. Top 10 important nodes ranking of software executing network of gzip

gzip-1.3.3 gzip-1.4 gzip-1.5 gzip-1.6
1 main main file read read buffer
2 flush block read buffer send bits main
3 bi reverse flush block main copy block
4 build tree write buf get suffix file read
5 send bits bi reverse write buf build tree
6 do stat build tree bi reverse bi reverse
7 file read send bits build tree fstat
8 write buf open and stat open and stat moddi3
9 gen codes fstat64 strlwr strcpy
10 scan tree file read write buffer ct tally

As shown in Table 2 and 3, function main play an important role in gzip and tar.
Compare with other function nodes, sometimes it can be ignored for simplifying mainte-
nance.



608 W. Jiang , J. Ren, Y. Huang

Table 3. Top 10 important nodes ranking of software executing network of tar

tar-1.13 tar-1.20 tar-1.21 tar-1.27
1 from oct from header from header from header
2 set stat set stat set stat main
3 main main main page aligned alloc
4 flush archive page aligned alloc page aligned alloc flush archive
5 find next block flush archive flush archive flush read
6 name next flush read flush read gnu flush read

7
child open for
uncompress

gnu flush read gnu flush read gnu flush read

8 xclose gnu flush read gnu flush read tar sparse init

9 flush read read header primitive read header primitive
transform member

name

10 quote copy string tar sparse init tar sparse init
transform name

fp

To further illustrate the rationality of the result of top k important nodes mining based
on FIC, four function ranking strategies of In-Degree, Degree, PageRank and FIC are
utilized respectively to rank nodes of software network. The top 10 important functions
ranking based on In-Degree, Degree, PageRank and FIC is listed respectively in Table 4.

Table 4. Top 10 important nodes ranking of software executing network
of tar with four different methods

In
Degree

Function Degree Function
Page
Rank

Function FIC Function

12 nexttoken 14 nexttoken 0.529 scan tree 0.102 nexttoken

8 putback 11 direct tree 0.018 lookup 0.081
gnu output
handler

5
linked list
append

10
parse variable
declaration

0.015 print symbol 0.046
linked list
append

5 lookup 9 tree output 0.015
hash symbol

compare
0.045 lookup

5
gnu output
handler

8 putback 0.015 nexttoken 0.037 yyrestart

4 mark 7 main 0.013
gnu output
handler

0.037
linked list
iterate

3 install 7 fake struct 0.012
hash symbol

hasher
0.037 delete symbol

3
yy load

buffer state
7 lookup 0.012 ident 0.034 install

3 tokpush 7 parse dcl 0.011
deref linked

list
0.032

linked list
destroy

3 restore 7
linked list
iterate

0.011 static free 0.024 parse dcl

As the results shown in the table, the measure method of In-degree may be ineffective in
distinguishing nodes. However, the measure of FIC can distinguish each other effectively.



Using Fault Infection and Propagation Mining Top Important Function Nodes 609

Take cflow-1.3 as an example, there are 8 nodes with In-degree value being 3, such as
functions of install, linked list destroy and include symbol. In contrast, these nodes
could be ranked and mined by the algorithm FIC TINSNM. Furthermore, there are 25
nodes with In-degree value being 2. The weakness of PageRank method is exposed.
Fucntion scan tree is the first ranking function for the recursive call relation, and thus it
has the obvious larger PageRank value. And since fucntion print symbol has a mutual
call relation with gnu output handler, it has a top ranking with method of PageRank.

When cflow-1.3 is executed with a task of analysis, if function of linked list append
has fault, the failure may be transmitted to other functions directly or indirectly. Its
infection to directly calling nodes is considered, which will increase the probability of
occurring fault in the network. It may lead at most 22.6% of functions in the software
network to be fault, and 15.1% for linked list iterate. Whats more, the direct infection
is paid more attention in the process of calculating FID and FII to mine important nodes,
and the indirect infection is also considered. However, the direct and cascade relations of
functions are not considered adequately in other measures, and some important functions
are ignored.

6. Conclusions. A good understanding of nodes of software systems is really impor-
tant for improving software stability and robustness in the process of upgrading software
version. The failure of function may infect other functions with function calls. With ref-
erence to complex network, software execution complex network is constructed to reflect
the complicated relation of function calls in software execution. To measure the impor-
tance of nodes in the network, the measure of fault infection capacity FIC is proposed to
measure the fault infection caused by the node to the network. With fault infection and
propagation, the direct relation of one node is mainly considered, and the cascade relation
is also considered to calculate the fault infection capacity. With the measure of FIC, then
the top-k important nodes mining algorithm is designed to obtain the most important
and influential function nodes in the network. Experiment results on open source software
shown that top important nodes in software network can be obtained by the algorithm.

In the future work, besides relations of function calls, relation of multi-granularity in
software network should be emphasized to design the measure of the influence of each
node on the network in order to completely master the internal structure and execution
of software systems.

Acknowledgment. This work was supported by the National Natural Science Founda-
tion of China (No.61572420), the Natural Science Foundation of Hebei Province (No.F2014
203152) and the Education Department of Jilin Province [2016]94.

REFERENCES

[1] E. Zio, L. R. Golea, G. Sansavini, Optimizing protections against cascades in network systems: A
modified binary differential evolution algorithm, Reliability Engineering & System Safety, 2012, 103,
pp. 72-83.

[2] S. Chen, X. Zou ,L. Hui, Q. Xu, Research on robustness of interdependent network for suppressing
cascading failure, Acta Physica Sinica, 2014,vol.63, no.2, pp. 257-264.

[3] L. Naish, H. J. Lee and K. Ramamohanarao, A model for spectra-based software diagnosis, ACM
Trans on Software Engineering and Methodology, 2011, vol.20, no.3, pp.1-32.

[4] P. Rao, Z. Zheng, T.Y. Chen, N. Wang and K. Cai, Impacts of Test Suite’s Class Imbalance on
Spectrum-Based Fault Localization Techniques, Proc. of the 13th International Conference on Quality
Software, Najing, China,2013, pp.260-267.

[5] P. DanielK.Y. Sim,S. Seol, Improving spectrum-based fault-localization through spectra cloning for
fail test cases, Contemporary Engineering Sciences, 2014, vol.7, no.14, pp.677-682.



610 W. Jiang , J. Ren, Y. Huang

[6] J. Xuan, M. Monperrus, Learning to combine multiple ranking metrics for fault localization, Proc. of
Int’l Conf. on Software Maintenance and Evolution, 2014, Victoria, Canada, pp.191-200.

[7] K. Cai, B. Yin, Software execution processes as an evolving complex network, Information Sciences,
2009,vol.179, no.12, pp.1903-1928.

[8] Lovro ?ubelj, Marko Bajec. Software Systems through Complex Networks Science: Review, Analy-
sis and Applications, Proceedings of the First International Workshop on Software Mining, Beijing,
China, 2012, pp. 6-18.

[9] K. Zhou, W. Lan, J. Feng, Software execution process as weighted complex networks, Computer
Engineering and Applications, 2011, vol.47, no.17, pp.51-55.

[10] J. Ma, D. Zeng, H. Zhao, Modeling the growth of complex software function dependency networks,
Information Systems Frontiers, 2012, vol.14, no.2, pp.301-315.

[11] J. Wang, Y. Liu, F. Mei , C. Zhang, Modeling cascading failures for Internet based on congestion
effects, Journal of Computer Research and Development, 2010, vol.47, no.5, pp.772-779.

[12] X. Wang, Complex network: Topology, dynamics and synchronization, International Journal of
Bifurcation and Chaos, 2002, vol.12, no.5, pp.885-916.

[13] N. Masuda, H. Kori, Dynamics-based centrality for directed networks, Physical Review E-Statistical,
Nonlinear, and Soft Matter Physics, 2010, 82(5 Pt 2):056107,pp.1-11.

[14] H. He, Y. Liu; J. Dong, et al, A novel approach to mine software similar execution paths based on
node rank, ICIC Express Letters, 2016,vol.10, no.2, pp.323-330.

[15] P. Bhattacharya, M. Iliofotou, I. Neamtiu, et al, Graph-based analysis and prediction for software
evolution, Proceedings of International Conference on Software Engineering, Zurich, Switzerland,
2012, pp.419-429.

[16] H. He, J. Wang, J. Ren, Measuring the importance of functions in software execution network based
on complex network, International Journal of Innovative Computing, Information and Control, 2015,
vol.11, no.2, pp.719-731.

[17] http://sourceforge.net/


