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Abstract. The k-Nearest Centroid Neighbor rule is one of the effective algorithms in
pattern classification. In this paper, with the goal of overcoming the sensitivity issue
on the choice of the neighborhood size k and improving the classification performance,
two new distance-weighted k-nearest centroid neighbor rules are proposed. According to
the geometric distribution and the similarity between the nearest centroid neighbors and
the query pattern, the proposed rules mainly employ the new weighted voting function
to give weights in the classification voting. In order to verify the classification behavior
of the proposed classifiers, we conduct extensive experiments on twelve real data sets, in
comparison with the other KNN-based classifiers. Experimental results show that the new
classifiers are effective algorithms for the classification tasks, owing to their satisfactory
classification performance and robustness over a wide range of k.
Keywords: Pattern classification, k-nearest neighbor rule, k-nearest Centroid neighbor
rule, Distance-weighted voting.

1. Introduction. Pattern recognition system is an important part of modern informa-
tion science and artificial intelligence. It is mainly composed of four parts: data acquisi-
tion, data preprocessing, feature extraction and classification decision[1]. As an important
part in pattern recognition, the research of the classification decision algorithm has be-
come a hot research topic. In pattern recognition, since the k-nearest neighbor (KNN)
rule was first introduced by Fix and Hodges[2], it has been one of the top ten algorithms
in data mining[3], and has been widely used in many practical applications, such as image
processing, speech recognition and text classification.

The basic rationale for the KNN rule is such that each query pattern is assigned to the
class, represented by a majority of its k-nearest neighbors sought from the training set
by Euclidean distance. The major characteristic of the KNN rule is its good asymptotic
performance. If the number of training samples approaches to infinity, the error rate of the
KNN rule is bounded above twice the optimal Bayesian error rate. And when the number
of the samples N and the number of neighbors k tend to infinity and k/N→0, the error
rate of the KNN rule approaches to the Bayesian error rate[4]. However, the KNN rule
has two main limitations. Firstly, the sensitivity issue on the choice of the neighborhood
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size k exists in the KNN rule. If k is too small, the classification result of the query is
sensitive to the data sparseness and the noisy, ambiguous or mislabeled points. If k is too
large, its neighborhood may include many outliers from other classes[5, 6, 7]. Secondly, by
virtue of the majority voting for making decision in the KNN rule, the k neighbors of each
query have an identical weight. The ties of vote can easily give rise to the unpromising
classification results.

To deal with the problem, Dudani developed a weighted voting scheme, called distance-
weighted k-Nearest Neighbor rule (WKNN)[8], with the basic idea of weighting closer
neighbors more heavily according to their distances to the query. Gou, et al. developed a
new distance-weighted k-nearest neighbor rule (DWKNN)[9, 10] which can deal with the
outliers in the local region of a data space, so as to degrade the sensitivity of the choice
of k.

In order to improve the classification accuracy, a great many of alternative extensions of
the traditional KNN have been developed. Among them, the Nearest Centroid Neighbor
rule (NCN) is one of the alternative methods[11, 12, 13]. Based on the concept of the NCN
rule, Sánchez developed the k-Nearest Centroid Neighbor rule (KNCN)[12]. Instead of
directly selecting k nearest neighbors for a query, KNCN chooses k nearest centroid neigh-
bors that are not only close enough to the query, but also well symmetrically distributed
around it. Many experimental studies have indicated that the KNCN rule performs very
well in terms of the classification accuracy. However, just like the KNN rule, there are still
several problems in the KNCN rule. With the goal of improving the KNCN classification
performance, the weighted voting schemes for KNCN have been put forward[14].

Although the KNCN and WKNCN rules can get better classification performance,
there are still main problem which will reduce the classification accuracy. This issue
in the KNCN and WKNCN is that the far centroid neighbors with more similarities
have identical or small contributions for classification. In fact, the far centroid neighbors
may be more related to the query pattern, we should give larger weights to them for
classification. On the contrary, the similarities among the nearest centroid neighbors with
the query pattern are lower, especially the neighbors may be the outliers, we should give
smaller weights to them. In order to overcome this problem and improve the classification
performance, in this paper, we propose two new classifiers on basis of DWKNN and
KNCN, called Distance-weighted k-nearest Centroid Neighbor rules (DWKNCN). In the
DWKNCN, we design two weighted voting functions for DWKNCN. The experimental
results show the effectiveness of the proposed classifiers in many practical situations.

The rest of this article is organized as follows. In section 2, we briefly summarize
the related work. In section 3, we introduce two weighted voting methods for KNCN-
based classification. Section 4 presents the experimental results and section 5 offers our
conclusion.

2. Outline of Related Work.

2.1. KNN, WKNN and DWKNN. The KNN-based classification rule is one of the
top ten algorithms in data mining. In the KNN, given a set of training samples and a
query, it first finds k nearest neighbors, and then assigns the class label to the query object
that has the majority voting among its nearest neighbors[15]. We give a summary of the
KNN algorithmic procedure. Let T = {(xi, li)}Ni=1 be the training set with M classes in
the m-dimensional feature space, where xi ∈ Rm, li ∈ {c1, c2, . . . cM}, N is the number of
training samples. Given a query sample x̄, its unkown class l̄ is determined as follows:

a) A set of k similar labeled target neighbors for x̄ is identified by Euclidean distance.

Denote the set TNN
k (x̄) =

{(
xi

NN , li
NN
)}k

i=1
, arranged in an increasing order in terms
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of Euclidean distance d(x̄, xi
NN) between x̄ and xi

NN :

d
(
x̄, xi

NN
)

=

√
(x̄− xiNN)T (x̄− xiNN) (1)

b) The class label of the query object x̄ is predicted by the majority voting of those
identified neighbors:

l̄ = argmax
cj

∑
xi

NN∈TNN
k (x̄)

δ
(
cj = li

NN
)

(2)

Where j ∈ {1, 2, . . .M}, δ
(
cj = li

NN
)

is the Kronecker delta function that takes a

value of one if cj = li
NN and zero otherwise.

In the KNN rule, an implicit assumption that k nearest neighbors of each query share an
identical weight is not always appropriate in pattern classification. Dudani first introduced
a weighted voting method for KNN, called the WKNN rule[8]. In the WKNN, the closer
neighbors are weighted more heavily than the farther ones. The weight wi for the i-th
nearest neighbor of the query x̄ is defined as follows:

wi =

{
d(x̄,xk

NN)−d(x̄,xi
NN)

d(x̄,xk
NN )−d(x̄,x1

NN )
d
(
x̄, xk

NN
)
6= d

(
x̄, x1

NN
)
,

1 d
(
x̄, xk

NN
)

= d
(
x̄, x1

NN
) (3)

Then, the classification result of the query is made by the majority weighted voting:

l̄ = argmax
cj

∑
xi

NN∈TNN
k (x̄)

wi × δ
(
cj = li

NN
)

(4)

In contrast to WKNN, Gou, et al. introduced a new distance-weighted k-nearest neigh-
bor rule (DWKNN)[8, 9]. It can deal with the outliers in the local region of a data space,
in order that the degree of the sensitivity of different choices of k can be degraded. Dif-
ferent from the weights in WKNN, the new weight wi

′ for the i-th nearest neighbor of the
query x̄ in DWKNN is defined as follows:

wi
′ =

{
d(x̄,xk

NN)−d(x̄,xi
NN)

d(x̄,xk
NN )−d(x̄,x1

NN )
× d(x̄,xk

NN)+d(x̄,x1
NN)

d(x̄,xk
NN )+d(x̄,xi

NN )
d
(
x̄, xk

NN
)
6= d

(
x̄, x1

NN
)
,

1 d
(
x̄, xk

NN
)

= d
(
x̄, x1

NN
) (5)

And then, the classification result of the query is made by the majority weighted voting:

l̄′ = argmax
cj

∑
xi

NN∈TNN
k (x̄)

wi
′ × δ

(
cj = li

NN
)

(6)

2.2. KNCN and WKNCN. NCN is a good way to choose the nearest neighbors[12, 13].
The basic idea of NCN is that the neighbors are not only close to the query objects as
much as possible, but also they are distributed around the query objects as geometrically
as possible. For the query object x̄, NCN should be subject to two complementary
constraints:

a) The distance criterion: the centriod neighbors should be close to x̄ as much as possible.
b) The symmetry criterion: the centriod neighbors should be placed around x̄ as homo-

geneously as possible.

The centroid of a set of points X = {x1, x2, . . . xr} can be defined as xcr = 1
r

r∑
i=1

xi.

According to the NCN concept, the KNCN rule is introduced by Sánchez [9]. Compared
with the KNN, the KNCN predicts the class label of the query object in terms of both
the proximity and symmetrical distribution of the neighbors by the majority voting.
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Given a query x̄, the KNCN classifier can be obtained as follows:

a) Find the k nearest centriod neighbors of a query x̄ from the training set T , indicated

by TNCN
k =

{
xNCN
i ∈ Rm

}k
i=1

.
b) Assign x̄ to the class c with the greatest voted class among k nearest centroid neighbors

in the set TNCN
k (resolve ties randmly), according to Eq.(2)

With the goal of improving the KNCN classification performance, the weighted voting
schemes for KNCN have been proposed[14]. It implies a common weighted voting function,
i.e., uniform kernel function:

wNCN
i =

1

i
, i = 1, 2, . . . , k (7)

And then, the classification result of the query is made by the majority weighted voting
according to Eq.(4) or (6).

3. The Distance-weighted KNCN Classifiers.

3.1. Problem representation. As we know, the classification rules based on the KNN
rule have two limitations: (1) the classification performances is sensitive to choose the
neighborhood size k; (2) a majority vote is the simplest method of combining the class
labels for the KNN, and the k neighbors of each query have an identical weight. The ties of
vote can easily give rise to the unpromising classification results. Moreover, although the
weighted voting methods are less sensitive to the choice of k than the k-nearest neighbor
rule, their classification results are still affected by the sensitivity of k, owing to the
existing outliers in the neighborhood region of k nearest neighbors, especially in small
training sample size situations[16, 17, 18].

Due to the distance and symmetry criterions used in the KNCN, it has been observed
that the classification importance of centroid neighbors’ proximity can be overestimated[14].
Given a NCN neighborhood, some nearest centroid neighbors may be indeed too far from
the query pattern, but the query may be located closer to the most distant centroid
neighbors. This problem could result in slower or worse classification accuracy.

Motivated by the problems as mentioned above, we can find that the distance of far-
ther nearest centroid neighbors are probably smaller than the closer nearest centroid
neighbors[19]. In this situation, on one hand, the farther nearest centroid neighbors may
be more effective for the classification result; on the other hand, the closer nearest cen-
troid neighbors may be outliers, it will reduce the classification accuracy. So during the
classification process, we should give more weight to highly reliable centroid neighbors
while reducing the impact of unreliable centroid neighbors. We assume that the weights
of the closer nearest centroid neighbors with the lower classification contribution should
be smaller, otherwise the weights of the farther nearest centroid neighbors with the higher
classification contribution should be larger. Therefore, we propose two Distance-weighted
k-nearest Centroid Neighbor rules (DWKNCN). The proposed methods can not only use
the advantage of the geometric distribution of the nearest centroid neighbors, but also use
the similarity between the nearest centroid neighbors and the query pattern. Moreover,
we can give more contribution with more weight for classification, although the nearest
centroid neighbors with more similarities are farther. They can resolve the problem of
the sensitivity issue on the choice of the neighborhood size k and the identical weight to
each neighbors, so as to improve the classification performance.

Next, we borrow the ideas of the distance-weighted voting method to develop two new
voting schemes for KNCN.
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3.2. DWKNCN1. We design a simple and effective classifier, i.e. DWKNCN1, to at-
tempt to solve the aforementioned problems and improve the classification accuracy.

Let T̄ =
{(
xi

NCN , li
NCN

)}k
i=1

be the set of the k-nearest neighbors to the query x̄

arranged in an increasing order according to the distance d(x̄, xi
NCN) between x̄ and

xi
NCN , and W̄ = {w̄1, w̄2 . . . w̄k} be the set of the homologous weights. DWKNCN1 is

based on WKNN and KNCN: to give different weights to k nearest centroid neighbors
according to their distances, with closer neighbors having greater weights. The weight w̄i

for the i-th nearest centroid neighbor of the query x̄ is defined as follows:

w̄i =

{
dmax−d(x̄,xi

NCN)
dmax−dmin

dmax 6= dmin,

1 dmax = dmin

(8)

where dmax = max
{
d
(
x̄, xi

NCN
)}k

i=1
, dmin = min

{
d
(
x̄, xi

NCN
)}k

i=1

And then, we label the query x̄ by the weighted voting, the same as Eq.(4) or (6).

l̄ = argmax
cj

∑
(xi

NCN ,li
NCN)∈T̄

w̄i × δ
(
cj = li

NCN
)

(9)

According to the Eq.(8), we can see that a centroid neighbor with smaller distance is
weighted more heavily than one with larger distance: the nearest centroid neighbor with
smallest distance gets weight of 1, the nearest centroid neighbor with largest distance
among the k neighbors gets weight of 0 and the other centroid neighbors’ weights are
scaled linearly to the distances in between.

3.3. DWKNCN2. Compared with the DWKNCN1, we use the weighted function of
Eq.(5) in DWKNN to put forward a new weighted voting method(DWKNCN2) which
reduces the weight of each nearest centroid neighbor except the first nearest neighbor.
It can keep from giving too much weight to the outliers by reducing the weights of the
neighbors in the set of k nearest centroid neighbors for each query.

The new weight w̄′i for the i-th nearest neighbor of the query x̄ is defined as follows:

w̄′i =

{
dmax−d(x̄,xi

NCN)
dmax−dmin

× dmax+ dmin

dmax+d(x̄,xi
NCN )

dmax 6= dmin,

1 dmax = dmin

(10)

And then, we label the query x̄ by the weighted voting, the same as Eq. (9).
In Eq.(10), the weight of each K-nearest centroid neighbor consists of two parts: the

first part is the same as the weight in DWKNCN1, the second one is a new distinct
weight. Generally, the similarity between the outliers and the query pattern is relatively
small. When the similarity is smaller, the degree of weight reduction should be greater.
According to Eq.(10), we can give more weights for the farther nearest centroid neighbors
with more similarities, with the purpose of further reducing the weights of the outliers
among the k nearest centroid neighbors. It is obvious that the weight w̄′i is smaller than
the weight w̄i computed by Eq.(8), except the weights of the first and k-th nearest centroid
neighbors.

3.4. The Algorithm. In summary, the algorithm form of the proposed DWKNCN is
described in Algorithm 1. Before the start of the algorithm, we prepare the input as
follows:
x̄: the query pattern, k: the neighborhood, T = {xi ∈ Rm}Ni=1: the training samples,

Ti = {xij ∈ Rm}Ni

j=1: the subset of T in each class, M : the numbers of classes,

{c1,c2, . . . cM}: class labels, N1,N2, . . . NM : the number of training samples in Ti
Then we can predict the class label of a query pattern by the DWKNCN rule.
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Algorithm 1: The proposed DWKNCN algorithms

Step 1: Compute the distances of training samples in each class ci to the query x̄
for j=1 to Ni do

(x̄, xij) =
√

(x̄− xij)T (x̄− xij)
End for
Step 2: Find the first nearest centroid neighbor of x̄ in each class ci
[min dist,min index] = min(d(x̄, xij))
xNCN
i1 = xmin index

Set CNCN
i (x) = {xNCN

i1 ∈ Rm}
Step 3: Search k nearest centroid neighbors of x except the first one in class ci, say

TNCN
ik (x) =

{
xNCN
ij ∈ Rm

}k
j=1

For j=2 to k do

Set Si (x) = Ti − CNCN
i (x), Si (x) = {xil ∈ Rm}Li(x)

l=1 , Li (x) = length (Si (x))
Compute the sum of the previous j − 1 nearest centroid neighbors.

sumNCN
i (x) =

j−1∑
r=1

xNCN
ir

Calculate the centroids in the set Si for x and the distance between them.
For l=1 to Li (x) do
xcil = 1

j
(xil + sumNCN

i (x))

dcil (x, xcil) =
√

(x− xcil)
T (x− xcil)

End For
Find the j-th nearest centroid neighbors.
[min indexNCN ,min distNCN ] = min(dcil(x, x

c
il))

xNCN
ij = xmin indexNCN

Add xNCN
ij to the set CNCN

i (x).
End For
Set TNCN

ik (x) = CNCN
i (x).

Step 4: Calculate the weights of k nearest centroid neighbors.
For i=1 to k do
dmax = max

(
d
(
x, xi

NCN
))

, dmin = min
(
d
(
x, xi

NCN
))

If dmax = dmin then
w̄i = 1
Else

w̄i =
dmax−d(x̄,xi

NCN)
dmax−dmin

or w̄i =
dmax−d(x̄,xi

NCN)
dmax−dmin

× dmax+ dmin

dmax+d(x̄,xi
NCN )

End if
End For
Step 5: Assign the class label to x̄ by the weighted voting.
l̄ = arg max

cj

∑
(xi

NCN ,li
NCN)∈TNCN

k (x̄)

w̄i × δ
(
cj = li

NCN
)

4. Experimental Results. In the pattern classification, the accuracy rate is one of the
most important measures to evaluate the algorithm performance. In order to study the
classification behavior of the proposed classifiers, we conduct many comparative exper-
iments on twelve real data sets to compare with the aforementioned classifiers. These
real data sets are selected from the UCI machine learning repository[20]. We consider the
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classification performance through two aspects[21]: (1) the highest accuracy rates and the
corresponding values of k, (2) the accuracy rates with varying the neighborhood size k.

4.1. Experimental Data Sets. The twelve real data sets in our experiments are se-
lected from the UCI machine learning repository. For short, among these data sets, the
abbreviated names for Image Segmentation, Parkinsons, Waveform, Landsat Satellite,
Transfusion are Image, Park, Wave, Landsat and Trans. The overall properties of these
data sets are described in Table 1, including dataset names, sample instances, feature
space dimensions, class numbers and the number of testing samples.

Table 1. The data sets used in the experiments

Dataset Instances Dimensions Classes Training set Testing set
Wine 178 13 3 118 60
Iris 150 4 3 100 50

Seeds 210 7 3 140 70
DUser 403 6 4 260 143
Image 2310 19 7 1400 910
Ecoli 336 7 8 216 120
Park 195 22 2 130 65
Wave 5000 40 3 3000 2000

Landsat 6435 36 6 4290 2145
Musk 476 166 2 317 159
Pen 10992 16 10 7323 3669

Trans 748 4 2 498 250

The attributes of the data sets are both numeric, which can make us directly use
Euclidean distance to calculate the similarity between two samples. Among the 12 data
sets, there are 3 data sets that belong to two-class classification tasks, while the others
are multi-class classification tasks. We conduct experiments by 20-fold cross validation.
The training sets are randomly taken from each data set, while the remaining samples
are the testing sets. We do experiments 20 times and obtain 20 different training and
testing sets for performance evaluation on each data set. Twenty averaged classification
accuracy with 95% confidence is achieved as the final performance. We should note that
the values of the neighborhood size k in each data set vary from 1 to 15. The optimal or
sub-optimal value of k on each data set which obtains the highest accuracy rate is chosen
within the interval.

4.2. Experimental Comparisons. We thoroughly explore the performance of our two
proposed DWKNCNC classifiers, compared to KNN, WKNN, DWKNN, KNCN, WKNCN.
The average best accuracy rates, the corresponding standard deviations and values of k
of each method are shown in Table 2.

Among these methods, the best classification results are marked bold-face type in the
table. As shown in Table 2, we can clearly see that the proposed DWKNCN1 and
DWKNCN2 classifier always perform better than other five methods on the real data
sets, except Wave and Trans data set.

To further explore the superiority of the proposed DWKNCN rules, the average classi-
fication results of the seven methods with varying the neighborhood size k on each data
set are shown in Figure 1 and 2.

It is clear that the performance of DWKNCN is almost superior to the other methods,
especially when the value of k is large. In consequence, we can draw a conclusion that
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Table 2. The best average accuracy rates (%) of each method with the
corresponding stds and value of k in the parentheses for the 12 UCI data
set (the best recognition performance is described in bold-face on each data
set)

the proposed DWKNCN classifiers have the robustness to the sensitivity choices of the
neighborhood size k with good performance to some degree.

In order to further study on classification performance of the proposed DWKNCN, we
obtain the classification results about a given query pattern on DUser data set given the
value of k in the WKNCN and DWKNCN classifiers. The given query pattern x̄ originally
belongs to class 1. Find the k nearest centriod neighbors of the given query pattern x̄ from
the training set, x̄ is wrongly classified by WKNCN when k = 1, . . . , 8 but x̄ is correctly
classfied by DWKNCN when k = 5, 6, 7, 8. Table 3 illustrates the distances between each
nearest centroid neighbor and the given query pattern, the labels and the corresponding
weights of nearest centroid neighbors on DUser data set when k = 8.

According to Eq. (7), (8) and (10), we can calculate the weights of each nearest centroid
neighbor in WKNCN, DWKNCN1 and DWKNCN2 rule, i.e., wi, w̄i and w̄i

′. From Table
3, we can easily find the weights of the 2th, 3th and 5th nearest centroid neighbor using
DWKNCN1 and DWKNCN2 rules are greater than the weights using WKNCN. Just in
the time the labels of these nearest centroid neighbors are as same as the label of the
query pattern. On the other hand, the label of the farthest nearest centroid neighbor, i.e.,
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Figure 1. The classification accuracies via the neighborhood size k on
each data set.
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(g)Landsalt.
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(i)Musk.
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Figure 2. The classification accuracies via the neighborhood size k on
each data set.

the 6th nearest centroid neighbor is inconsistent with the query pattern, the weights of
two DWKNCN rules are zero, as a result, it greatly reduces the possibility of inconsistent
value. Consequently the classification result using WKNCN is wrong, the results using
DWKNCN1 and DWKNCN2 are right. The reason for the aforementioned results is that
when the close centroid neighbors have too large distances or the far centroid neighbors
have too small distances, the weighted voting scheme of WKNCN is not suitable. In our
proposed classification, the distances are considered in the weighted voting scheme, the
experimental results show it outperforms the others.

5. Conclusions. In this article, we propose new distance-weighted k-nearest centroid
neighbor classification rules which are based on KNCN and WKNCN. The new classifiers
aim at improving the classification performance. Compared to the other k-nearest neigh-
bor classifiers, the experiments of the proposed method are conducted on 12 real data sets.
The experimental results suggest that the new classifiers outperform the others, especially
in case of a large value of neighborhood size k. In the proposed classification methods, our
focus is how to give weights when the close centroid neighbors have too large distances
or the far centroid neighbors have too small distances. Through the comprehensive anal-
ysis, it suggests that the proposed classifiers have the following strengths: a) when the
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Table 3. The weights of WKNCN, DWKNCN1 and DWKNCN2 rule, the
distance and label of each nearest centroid neighbor when k = 8 and the
classification results on DUser data set(The symbols ′♥′ and ′♦′ denote the
labels of the class 1 and 2. The symbols ′×′ and ′

√′ indicate the wrong and
right classification. The i denotes the ith nearest centroid neighbor, the di
denotes the distance between a query pattern and the ith nearest centroid
neighbor, the li denotes the label of the ith nearest centroid neighbor. The
wi, w̄i and w̄i

′ denote the weights of three methods. The specific weights
are describes in bold-face in table 3 )

i di li
The weights of three methods

wi(WKNCN) w̄i(DWKNCN1) w̄i
′(DWKNCN2)

1 0.1565 ♦ 1 1 1
2 0.2022 ♥ 0.5 0.7901 0.7274
3 0.2653 ♥ 0.33 0.5002 0.4151
4 0.2791 ♦ 0.25 0.4369 0.3549
5 0.2142 ♥ 0.2 0.7349 0.6628
6 0.3742 ♦ 0.1667 0 0
7 0.3419 ♥ 0.1429 0.1484 0.1100
8 0.3356 ♦ 0.125 0.1775 0.1328
The classification result ♦(×) ♥(

√
) ♥(

√
)

close centroid neighbors have too large distances or the far centroid neighbors have too
small distances, the weights of our weighted voting scheme are relatively suitable than the
others. b) it is more robust to the neighborhood size k with the preferable performance.
Based on our study, it can be concluded that our proposed classifiers can be effectively
used in the field of pattern classification.
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