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Abstract. Since quantum computers came on the scene, the world has changed greatly,
especially related to cryptography. Public key cryptosystem, particularly RSA cryptosys-
tem cant resist the quantum computers attack, so some quantum-resistant schemes have
been proposed mainly based on quantum key distribution (QKD) method or new resistance
to quantum algorithms. Recently, Jonathan et al (2013) presents two password-based au-
thenticated key exchange (PAKE) protocols which make the communication reduce to
one-round. At the same time Jonathans protocols achieve the mutual authentication
and agreement the session key by constructing smooth projective hash functions. How-
ever Jonathans two protocols are subjected to quantum attacks, and there are so many
time-consuming arithmetics just only for achieving a smooth projective hash function in
Jonathans two protocols. Based on these motivations, this paper firstly proposes a prov-
ably secure and flexible one-round PAKE scheme based on elliptic curve isogenies. Com-
pared with Jonathans two protocols, the results show that our one-round PAKE scheme
can not only refrain from consuming modular exponential computing and scalar multipli-
cation, but is also robust to resist quantum attacks. Finally we give the provable security
of our scheme.
Keywords: Authentication, Key exchange, Elliptic curve isogenies, Quantum-resistant,
One-round communication

1. Introduction. Advances in quantum computers pose great threats on the currently
used public key cryptographic algorithms such as RSA and ECC [1, 2]. So people hope
to find having properties of public-key cryptography just like quantum cryptographic
protocol [3], and we called them Quantum Public-key Cryptography (QPKC). The related
research can mainly be divided into two kinds:

(1) Quantum physics-based methodology. Quantum cryptography, which began with
Wiesners idea [4] almost 40 years ago, has reached the stage of commercial key distribution
devices now. Origin of quantum key distribution in its oldest form is belonged to Bennett
and Brassard [6] in 1984. The most popular method is No-Cloning Theorem which
means a user cannot copy a qubit if he/she does not know the polarization basis of the
qubit [7]. Based on No-Cloning Theorem, many quantum key distribution protocols
(QKDPs) appeared. QKDPs employ quantum mechanisms to distribute session keys and
public discussions to check for eavesdroppers and verify the correctness of a session key.
However, public discussions require additional communication rounds between a sender
and receiver and cost precious qubits. The other method is multipartite entanglement
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which can design kinds of secure protocols, such as [10].The security of this kind method
can be guaranteed by principle of quantum physics which can achieve perfect secrecy if
not considering social engineering attacks and some flaws about designing protocol, but
its hard to control the quantum key, lack of flexibility, narrow application recently and so
on.

(2) Computational complexity-based methodology. This kind method aims to find hard
problems under the quantum computation and according to these hard problems to struc-
ture the Public-key Cryptography and security protocol. These schemes are very flexible
which can be imagined a bridge between electronic computer and quantum computer.
There are two kinds of popular methods, called Multivariate Quadratic Polynomials (MQ
problem) and lattice-based schemes. The former is a promising problem in cryptography.
The associated decision problem is known to be NP-complete [11], and a random instance
of the MQ problem is widely believed to be intractable. In contrast to factorization or
a discrete logarithm problem, there is no known polynomialtime quantum algorithm to
solve the MQ problem. The latter is based on an average-case problem which is as hard
as worst-case problems, and some of them [12] are secure under active attack even if
repeated in parallel.

Authenticated key exchange (AKE) protocols enable two parties to generate a shared,
cryptographically strong key while communicating over an insecure network under the
complete control of an adversary. Then because of owning the property which can allow
users only to remember a password to bootstrap the weak (e.g., short password) shared
secret into a (much longer) cryptographic key, password-based authenticated key exchange
(PAKE) protocols become very popular at present [16,17].

However, all above-mentioned user-friendly authenticated key agreement schemes cant
resist quantum computers attack. The chief aim of this paper is to design a practical
PAKE protocol towards quantum-resistant for convenience of customers. To the best
of our knowledge, no one-round PAKE protocol based on elliptic curve isogenies has
been proposed, yet. Generally speaking, a one-round PAKA protocol with elliptic curve
isogenies should achieve the following requirements: (1) It should allow two users establish
a secure session key over an insecure communication channel with the public and the
shared passwords. (2) The protocol should be based on elliptic curve isogenies that
can resist quantum attack on algorithm level. (3) The protocol should be able to resist
all known attacks on protocol level, such as password guessing attacks, impersonation
attacks, man-in-the-middle attacks, etc. (4) The protocol should achieve some well-known
properties, such as perfect forward secrecy, no timestamp, and execution efficiency.

In this paper, based on elliptic curve isogenies, we propose a new one-round password-
authenticated key agreement protocol which achieves the above requirements. The rest
of the paper is organized as follows: We outline preliminaries in Section 2. Next, an
elliptic curve isogenies-based one-round PAKE protocol is described in Section 3. Then,
the security analysis and efficiency analysis are given in Section 4 and Section 5. This
paper is finally concluded in Section 6.

2. Preliminaries.

2.1. Isogenies [19, 23].

Definition 2.1. An isogeny ϕ is a nontrivial (non-constant) rational map (such as:

ϕ(x, y) = (f1(x,y)
g1(x,y)

, f2(x,y)
g2(x,y)

) ) of an Elliptic Curve onto another Elliptic Curve that is also a

group homomorphism (satisfying ϕ(∞) =∞ , equivalently ϕ(P +Q) = ϕ(P ) + ϕ(Q)).
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The degree of an isogeny is its degree as an algebraic map. The endomorphism ring
End(E) is the set of isogenies from E(F̄ ) to itself, together with the constant homomor-
phism. This set forms a ring under pointwise addition and composition. If ϕ : E → E

′

is an isogeny, then ϕ is surjective. Meaning that for a point P
′

in E
′
(K̄) there exists a

point P in E(K̄) such that ϕ(P ) is P
′
.

Definition 2.2. Let ϕ : E → E
′

be an isogeny, and let r1(x) be the x-coordinate map. If
the derivative of the x-coordinate map r

′
1(x) is not 0 then ϕ is separable.

Definition 2.3. An elliptic curve is called supersingular if E[p] = {∞} , where p =
char.(E) .

Proposition 1 E/Fq,q = pr.Let a = q + 1−#E(Fq)→ E is supersingular if and only
if a ≡ 0(modp)⇔ E(Fq) ≡ 1(modp)

Two curves E and E
′

are isogenous over Fq if and only if #E = #E
′
.

2.2. Hard problems of elliptic curve isogenies-based[25, 22].
Arithmetic generation About any fixed choice of leAA and leBB ,it is easy to found

random values of f and p = leAA leBB · f ± 1 , where p is prime. For elliptic curve isogenies-
based computation is also easy according to literatures.

Complexity Assumptions
Supersingular Isogeny (SSI) problem. Let φA : E0 → EA be an isogeny whose kernel is
〈[mA]PA + [nA]QA〉 where mA and nA are chosen at random from Z/`eAA Z and not both
divisible by `A . Given EA and the values φA(PB), φA(QB), , find a generator RA of
〈[mA]PA + [nA]QA〉 . Given a generator RA = [mA]PA + [nA]QA , it’s easy to solve for
(mA, nA) , since E0 has smooth order and thus extended discrete logarithms are esay in
E0 .

Supersingular Computational Diffie-Hellman (SSCDH) problem. Let φA : E0 → EA be
an isogeny whose kernel is 〈[mA]PA + [nA]QA〉 , and Let φB : E0 → EB φA : E0 → EA

〈[mB]PB + [nB]QB〉 , where mA and nA (respectively mB , nB) are chosen at random
from Z/`eAA Z (respectively Z/`eBB Z) and not both divisible by `A (respectively `B) Given
the curves EA , EB and the points φA(PB),φA(QB),φB(PA),φB(QA),find the j-invariant of
E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉

Supersingular Decision Diffie-Hellman (SSDDH) problem. Given a tupe sampled with
probability 1/2 from one of the following two distributions:

— (EA, EB, φA(PB),φA(QB),φB(PA),φB(QA),EAB),where EA , EB , φA(PB) ,φA(QB) ,
φB(PA), φB(QA),EAB are as in the SSCDH problem and EAB

∼= E0/ 〈[mA]PA + [nA]QA,
[mB]PB + [nB]QB〉 ,

— (EA, EB, φA(PB),φA(QB),φB(PA),φB(QA),EC) ,where EA ,EB , φA(PB) ,φA(QB)
,φB(PA), φB(QA) are as in the SSCDH problem and EAB

∼= E0/ 〈[m
′
A]PA + [n

′
A]QA,

[m
′
B]PB + [n

′
B]QB〉 , wherem

′
A,n

′
A (respectivelym

′
B,n

′
B) are chosen at random from Z/`eAA Z

(respectively Z/`eBB Z) and not both divisible by `A (respectively `B), determine from which
distribution the triple is sampled.

3. The Proposed Isogenies-based Scheme.

3.1. Notations. The notation used hereafter is shown in Table 1.

3.2. One-Round Instance with Elliptic Curve Isogenies-based. (1) Instance set
up

In this phase, any party can choose public information E0,(PA,QA)=E0[leAA ],(PB,QB)
= E0[leBB ]based on elliptic curve isogenies, a secure one-way quantum hash function HQ

against quantum attack. Additionally, Alice shares passwords PW with Bob; users Alice
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Table 1. Notations

and Bob choose their identities IDA and IDB , respectively. No Pre-distribution means
that public/private key pair has no use for each party, and anyone can produce the public
information, that is to say, any two parties only have shared password which make them
to achieve the one round-optimal password authenticated key exchange based on the
public and setting information. The kind of one-round instance can not only refrain from
distributing the public/private key pair to each party, but is also robust to resist various
attacks and achieves quantum-resistant.

(2) One-Round Instance
One-Round Exchange. The one-round instance used hereafter is shown in Fig.1.Alice

chooses bases (PA,QA) from the public information and selects a pair of random nonces
(mA, nA) ∈ RZ/l

eA
A Z Based on the public information HQ,(PB,QB),Alice computes φA :

E0/〈[mA]PA + [nA]QA〉,φ
′
A : E0/{〈[mA]PA + [nA]QA〉HQ(IDA||IDB||pw)} ,EA : φA(PB),

φA(QB), where ker(φA) = 〈[mA]PA + [nA]QA〉.Finally Alice sends the message {IDA,
φA(PB), φA(QB)}to Bob.

For Bob: Choose bases (PB, QB) from the public information and select a pair of random
nonces (mB, nB) ∈ RZ/l

eB
B ZBased on the public informationHQ,(PA,QA) , Bob computes

φB : E0/〈[mB]PB + [nB]QB〉,φ
′
B : E0/{〈[mB]PB + [nB]QB〉HQ(IDB||IDB||pw)},EB :

φB(PA), φB(QA), where ker(φB) = 〈[mB]PB + [nB]QB〉.Finally Bob sends the message
{IDA, φA(PB), φA(QB)}to Alice.

Local Computation and Get the Session Key. First of all, because EAB or EBA

has the same j-invariant, Alice and Bob can compute the same j-invariant based on EAB

or EBA by executing the proposed scheme.
For Bob: After receiving the message {IDA, φ

′
AφA(PB), φA(QB)}from Alice, Bob will

authenticate Alice and then compute the session key: Bob will computeHQ(IDA||IDB||pw)
using the shared password PW with Alice, and then Bob can recover the information
φB : E0/〈[mB]PB + [nB]QB〉 ( φB = φ

′
B × HQ(IDA||IDB||pw) ).Next based on φB Bob

computes the information φAB : 〈[mB]φA(PB) + [nB]φA(QB)〉 and EAB = φBA(φA(E0)) =
φAB(φB(E0)).Bob computes KAB = j(EBA) and finally the session key SKAB =
HQ(j(EBA)). Because φA(PB), φA(QB) are two values and φ

′
B is kernel of another elliptic
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Figure 1. Authentication and key agreement phase.

curve, only known the information φA(PB), φA(QB), φ
′
B is hard to recover φ

′
B and EB.

Consequences of above-mentioned, an attacker cant get φ
′
B and EB and EAB , and then

cant get the SK.
For Alice: Do the same way to get the SKAB = HQ(j(EAB)) . Alice and Bob can use

the SK to encrypt any message for confirming opposite side has the SK. An example is
shown in Table 2.

4. Security Consideration. Assume there are three secure components, including the
three problems SSI, SSCDH and SSDDH cannot be solved in polynomial-time by
quantum computers, a secure one-way quantum hash function and a secure symmetric
encryption which both can resist quantum computers attack. We also prove that our
proposed scheme achieves the security and efficiency goals. The analysis of our Quantum
resistant scheme will be illustrated in Appendix A, and the provable security of our
scheme will be illustrated in textbf Appendix B.

5. Efficiency Analysis. After all, our proposed protocol is the first practical one-round
scheme which is based on elliptic curve isogenies towards quantum-resistant. To the
best of our knowledge, no elliptic curve isogenies-based practical one-round password-
authenticated key exchange protocol without using a timestamp has been proposed, so
there is no literatures to contrast and we sum up our proposed protocol as show in Table
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Table 2. An example with values from the view of Alice

3 (Efficiency). Our protocol is reasonably efficient. The efficiency is measured by the
following two aspects which are communication cost and computation cost.

Table 3. Efficiency comparison of one-round authentication and key exchange

6. Conclusions. The paper put forward a new framework to improve the efficiency about
the problems of password authenticated key exchange. In the new framework, we give one
round-optimal instance: based on elliptic curve isogenies which can resist quantum attack
and without pre-distribution for each party, that is to say, no pre-distribute public/private
key pair to each party, any two parties only have shared password can make them to
achieve the one round-optimal password authenticated key exchange based on the public
and setting information. On the basis of assuming all secrets can be stored securely and
the password has already been assigned, our proposed scheme has satisfactory security,
efficiency and functionality. Next, we will extend the proposed protocols in three aspects:
(1) From the strength of the security level, we will bring in the smart card or biometric.
(2) From the view of functionality, we will research the fairness or entanglement and so
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on. (3) From the perspective of complex, diversified algorithms, especially for quantum
security, are our interests. Acknowledgement. This work is supported by the Liaoning
Provincial Natural Science Foundation of China (Grant No. 201602680).
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Appendix A. The analysis of our Quantum resistant scheme

definition A.It encompasses all the ways in which can resist quantum computer attack,
including quantum cryptography [8], DNA cryptography [18] and resistance to quantum
algorithms [25], and we called them Post-Quantum Cryptography or Quantum Resistant
Cryptography

Theorem A.The proposed protocol can resist quantum computer attack.
Proof.Our proposed protocol is composed of three parts, elliptic curve isogenies in

Public Key Cryptosystem, a secure one-way hash function and a pair of secure symmet-
ric encryption/decryption which all can resist quantum computer attack. (a) Elliptic
curve isogenies algorithm.The Shor algorithm [1] is the greatest threat which can
attack most public key Cryptosystem, such as RSA, Diffie-Hellman, ELGamal and ECC.
Theory indicates that 256 bits elliptic curve cryptography can be decoded by 1024 bits
quantum computer, and 1024 bits RSA cryptography can be cracked by 2048 bits quan-
tum computer easily. However, our protocol adopts elliptic curve isogenies in public key
Cryptosystem which can resist quantum computers, even for quantum computers attack
that still requires fully exponential time [21]. Recently, Stolbunov [20] proposed a Diffie-
Hellman type system based on the difficulty of computing isogenies between ordinary
elliptic curves, with the stated aim of obtaining quantum-resistant cryptographic proto-
cols. The fastest known (classical) probabilistic algorithm for solving this problem is the
algorithm of Galbraith and Stolbunov [21], based on the algorithm of Galbraith, Hess,
and Smart [24]. This algorithm is exponential, with a worst-case running time of (O 4

√
x)

. However, on a quantum computer, recent work of Childs et al. [13] has shown that the
private keys in Stolbunov’s system can be recovered in subexponential time. Moreover,
even if we only consider classical attacks in assessing security levels, Stolbunov’s scheme
requires 229 seconds (even with pre-computation) to perform a single key exchange opera-
tion at the 128-bit security level on a desktop PC [20].(b) A pair of secure symmetric
algorithm.Anyway, Grover algorithm [2] is the general method which can reduce the key
length to half for symmetric cryptography. So we can double the key length and adopt a
secure symmetric algorithm that is enough.(c) A secure one-way hash function.Until
now many multivariate hash functions can resist quantum computers attack, such as [14]
and so on.

Appendix B. The provable security of our scheme

We recall the definition of session-key security in the authenticated-links adversarial
model of Canetti and Krawczyk [15]. The basic descriptions are shown in Table 4.

We allow the adversary access to the queries SessionStateReveal, SessionKeyRe-
veal,and Corrupt.

(1)SessionStateReveal(s): This query allows the adversary to obtain the contents of
the session state, including any secret information. s means no further output.

(2)SessionKeyReveal(s): This query enables the adversary to obtain the session key
for the specified session s, so long as s holds a session key.

(3)Corrupt(Pi): This query allows the adversary to take over the party Pi including
long-lived keys and any session-specific information in Pi ’s memory. A corrupted party
produces no further output.
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Table 4. Descriptions the model of Canetti and Krawczyk

(3)Test(s): This query allows the adversary to be issued at any stage to a completed,
fresh, unexpired session s. A bit b is then picked randomly. If b = 0, the test oracle reveals
the session key, and if b = 1, it generates a random value in the key space. The adversary
Λ can then continue to issue queries as desired, with the exception that it cannot expose
the test session. At any point, the adversary can try to guess b.Let GoodGuessΛ(k) be the
event that the adversary Λ correctly guesses b, and we define the advantage of adversary Λ
as AdvantageΛ(k) = max{0, |Pr[GoodGuessΛ(k)]− 1

2
|} , where k is a security parameter.

A session s is locally exposed with : if the adversary has issued SessionStateRe-
veal(s), SessionKeyReveal(s), Corrupt(Pi) before s is expired.

Definition B.1. A key exchange protocol Π in security parameter k is said to be
session-key secure in the adversarial model of Canetti and Krawczyk if for any polynomial-
time adversary Λ,

Algorithm 1 SSDDH distinguisher

(1) If two uncorrupted parties have completed matching sessions, these sessions produce
the same key as output;

(2) AdvantageΛ(k) is negligible.
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Theorem B.1.Under the SSDDH assumption, using the Algorithm 1 to compute ses-
sion key is session-key secure in the adversarial model of Canetti and Krawczyk [15]

Proof. The proof is based on the proof given by Refs. [25,15]. There are two
uncorrupted parties in matching sessions output the same session key, and thus the first
part of Definition B.1 is satisfied. To show that the second part of the definition
is satisfied, assume that there is a polynomial-time adversary Λ with a non-negligible
advantage εin standard model. We claim that Algorithm 1 forms a polynomial-time
distinguisher for SSDDH having non-negligible advantage. Probability analysis. It is
clear that Algorithm 1 runs in polynomial time and has non-negligible advantage. There
are two cases where the r-th session is chosen by Λ as the test session: (1) If the r-th session
is not the test session, then Algorithm 1 outputs a random bit, and thus its advantage
in solving the SSDDH is 0. (2) If the r-th session is the test session, then Λ will succeed
with advantage ε , since the simulated protocol provided to Λ is indistinguishable from
the real protocol. The latter case occurs with probability 1/k, so the overall advantage
of the SSDDH distinguisher is ε/k, which is non-negligible.


