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Abstract. Knowledge graph reasoning is discovering new entity relations by comput-
ing and inference from existing relations. However, most reasoning models of transla-
tion embedding-based knowledge graphs have not considered the semantic-type constraints
of relations in the construction of corrupted triplets. Hence, the constructed corrupted
triplets may not conform to the actual semantic information and may, thus, significantly
affect the prediction accuracy of the model. Therefore, we propose a constraint-based
embedding model in this paper. First, the model establishes the head and tail entity set
for each relationship. Then, it ensures that both the replacing head and tail entities in
the corrupted triplet belong to the respective entity set so that the corrupted triplets that
do not conform to the responding semantic relations are excluded. To evaluate the pro-
posed model, we conduct link prediction and triple classification on WordNet and Freebase
databases. The experimental results show that our method remarkably improves the per-
formance compared to several state-of-the-art baselines.
Keywords:Knowledge graph; Translation embedding; Linking predication; Triple clas-
sification

1. Introduction. With the advent of big data, knowledge graphs [1], which constitute
a new knowledge representation method and data management model, have emerged as
useful for natural language processing, question answering, information retrieval and other
related artificial intelligence (AI) tasks. Knowledge is represented by a directed graph in
the knowledge graph, where the nodes represent entities or concepts, and the directed
edges represent the relations. The triplets (head, relation, tail) are used to describe facts.
Among them, head and tail represent the head entity and tail entity, respectively, and
relation is the relationship between the head entity and the tail entity. These triplets
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are abbreviated as h, r and t, respectively. For example, the fact “Barack Obama is the
president of the United States” is expressed by the triplet (Barack Obama, presidentOf ,
USA), where Barack Obama is the head entity, USA is the tail entity, and presidentOf is
the relation between the head and tail entities. The currently established large-scale gen-
eral knowledge graphs include WordNet [2]and Freebase [3], among others. Additionally,
some companies have built their own knowledge graphs. For example, Google built the
Google knowledge graph to improve information retrieval [4], and Microsoft established
Knowledge Vault [5] to support its search engine, Satori.

Because of the restriction of the construction time and emergence of huge amounts
of new facts, knowledge graphs may have imperfections. Therefore, they must be com-
pleted via knowledge graph learning and reasoning. However, the traditional reasoning
algorithms of knowledge graphs do not work well in large-scale knowledge graph reason-
ing because of the graph structure and its poor portability. The common practice is
to embed a high-dimensional knowledge graph into a low-dimensional continuous vector
space [6, 7, 8, 9, 10, 11, 12] and construct an inference model by minimizing the loss func-
tion among all entities and relations. One of the most representative algorithms is the
TransE model proposed by Bordes et al [9] in 2013. The TransE model is simple and has
high prediction accuracy. However, it also has inadequacies for data with one-to-many,
many-to-one, or many-to-many relationships. Therefore, ZhenWang et al [13], Yankai Lin
et al [14] and Guoliang Ji et al [15]presented TransH, TransR and TransD to improve
TransE, respectively. However, most reasoning models of translation embedding-based
knowledge graphs do not consider the semantic-type constraints of relations among the
entities. As a result, the constructed corrupted triplets may not conform to the actual
semantic information, which can significantly affect the prediction accuracy. For example,
the head entity of the relation “born in” usually refers to a person or animal, and the
tail entity usually refers to a place or time. Thus, if the head entity or tail entity of the
relation “born in” is beyond the above scope, the constructed triplet will be meaningless.

Inspired by TRESCAL, which was proposed by Kai-Wei Chang et al. [16],we introduce a
constraint-based embedding reasoning model named TransC. The basic idea of this model
is predefining the head entity set and tail entity set for each relation to ensure that the
constructed corrupted triplets are consistent with the semantic relation type. Compared
to TransE, TransC maintains the advantage of simple parameters and exhibits improved
the prediction accuracy.

The contributions of this paper are summarized as follows:
(1)We extract the relational semantic-type constraints from a knowledge base and use

them to ensure consistent constructed triplets with practical semantic meaning. By reduc-
ing meaningless triplets without semantic relations, the predicting accuracy is improved.

(2)TransC embeds the entities and relations into the same vector. It does not increase
the parameter complexity of the model, and thus, the efficiency is maintained.

(3)The link prediction and triplet classification experimental results show that TransC
outperforms other translation embedding-based models (e.g., TransE, TransH, TransR
and TransD) in terms of its prediction accuracy.

The remainder of the paper is organized as follows: We discuss some related works in
Section 2. Then, we describe our model, algorithm and model complexity in Section 3,
and we present the link prediction and triplet classification experiments on two real-world
knowledge graph in Section 4. Finally, we draw our conclusions and briefly describe future
work directions in Section 5.
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2. Related Works. With the construction and application of various large-scale knowl-
edge graphs in the last few years, many knowledge graph reasoning algorithms have ap-
peared. These algorithms can be summarized as follows. The first category includes algo-
rithms based on tensor decomposition, which is represented by the third-order tensor de-
composition algorithm RESCAL [17] proposed by Maximilian Nickel et al. in 2011. Those
algorithms reduce the computational complexity using a matrix decomposition technique
to compress the dimension of the knowledge graph. The second category includes learning
and reasoning methods based on embedding translation and are represented by TransE [9],
which was proposed by Bordes et al. in 2013. They embed the entities and relations of a
high-dimensional knowledge graph in continuous low-dimensional vector spaces and then
use algebraic and geometrical structures to reason in this low-dimensional vector space.
The third category is the learning and reasoning method based on paths, such as the
path-ranking algorithm introduced by Ni Lao et al. [18] in 2010 for information retrieval.
This algorithm treats each distinct relation path in terms of its one-dimensional char-
acteristics. Then, a large number of relation paths are used to build the feature vector
for the relation classification, and a relation classifier is established to extract the links
and solve the problem of path inference in information retrieval. Thus, it can effectively
overcome the path length restriction of random walk. Other approaches have also been
developed, such as reasoning with neural tensor networks [11], reasoning with semantic
and logical rules [19, 20], and reasoning with text data bases [5, 21, 22, 23]. Among
all of these algorithms, TransE proposed by Bordes et al. is simple and has the highest
prediction accuracy. It is also easy to extend to large-scale knowledge graph learning
and reasoning, and thus, it is very popular. This paper focuses on improving TransE
to achieve TransC. We will briefly introduce the related works addressing TransE, which
mainly include learning and reasoning methods based on translation and other learning
and reasoning methods.

2.1. Learning and Reasoning Methods based on Translation. The most represen-
tative and popular model is TransE, which was proposed by Bordes et al. in 2013 [9].
This model embeds the entities and relations of a high-dimensional knowledge graph in
continuous low-dimensional vector spaces. Then, algebraic and geometrical structures
can be used to extract the links among the entities and relations in this low-dimensional
vector space to complete the knowledge graph. The entire process is shown in Figure
1. The left part of Figure 1 presents the knowledge graph, and the right part shows the
low-dimension vector space. If there is a triplet (head,relation,tail) in a knowledge graph,
head and tail represent the head entity and tail entity of the triplet, respectively, and
relation represents the relationship between the head and tail entities. Then, the embed-
ded low-dimensional vectors should satisfy the following relationships: h+r≈t , where h ,
t and r are the embedded low-dimensional vectors from the entity head, tail and relation-
ship relation of the high-dimensional data, respectively. A smaller distance in formula 1
indicates that the triplet is more reasonable; otherwise, the triplet is unreasonable.

fr(h, t) = ‖ h + r − t‖22 (1)

Because of its simplicity and few parameters, TransE can be used to learn and reason
in a massive knowledge graph and to predict links and execute entity resolutions, thereby
improving the knowledge graph. However, the entity and relation embedding into a low-
dimensional space in TransE does not consider the links among entities and relations;
therefore, it is more suitable for cases with only mono-relation or one-to-one relationships
among the entities. This model is inadequate for data with one-to-many, many-to-one,
and many-to-many relationships. Considering the obvious weakness of the TransE model,
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Figure 1. Translations of the low-dimensional embedding of the entities
from a knowledge graph

ZhenWang et al [13]. designed the TransH model in 2014. Those authors believed that
different representation forms should be used for different relations for each entity. Thus,
different hyper planes are set for different relations in the embedded low-dimensional
space, and the entities are projected onto the corresponding relational hyperplane to
overcome the limitations of TransE. Hence,h⊥ = h − wT

r hwr.The distance function of
TransH is shown in formula 2.

fr(h, t) = ‖ h⊥ + r − t⊥‖22 (2)

Although TransH sets up different hyperplanes for the corresponding relations and
improves the prediction accuracy for one-to-many, many-to-one, and many-to-many re-
lationships, the TransE and TransH models simply embed both entities and relations in
the same semantic space. In the real world, an entity may have multiple aspects, and
various relations may focus on different aspects of the entities. Consequently, Yankai Lin
et al. [14] built the TransR model in 2015. This model embeds the entities of a knowledge
graph into an entity space and embeds the relations into a corresponding relation space.
Then, the embedded entities are projected into the corresponding relation space for the
distance calculation. Namely, hr = hMr, and t r = tMr ,where Mr is the projection
matrix for both the head and tail entities. The distance function is shown in formula 3.

fr(h, t) = ‖ hr + r − t r‖22 (3)

2.2. Other Related Learning and Reasoning Methods. Many learning and rea-
soning methods are related to TransE. Here, we list some of the methods used in the
experiments described in this paper.

(1) Structured Embedding (SE): The SE model was introduced by Bordes et al. in
2011 [6]. It embeds the head and tail entities into a low-dimension vector space and sets
different projection matrices for the head and tail entities according to the relation type.
Thus, the distance function of SE is:

fr(h, t) = ‖ Mh,rh − Mt,rt‖ (4)

(2) Semantic Matching Energy (SME): The SME model was introduced by Bordes et al.
in 2011 [7]. It sets the weights for the embedding entities and relations and obtains the
distance function by Hadamard multiplication of matrices, as shown in formula 5.

fr(h, t) = (M1h +M2r + b1)
T (M3t +M4r + b2) (5)

(3) Latent Factor Model (LFM): The LFM model was introduced by Jenatton et al. in
2012 [8]. It obtains a second-order correlation using a quadratic structure, as shown in
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formula 6.

fr(h, t) = hTWrt (6)

3. TransC Model and Algorithm. The rationality of the relation semantic is not con-
sidered in most learning and reasoning models, such as TransE [9],TransH [13],TransR [14],
and TransD [15]. This omission leads to substantial unreasonable triplets and significantly
affects the prediction accuracy of the model. For example, the training model of TransE
removes the head or tail entities of the triplets and randomly structures the corrupted
triplets to avoid overfitting of the training model. No constraint exists in the construction
of the corrupted triplets, and thus, the corrupted triplets may not conform to the actual
semantic type. Inspired by the literature [16], we propose the TransC model. This model
establishes the head entity set and tail entity set according to the relation semantic type
and adds those constraints to the construction of corrupted triplets to satisfy the relation
semantic constraint. For a triplet (h,r,t), head h and tail t should satisfy the relation
semantic constraint of relation r. Namely, if r is the relation “born in”, the head entity
usually refers to a person or an animal, and the tail entity usually refers to a place or a
time.

We define the following symbols for ease of presentation:E denotes the entire entity set,
R is the entire relation set, Ehr (or Etr) is the head (or tail) entity set that satisfies the
semantic type of relation r, S is the training triplet set, S ′ is the corrupted triplet set,
and Sr is the triplet set that satisfies the semantic type of relation r.

3.1. TransC model. The TransE model embeds entities and relations into a k-dimensional
vector space and calculates the entity relations in that vector space to calculate the rela-
tion among the entities of the knowledge graph. The distance function is shown in formula
1. However, the TransE model does not consider the relation semantic-type constraints,
and thus, the constructed corrupted triplets be inconsistent with the relation semantic
type. For example, the head entity of the relation “born in” usually refers to a person
or an animal, and the tail entity usually refers to a place or a time; if this is not the
case, the corrupted triplet may not conform to the relation semantic type. The TransC
model proposed in this paper can avoid this problem by adding relation semantic-type
constraints to the triplet-constructing process. The distance function of TransC is shown
in formula 7; the constraints ehr ∈ Ehr ⊂ E and etr ∈ Etr ⊂ E indicate that the head
entity and tail entity should satisfy the semantic-type constraints of relation r.

fr(h, t) = −‖ ehr + r − e tr‖2 (7)

In formula 7, the value of the distance function fr(h, t) for the triplet is small if the
distance ehr+r in the vector space is close to etr; i.e., the probability of the existence of
the triplet (ehr,r,etr) may be high if fr(h, t) is small. Therefore, formula 7 can be used to
infer the missing triplet in the link prediction experiment. In other words, the value of
distance function fr(h, t) for a triplet that satisfies the semantic-type constraints should
be lower than that of a triplet that does not satisfy the semantic-type constraints. Because
the training dataset of TransC comprises the triplets in the knowledge graph, which can
make the training model of TransC overfitting or not robust, we construct the corrupted
triplet set, which does not belong to the training triplet set, for each training triplet in the
training process to add robustness to the model. Additionally, to allow the training model
to distinguish between correct and incorrect triplets, we use the margin-based boundary-
adjusting machine learning method, add constraints to the corrupted triplet-constructing
process to ensure that they satisfy the relation semantic type, and apply the stochastic
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gradient descent (SGD) to converge the training model as soon as possible during training
model optimization. The optimization model of TransC is shown in formula 8.

L = min
∑

(h,r,t)∈S

∑
(h′,r,t′)∈Sr

max(0, γ + fr(h, t)− fr(h′, t′)) (8)

Formula 8 is subjected to the following constraint conditions:

s.t


γ > 0

∀h′, t′;h′ ∈ Ehr ∧ t′ ∈ Etr, Ehr ⊆ E,Etr ⊆ E
∀r ∈ R, (h′, r, t) ∈ Sr ∧ (h, r, t′) ∈ Sr

Sr ⊆ S ′

∀h, r, t, ||h|| ≤ 1, ||r|| ≤ 1, ||t|| ≤ 1

(9)

By adding the above constraint conditions into the training process, we avoid the
construction of meaningless corrupted triplets and improve the accuracy of the training
model. γ >0 is a parameter used to adjust the boundary of the training model.

3.2. TransC Algorithm. The main goal of TransC is the addition of relation semantic-
type constraints to the randomly corrupted triplets of the TransE model to exclude mean-
ingless corrupted triplets, which affect the prediction accuracy. Algorithm 1 presents the
detailed learning algorithm. We initialize all embeddings for the entities and predicate
relations with the random procedure proposed in [9] and [24]. We also normalize all em-
bedding vectors of the entities and relations. Then, we extract all head and tail entities
that satisfy the semantic-type constraints of relation r to Ehr and Etr, respectively, and
iterate the following procedure. First, we sample a small set of triplets from the training
set as the training triplets of the minibatch. Then, we sample a corrupted triplet for each
training triplet. For each corrupted triplet, when the head entity and the relation are
fixed, the tail entity should come from Etr; for the opposite case, the head entity should
come from Ehr when the relation and tail entity are fixed. In other words, the corrupted
triplets should not randomly sample; instead, they must conform to the semantic-type
constraints of relation r. Finally, the parameters of TransC are updated by taking a gradi-
ent step with a constant learning rate. The algorithm is stopped based on its performance
on a validation set.

The algorithm of TransC is introduced as follows.

Algorithm 1: Learning Algorithm of TransC

Input: Training triple set S, entity set E, relation set R,Ehr ,Etr ,Sr,dimension k, γ, ε
1: /* initialization */
2: while r∈R
3: r←Uniform((-6)/

√
k,6/
√
k) //embedding each relation

4: r←r/ ||r|| //standardization of each embedded relation
5: end while
6: while e ∈ E
7: e←Uniform((-6)/

√
k,6/
√
k) // embedding each entity

8: e← e/ ||e|| // standardization of every embedded entity
9: end while
10: while (r∈ R and e∈E)
11: if e is the head entity of r
12: Ehr ← e
13: if e is the tail entity of r
14: Etr ← e
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15: end while
16: /*model training */
17: while less than the maximum number of iterations and energy loss > ε
18: Sbatch ∈ sample(S,m)
19: Tbatch ∈ Φ
20: for each (h,r,t) ∈ Sbatch do // construct training model for each triple in S
21: h′ ∈ Ehr

22: t′ ∈ Etr

23: ( h′ , r , t′ ) ∈ Sr

24: ( h′ , r , t′ ) ← sample(Sbatch) //sample a corrupted triple, and if it does not
belong to training set

25: Tbatch ← Tbatch ∪ (h,r,t),( h′ , r , t′ )
26: if γ + fr (h, t)− fr (h′, t′) ≥ 0 then //boundary of the training model does not

meet the requirements
27: updating

∑
max(0, (γ + fr (h, t)− fr (h′, t′))) // optimize training model by

SGD
28: end if
30: end for
31: end while
Output: Entity set and relation set

3.3. Comparisons of the Parameter Complexity of the Algorithms. To analyze
the efficiency of the TransC model, we compared the parameter complexities of several
typical methods, as shown in Table 1. ne and nr denote the number of entities and
number of relations in the knowledge graph, respectively, and k is the dimension of the
embedding vector space. As shown in Table 1, TransC has the same parameter complexity
as TransE and TransH but lower parameter complexity than SE, SME, LFM, and TransR.
SE embeds relationships into two matrices using two different projection matrices for the
head and tail, which increases the computational complexity compared to TransC. The
SME model captures the correlations among the entities and relations via multiple matrix
products and Hadamard product; it introduces four different projection matrices, and the
matrix operations increase the computational complexity. The LFM model uses second-
order correlations among the entity embeddings in a quadratic form. TransR builds the
entity and relation embeddings in separate entity spaces and relation spaces. It learns
the embeddings by first projecting entities from the entity space to the corresponding
relation space and subsequently builds the translations among the projected entities.
Because TransR adds the projection transformation processes in different spaces, the
complexity of the model parameters increases, which affects the running speed of the
model. Therefore, the TransC model outperformed SE, SME, LFM, and TransR in terms
of running time.

4. Experiment and analysis.

4.1. Benchmark Dataset. To facilitate experimental comparisons with some related
works, we conducted extensive experiments on two tasks: Link Prediction and Triplet
Classification. The experimental data were obtained from two general knowledge graphs:
WordNet [2] and FreeBase [3]. WordNet is a large lexical database of English. Nouns,
verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each
of which expresses a distinct concept. Synsets are interlinked via conceptual-semantic
and lexical relations. We used two datasets from WordNetWN18 and WN11which were
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Table 1. Comparisons of the parameter complexity of several algorithms

Method #parameters
SE O(nek+2nrk

2)
SME O(nek+nrk+4k2)
LFM O(nek+nrk

2)
TransE O(nek+nrk)
TransH O(nek+2nrk)
TransR O(nek+nrk

2+nrk)
TrasnsD O(2nek+2nrk)

TransC(our) O(nek+nrk)

used in [9, 13, 14, 15]. WN18 contains 18 relation types, and WN11 contains 11 relation
types. Freebase is an open database of the world’s information with more than 23 million
entities. It was built by a global community and is free for everyone to query, contribute to,
and build applications on. It provides general facts of the world and contains structured
information on millions of topics, such as people, places, music, film, food, science, and
historical events. We used two datasets from FreebaseFB15K and FB13which were used
in [9, 13, 14, 15]. The statistics of these datasets are listed in Table 2.

Table 2. Statistics of the datasets

Dataset #Rel #Ent #Train # Valid # Test
WN18 18 40,943 141,442 5,000 5,000
FB15K 1,345 14,951 483,142 50,000 59,071
WN11 11 38,696 112,581 2,609 10,544
FB13 13 75,043 316,232 5,908 23,733

4.2. Link Prediction. Link prediction is an important task in completing a knowledge
graph. It predicts the missing entity or relation between two entities in a fragmented
triplet. For example, given a fragmented triplet (h,r,?) or (?,r,t), if we aim to determine
whether entity h or t has relationship r with entity t or h, we must only calculate the dis-
tance between h+r and t. In the experiment, we calculated the value of the score/distance
function for each candidate triplet and ranked the candidate triplets by their scores in-
stead of determining the best triplet. The benchmark datasets were WN18 and FB15K.
The experimental process and result are presented below.

4.2.1. Evaluation Protocol. Here, the evaluation protocol refers to the evaluation protocols
of TransE [9], TransH [13], TransR [14] and TransD [15]. For each testing triplet (h, r, t)in
training set S, we corrupted it by replacing tail t (or head h) with every entity e of the
knowledge graph that satisfied the semantic-type constraints of relation r and calculated
a probabilistic score of this corrupted triplet (h,r,e) (or (e,r,t)) with the score function
fr(h, t). By ranking these scores in ascending order, we obtained the rank of the original
triplet. Two metrics are used for evaluation: the averaged rank (Mean Rank) and the
proportion of the testing triplet ranked in the top 10% (Hits@10). A lower Mean Rank
and a higher Hits@10 indicate better prediction accuracy. These metrics are indicative
but can be awed when some corrupted triplets are actually valid (e.g., from the training
set). In this case, such triplets may be ranked above the test triplet, but this problem
should not be counted as an error because both triplets are true. To avoid this misleading
behavior, we removed from the list of corrupted triplets all triplets that appear in the
training, validation or test set (except the test triplet of interest). This step ensures that
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all of the corrupted triplets do not belong to the dataset. We called the original evaluation
set containing the corrupted triplets the raw evaluation set and the set after the removal
of the corrupted triplets the filter evaluation set.

4.2.2. Implementation. Because some related works used the same datasets, we directly
copied the experimental results of several baselines from the literature. In TransC, we
attempted several parameter combinations and selected the learning rate λ for the SGD
from {0.001, 0.005, 0.01, 0.1}, margin γ from {0.25, 0.5, 0.85, 1.0, 1.5}, latent dimen-
sion k from {20, 50, 100, 120}, and batch size B from {120,480,960,1440,4800}. The
optimal hyperparameters of TransC for the dataset WN18 are λ=0.001, γ=1.0, k=100,
and B=1440; we limited the number of epochs to 1000. For FB15K, the optimal hyper
parameters of TransC are λ=0.001, γ=0.85,k=100 and B=960; we limited the number of
epochs to 500.

4.2.3. Experimental Results. The link prediction experiment can be divided into entity
prediction and relation-type prediction. The evaluation results are reported in Table 3
and Table 4. Table 3 shows the entity prediction results for WN18 and FB15K. We
observe the following:

(1) In the dataset WN18, in terms of Mean Rank and Hits@10, our TransC model
outperforms all baseline methods. In particular, for Hits@10, our method achieved im-
provements of 3.6% and 10.5% compared to TransE and TransH, respectively.

(2) In the dataset FB15K, our approach shows good prediction performance for Mean
Rank and Hits@10. For Hits@10, compared to TransE, TransH and TransR, TransC
exhibited improvements of 31.5%, 14.2% and 9.9%, respectively, and a slight improvement
(1.3%) compared to TransD.

Table 3. Comparison of the link prediction results

Datasets WN18 FB15K

Metric
Mean rank Hits@10(%) Mean rank Hits@10(%)
Raw Filter Raw Filter Raw Filter Raw Filter

SE 1,011 985 68.5 80.5 273 162 28.8 39.8
SME 545 533 65.1 74.1 274 154 30.7 40.8
LFM 469 456 71.4 81.6 283 164 26.0 33.1

TransE 263 251 75.4 89.2 243 125 34.9 47.1
TransH 401 388 73.0 82.3 212 87 45.7 64.4
TransR 238 225 79.8 92.0 198 77 48.2 68.7
TransD 224 212 79.6 92.2 194 91 53.4 77.3

TransC(our) 218 209 80.2 92.8 192 79 54.2 78.6

For the relation-type prediction (e.g., 1-TO-1(1-1), 1-TO-MANY(1-N), MANY-TO-
1(N-1), and MANY-TO-MANY(N-N)) we only used the dataset FB15K because the re-
lation types of WN18 were too small. We followed the definition for relation type in [9].
A given relationship is 1-TO-1 if a head can appear with at most one tail, 1-TO-MANY
if a head can appear with many tails, MANY-TO-1 if many heads can appear with the
same tail, and MANY-TO-MANY if multiple heads can appear with multiple tails. In the
FB15K dataset, the number of 1-1 relationships accounted for 24% of the total number
of relations, 1-N accounted for 23%, N-1 for 29%, and N-N for 24%. The comparison of
the Hits@10 values obtained for different types of relations is presented in Table 4:

(1) For head prediction, our TransC model outperforms TransE, TransH and TransR in
1-1/1-N/N-1/N-N. In particular, in comparison with TransE and TransH, our approach



1128 Yunbing Wu,Jengshyang Pan, Ping Lu, Kaibiao Lin and Xiaoyan Yu

achieved improved Hits@10 values by 38.4%, 24.6%, 20.1%, and 24.6% and 20.1%, 2.7%,
9.6%, and 2.7%, respectively. Compared to TransD, our method is less accurate, possibly
because TransD creates dynamic mapping matrices for different relationships, and thus,
it is more accurate for relation-type predictions.

(2) For tail prediction, our approach outperforms all baseline methods in 1-1, 1-N
and N-N. However, for N-1, our TransC model is slightly less accurate than TransR and
TransD, probably because FB15K has more N-1 relations than others; in contrast, TransR
and TransD embed the entities and relationships into different corresponding spaces, and
thus, they produce better prediction results in the N-1 situation.

Table 4. Results obtained for FB15K using different relation categories

Tasks Predicting Head(Hits@10) Predicting Tail(Hits@10)
Relation category 1-1 1-N N-1 N-N 1-1 1-N N-1 N-N

SE 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
SME 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1
TransD 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

TransC(our) 82.1 90.3 38.2 79.3 86.5 51.2 86.7 82.5

The experimental results shown in Table 3 and Table 4 demonstrate that the TransC
model significantly and consistently outperforms all baselines.

4.3. Triplet Classification. The aim of triplet classification is to determine whether
a given triplet (h,r,t) is correct. This is a binary classification task for fact triplets.
It was first explored in [11] to evaluate the NTN model and has been widely used to
evaluate knowledge graph embedding [9, 13, 14, 15]. Consistent with the experiments
in [9, 11, 13, 14, 15], we also used three datasets in this task: WN11, FB13 and FB15K.

4.3.1. Evaluation protocol. We followed the protocol used in the NTN model [11]. For
triplet classification, we set a relation-specific threshold δr . For a triplet (h,r,t), if the
dissimilarity score obtained by fr is below δr , the triplet is classified as positive; otherwise,
it is classified as negative. The relation-specific threshold δr is optimized by maximizing
the classification accuracy on the validation set.

4.3.2. Implementation. We compared our model with several embedding models presented
in [9, 11, 13, 14, 15]. In TransC, we attempted several parameter combinations; we selected
the learning rate λ for the SGD from {0.001, 0.002, 0.01, 0.05}, margin γ from {0.5, 0.85,
1, 1.25, 1.5}, latent dimension k from {20, 50, 100, 120}, and batch size B from {480, 960,
1440, 4800}. The optimal hyperparameters of TransC for the dataset WN11 are λ=0.001,
γ=0.85, k=100, and B=960; we limited the number of epochs to 500. For FB13, the
optimal hyperparameters of TransC are λ=0.001, γ=1.0, k=100, and B=960; we limited
the number of epochs to 500. For FB15K, the optimal hyperparameters of TransC are
λ=0.01, γ=0.85, k=100, and B=1440; we limited the number of epochs to 500.

4.3.3. Experimental Results. The evaluation results are reported in Table 5. Our TransC
model has significantly better accuracy for triplet classification than all of the baseline
models studied, including TransE, TransH, TransR, and TransD, on WN11 and FB15K.
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(1) For example, TransC is 11.7%, 8.8%, 1.7% and 1.2% more accurate than TransE,
TransH, TransR and TransD, respectively, for WN11 and 9.5%, 8.5%, 4.8% and 0.7%
more accurate than TransE, TransH, TransR and TransD, respectively, for FB15K.

(2) For FB13, TransC performs better than all baseline models except TransD. This
finding may be attributable to the fact that there are more entity numbers in FB13 than
in other datasets. Additionally, the TransD model creates a dynamic mapping matrix for
each entity, and thus, it achieves better accuracy in triplet classification.

The experimental results show that the TransC model utilizes simple parameters, sim-
ilar to TransE, and exhibits improved prediction accuracy.

Table 5. Triplet classification accuracies (%) of different embedding methods

Methods WN11 FB13 FB15K
SE 53.0 75.2 -

SME 70.0 63.7 -
LFM 73.8 84.3 -

TransE 75.9 81.5 79.2
TransH 78.8 83.3 80.2
TransR 85.9 82.5 83.9
TransD 86.4 89.1 88.0

TransC(our) 87.6 86.4 88.7

5. Conclusions and Future Work. Learning and reasoning methods have been pro-
posed to produce knowledge graphs, and a fast and effective reasoning algorithm is re-
quired. Considering the obvious inadequacies of the learning and reasoning methods
based on translation represented by TransE in the reasoning process, in which no rela-
tion semantic-type constraints are considered in the construction of corrupted triplets,
we proposed the TransC model. By adding semantic-type constraints for each relation r
into the reasoning process, the corrupted head and tail entities can satisfy the relation
semantic-type constraints in the TransC model. Thus, the triplets in the training pro-
cess have more practical significance, and the training model has high predictive accuracy.
The experimental results obtained for link prediction and triplet classification confirm the
advantages of TransC, particularly its simple parameters and high predictive accuracy.
Knowledge graph learning and reasoning constitutes a promising research area. However,
it remains in the early stage of research and exploration, and many problems are still un-
resolved. For TransC, in the future, the constraint conditions should be further analyzed
to expand this model’s suitability for more tasks, and this model should be combined with
other reasoning models to improve the accuracy of the resulting predictions.
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