
Journal of Information Hiding and Multimedia Signal Processing c©2017 ISSN 2073-4212

Ubiquitous International Volume 8, Number 6, November 2017

Low-Space Complexity Digit-Serial Multiplier Based
on Modified Polynomial Basis Over GF (2m)

Jeng-Shyang, Pan1,2

1Fujian Provincial Key Lab of Big Data Mining and Applications, China
2Harbin Institute of Technology Shenzhen Graduate School, China

jspan@cc.kuas.edu.tw

Shu-Xia, Dong

Harbin Institute of Technology Shenzhen Graduate School, China
dsx 1994@126.com

Chun-Sheng, Yang

Harbin Institute of Technology Shenzhen Graduate School, China
starissim@126.com

Received March, 2017; revised July, 2017

Abstract. The multiplication is one of the most time-consuming and hardware-consuming
operations in finite field for the applications of elliptic curve cryptography. In this pa-
per, in order to reduce the complexities of multiplication, a new polynomial basis is pro-
posed, which is generated by the irreducible trinomial and called modified polynomial basis
(MPB). The modified polynomial basis multiplication can be transformed into the matrix-
vector form. The obtained matrix satisfies the properties of Toeplitz matrix. According
to the properties of Toeplitz matrix, a digit-serial multiplier over GF (2m) by irreducible
trinomials is presented. From theoretical analysis, the proposed multiplier involves lower
area complexity, less energy consumption than the other existing digit-serial multipliers.
Keywords: Elliptic curve cryptography; Irreducible trinomial; Toeplitz matrix

1. Introduction. The elliptic curve cryptography (ECC) algorithm has become a pop-
ular research field. Compared with other encryption algorithms, ECC has the advantages
of short key at the same security conditions. The ECC algorithm contains a large number
of arithmetic operations, such as point multiplication, point addition and multiples point.
These operations are repeatedly achieved by the basic operations of addition, multiplica-
tion, inversion in large prime field GF (p) or binary extension field GF (2m). Addition can
be easily performed by 2-input XOR gate; inversion can be performed by repeating multi-
plication. Multiplication is a high frequency and high resource-cost operation. Therefore
high-performance and low-latency multiplication design and implementation is essential,
especially, in resource-constrained environments.

There is no carry-propagation in GF (2m) compared with GF (p), so it is more conducive
to the realization of modern digital. There are 2m elements in the finite field GF (2m),
and each element can be represented by a bit string of length m. The representation of
elements is generally based on three basis, named as polynomial basis (PB), normal basis
(NB) and Dual Basis (DB). According to polynomial basis representation, multiplication
involves two steps : school multiplication and reduction by F (x), where F (x) is an irre-
ducible polynomial. In order to reduce the computational complexity, F (x) with a low
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number of nonzero term is a best choice. F (x) is generally trinomial or pentanomial [1],
where trinomial, do not exist for all degree m, it is conjectured that irreducible pentanomi-
als exist for any degree m ≥ 4 [2]. In addition to the trinomial and pentanomial, there
are many variants. Many multipliers based on polynomial basis or it’s variants have been
studied in [3, 4, 5]. Itoh and Tsujii [3] based on all one polynomial (AOP) and equally
spaced polynomial (ESP) designed two low-complexity multipliers in GF (2m). In [5, 6],
time/area-efficient implementation based on shifted polynomial basis (SPB) have been
introduced and in [7] previous multiplication results in [5] was optimizied. Parallel Poly-
nomial Multiplication in GF (2m) for all degree m based on Generalized polynomial basis
(GPB) was proposed in [8]. Recently, in [9] demonstrated that the SPB is a special class
of GPB, hence SPB and GPB multiplication can be classified as one class. The design and
implementing approaches of multiplication algorithm in GF (2m) are broadly divided into
two categories: Karatsuba algorithm (KA) and Toeplitz matrix-vector product (TMVP).
The algorithms extended by the KA algorithm have (b,2)-way KA, (a,b)-way KA etc.
The algorithms derivative by TMVP have two-way TMVP, TMVP block recombination
(TMVPBR). The proposed multipliers architecture can be divided into three structures
[10, 11, 12, 13]: (1) bit-serial,with O(m) area complexity but has large computation time
[14]. (2) bit-parallel, with O(m2) area complexity but has less computation time [12]. (3)
digit-serial, used to balance time and area complexities [15, 16].

In this paper, a new polynomial basis, which is called MPB, is proposed by transforming
the polynomial basis in GF (2m). Based on MPB representation, MPB multiplication can
be transform into Toeplitz matrix-vector product. According to the properties of Toeplitz,
we proposed a digit-serial architecture to achieve low-space complexity multiplier.

The organized of this paper is as follows. Section 2 simply introduces polynomial
basis multiplication and two-way TMVP. In section 3, we define a new polynomial basis
MPB, then deduced the general formula of two element of MPB multiplication. Section
4 transforms MPB multiplication into Toeplitz matrix vector product. According to the
properties of Toeplitz, we propose a digit-serial architecture and analyze its complexity,
In section 5, we compare complexity of our proposed multiplier with the existing other
digit-serial multipliers, the summary of this paper is given in Section 6.

2. Mathematical Background. In this section, we briefly review the polynomial basis
multiplication over GF (2m) and the two-way TMVP algorithm.

2.1. PB multiplication. The binary extension field GF (2m) can be view as the m di-
mension vector over GF (2) . All field element can be represented by the m dimension vec-
tor. The ordered set N = {1, x, x2, · · · , xm−1} is called the polynomial basis in GF (2m),
then the filed element A can be represented as A = a0 + a1x + · · · + am−1x

m−1, where
aiε{0, 1}, 0 ≤ i ≤ m− 1.

In GF (2m), field elements are generated by an irreducible polynomial F (x) = xm +∑m−1
i=0 fix

i, where fiε{0, 1}. In order to reduce the complexity of PB multiplication ,
F (x) with a low number of nonzero term is a best choice. F (x) is generally trinomial
or pentanomial, where trinomial, do not exist for all degree m, it is conjectured that
irreducible pentanomials exist for any degree m ≥ 4. Let A(x) =

∑m−1
i=0 aix

i, B(x) =∑m−1
i=0 bix

i are two elements in GF (2m) and the polynomial basis multiplication represent
as C(x) = AB mod F (x), which can be carried out by two steps:

(1) School multiplication

T = AB = (
m−1∑
j=0

ajx
j)(

m−1∑
k=0

bkx
k) =

2m−2∑
i=0

tix
i, (1)
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where ti =
∑

j+k=i ajbk, for 0 ≤ j, k < m and 0 ≤ i ≤ 2m− 2.

(2) Reduction

C = T mod F (x) =
m−1∑
i=0

cix
i. (2)

Recently, a kind of low-latency digit serial multiplication methods proposed, such as,
Lee et al. [9], have presented a digit-serial and scalable SPB/GPB multiplier with low-
space complexity using (b,2) - way KA decomposition. In 2015, Lee et al. [17] have
used Toeplitz Matrix-Vector Product Decomposition achieved efficient subquadratic space
Complexity multiplier for All Trinomials. Liu et al. [18] based on Karatsuba algorithm
proposed a efficient digit-serial multiplier in GF (2m).

2.2. Two-way TMVP. Let T be a n× n Toepltiz matrix, V be a n× 1 column vector,
where n = 2k. TV can be called as a TMVP. T can be split into (T0, T1, T2), where T0,T1
and T2 are (n

2
)× (n

2
) Toeplitz matrices and V can be split into (V0, V1) , where V0 and V1

are (n
2
) × 1 column vector. A n × n Toeplitz matrix is determined by (2n − 1) elements

of the first row and the first column. The product of T and V can be written as:

TV =

[
T1 T0
T2 T1

] [
V0
V1

]
,

=

[
(T0 + T1)V1 + T1(V0 + V1)
(T1 + T2)V0 + T1(V0 + V1)

]
,

=

[
P0 + P2

P1 + P2

]
.

where P0 = (T0 + T1)V1, P1 = (T1 + T2)V0 and P2 = T1(V0 + V1). The Toeplitz matrix-
vector product TV is decomposed in to three partial products P0, P1 and P2, where P0,
P1 and P2 are (n

2
)× 1 sizes TMVP.

We assume #XOR, #AND respectively represent the number of XOR gates, AND
gates. TA, TX respectively instead of the delay of AND gate, XOR gate. According to
[19], the complexities of two-way TMVP can represented as:


#AND = nlog2 3,

#XOR = 5.5nlog2 3 − 6n+ 0.5,

D = TA + (2 log2 n)TX .

(3)

3. Modified Polynomial Basis Multiplication. Let N = {1, x, · · · , xm} be a poly-
nomial basis of GF (2m), F (x) = xm +xn + 1 be a irreducible trinomial to generate all the
elements, where n < m. From (1) and (2), F (x) is used to reduce the degree of tix

i for
m ≤ i ≤ 2m− 2. In the reduction of xm, xm+1, · · · , x2m−2, we can find some of elements
can be reused, based on the observing, we defined a new polynomial basis.

Definition 3.1. Let N = {1, x, · · · , xm} be a polynomial basis in GF (2m), F (x) = xm +
xn + 1, where n < m, be the irreducible trinomial. A new basis is given to instead of the
PB N , which is called as modified polynomial basis (MPB), denoted as N ′. The MPB N ′

can be expressed as:

N ′ =

{
{β0, β1, · · · , βk−1, βk, · · · , βm−1}, n > m

2

{γ0, γ1, · · · , γn−1, γn, · · · , γm−1}, n < m
2

(4)
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where k = m− n and

βi =

{
xi + xi+n, 0≤i≤k − 1

xi, i≥k
, (5)

γi =

{
xm−i + xn−i, 0≤i≤n− 1

xm−n, n ≤ i ≤ m− 1
(6)

Lemma 3.1. According to definition 3.1, we can obtain following lemma. Let A be a
element of PB, denoted as A =

∑m−1
i=0 aix

i. Using MPB, A can be expressed as:

A =

{∑n−1
i=0 aiβi +

∑m−1
i=n ai(i−n)βi, n > m

2

a0γ0 +
∑m−n

i=1 am−iγi +
∑m−1

i=m−n+1 a(m−i)(2m−i−n)γi, n < m
2

(7)

where ai(i−n) = ai + ai−n, a(m−i)(2m−i−n) = a(m−i) + a(2m−i−n).
Let A and B be two elements of PB in GF (2m). Based on the new MPB representation,

we consider the multiplication C = AB.
(a) n≥m/2
The product of A and B can be written as:

AB = b0A+ · · ·+ bk−1Ax
k−1 + bkAx

k + · · ·+ bm−1Ax
m−1 (8)

According to (5) we can obtain:

xβi =


βi+1 0≤i≤k − 2

βk + β0 i = k − 1

βi+1 k≤i≤m− 2

β0 i = m− 1

(9)

we assume that A(j) = Axj, A(j) =
∑m−1

i=0 a
(j)
i βi, 0 ≤ j ≤ m− 1. According to (7) and

(9), A(0) can be written as:

A(0) = A =
n−1∑
i=0

aiβi +
m−1∑
i=n

a(i−n)iβi, (10)

According to (9) and (10), A(j+1) for 0 ≤ j ≤ m− 2 can be written as:

A(j+1) = xA(j)

= a
(j)
(k−1)(m−1)β0 +

n∑
i=1

a
(j)
i−1βi +

m−1∑
i=n+1

a
(j)
(i−n−1)(i−1)βi. (11)

where a(i−n)i = a(i−n) +ai, a
(j)
(k−1)(m−1) = a

(j)
(k−1) +a

(j)
(m−1), a

(j)
(i−n−1)(i−1) = a

(j)
(i−n−1) +a

(j)
(i−1).

According to the above formula (11) we can conclude that the coefficients of A(j+1)

is obtained by cycle right shift k-bit and one XOR gates from A(j), where A(0) = A,
0 ≤ j ≤ m− 2, when n≥m/2 and m− n = k.

(b) n < m/2
The product of A and B can be written as:

AB = b0A+ b1Ax+ · · ·+ bk−1Ax
k−1 + bkAx

k (12)

+ · · ·+ bm−1Ax
m−1
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According to (6) we can obtain:

xγi =


γm−1 i = 0

γi−1 1 ≤ i ≤ n

γn−1 + γm−1 i = n

γi−1 n < i < m

(13)

we assume thatA(j) = Axj, A(j) =
∑m−1

i=0 a
(j)
i γi, 0 ≤ j ≤ m − 1. According to (9) and

(13), A(0) can be written as:

A(0) = A = a0γ0 +
m−n∑
i=1

am−iγi +
m−1∑

i=m−n+1

a(m−i)(2m−i−n)γi, (14)

According to (14) and (13), A(j+1) for 0 ≤ j ≤ m− 2 can be written as:

A(j+1) = xA(j)

=
m−n−1∑

i=0

a
(j)
m−n−iγi +

m−2∑
i=m−n

a
(j)
(m−i−1)(2m−i−n)γi (15)

+ a
(j)
0(m−n)(2m−2n)γm−1.

Based on the above formula (15) we can conclude that the coefficients of A(j+1) is
obtained by cycle left shift k-bit and one XOR gates from A(j). A(0) = A, 0 ≤ j ≤ m− 2,
when n < m/2 and m− n = k

According to the above analysis, we can obtain following summary: the modified poly-
nomial basis multiplication can be transformed into the matrix-vector form. The obtained
matrix satisfies the properties of Toeplitz matrix. Therefore we can use two-way TMVP
perform MPB multiplication.

4. Proposed Multiplier Based On MPB.

4.1. Digit Serial Architecture. According to MPB, the product of A and B can be
permed by a Toeplitz matrix-vector product as:

C = TV =


tm−1 · · · t2m−3 t2m−2

...
...

...
...

t1 · · · tm−1 tm
t0 · · · tm−2 tm−1




v0
...

vm−2
vm−1


where T is an m×m Toeplitz matrix and V is an m× 1 column vector.

Let m = kd, d is the digit size, T and V are divide into k parts:

T =


Tk−1 Tk · · · T2k−3 T2k−2
Tk−2 Tk−1 · · · T2k−4 T2k−3

...
...

. . .
...

...

T1 T2
... Tk−1 Tk

T0 T1 · · · Tk−2 Tk−1

 and

V =
[
V0 V1 · · · Vk−1

]T
,

where Ti is d× d size and Vi is d× 1 size. then C = TV can be written as:



Low-Space Complexity Digit-Serial Multiplier Based on Modified Polynomial Basis Over GF (2m) 1251

TV =


Tk−1V0 + TkV1 + · · ·+ T2k−2Vk−1

...
T1V0 + T2V1 + · · ·+ TkVk−1
T0V0 + T1V1 + · · ·+ Tk−1Vk−1



=


Tk−1V0(k−1) + TkV1(k−1) + · · ·+ Tk−1∼2k−2Vk−1

...
T1V01 + T1∼kV1 + · · ·+ Tk−1V1(k−2) + TkV1(k−1)

T0∼k−1V0 + T1V01 + · · ·+ +Tk−1V0(k−1)



=


p0(k−1) + p1(k−1) + · · ·+ p(k−2)(k−1) + pk−1

...
p01 + p1 + · · ·+ p1(k−2) + p1(k−1)
p0 + p01 + · · ·+ p0(k−2) + p0(k−1)

 (16)

where Ti∼j =
∑i+k−1

j=i Tj and i < k− 1, Vij = Vi + Vj and i < j ≤ k− 1, pi = Ti∼k−1+iVi
and i ≤ k − 1, pij = Ti+jVij and i < j ≤ k − 1.

Due to the symmetry of (16), we just need to compute k2+k
2

multiplication, The Figure
4.1 shows the proposed MPB multiplier architecture. Figure 4.1 contains four parts,
respectively T Generator, V Generator, TMVP Multiplier and Reconsyrction. Multiplier
architecture involves nine components (S0, S1, S2, S3, S4, P , ACC1, ADD, ACC2). Next,
we introduce the function of each component and estimate the complexities of these
component. The space complexity of multiplier is expressed by the number of 2-input
XOR gate, 2-input AND gate and 2-input MUX gate. The number of 2-input XOR
gates, 2-input AND gates and 2-input MUX respectively expressed as #XOR, #AND
and #MUX. The time complexity of multiplier is expressed by the delay of 2-input XOR
gate, 2-input AND gate and 2-input MUX gate. TA, TX , TMUX respectively instead of the
delay of 2-input AND gate, 2-input XOR gate and 2-input MUX gate.

(a) T Generator: Includes S0, ACC1, S1 components. These three components are
used to generate the entire T sequence {T0∼k−1, · · · , Tk−1∼2k−2}and {T1, · · · , T2k−3}. T
consists two parts,S0 and ACC1 are selected from the input set {T0, T1, · · ·T2k−2} to
accumulate produce the first part {T0∼k−1, · · · , Tk−1∼2k−2}, then S1from the inputs set

{Ti∼j, T1, · · ·T2k−3} generate the whole T sequence, where Ti∼j =
∑i+k−1

j=i Tj, i < k − 1.

The input of S0 is {T0, T1, · · ·T2k−2}, where Ti for i ≤ 2k − 2 is d × d size. The output
of S0 is Ti, for , i ≤ 2k − 2. So the complexities of S0 are (2k − 2)(2d − 1) MUX and
delay is dlog2(2k− 2)eTMUX . ACC1 accumulation unit consists of (2d− 1) XOR gates to
compute addition of d× d size Ti for i ≤ 2k− 2, and delay is Tx. S1 requires 2k− 3 MUX
when output Ti, i ≤ 2k − 2 from 2k − 2 inputs. The same like S0, the complexities are
(2k − 3)(2d− 1) MUX and the delay is dlog2(2k − 3)eTMUX .

(b) V Generator: Consist of S2,S3, ADD components. The three components are used
to generate the V sequence {V0, · · · , Vk−1} and {V01, · · · , V(k−2)(k−1)}corresponding to the
T sequence. S2 and S3 respectively generate sequences {V0, · · · , Vk−2} and {V1, · · · , Vk−1}
from input set {V0, · · · , Vk−1}, ADD component add the output sequence of S0and S1,
produce whole V sequence. S2,S3 are output a d × 1 size Vi, i ≤ k − 1 from thek − 1
inputs. Hence the complexities are (k − 2)d MUX , delay is dlog2(k − 2)eTMUX . ADD
achieve the addition of d× 1size Vi, therefore the complexities of ADD are d XOR gates
and Tx delay.
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(c) TMVP Multiplier: P component performs the product of the outputs of (a) and
(b), denoted as pi for i = 0, · · · , k − 1 or pij for 0 ≤ i < j ≤ k − 1. According to
(3) so the complexities are dlog23AND gates, 11

2
dlog23 − 6d + 1

2
XOR gates and delay is

TA + 2dlog2deTX .
(d) Reconstruction: S4 and ACC2 reconstruct the result of C by using the output of

P components. S4 extend pi or pij from d size to m size; ACC2 is an accumulator. The
complexities are m AND gates, m XOR gates and delay is TA + Tx.

Here, we analysis the complexity of the each component of figure 4.1, Table 1 lists the
number of logical gates required and required delay for each component.

Figure 1. Architecture of proposed MPB multiplier

Table 1. Complexities of each component of proposed MPB

components #AND #XOR #MUX Delay

S0 - - (2k − 2)(2d− 1) dlog2(2k − 2)eTMUX

ACC1 - (2d− 1) - TX
S1 - - (2k − 3)(2d− 1) dlog2(2k − 3)eTMUX

S2 - - (k − 2)d dlog2(k − 2)eTMUX

S3 - - (k − 2)d dlog2(k − 2)eTMUX

ADD d - TX
P dlog23 11

2
dlog23 − 6d+ 1

2
- TA + 2dlog2deTX

S4 m - - TA
ACC2 m - TX

The product of A and B can be performed by a Toeplitz matrix-vector product C = TV ,
where T is an m×m Toeplitz matrix and V is an m× 1 column vector. To illustrate the
multiplexer control table , let m = kd, k = 4 as a example, T and V are divide into k
segmentation and C = TV can be written as:
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TV =


T3 T4 T5 T6
T2 T3 T4 T5
T1 T2 T3 T4
T0 T1 T2 T3



V3
V2
V1
V0



=


T3V03 + T4V13 + T5V23 + T3∼6V3
T2V02 + T3V12 + T2∼5V2 + T5V23
T1V01 + T1∼4V1 + T3V12 + T4V13
T0∼3V0 + T1V01 + T2V02 + T3V03



=


p03 + p13 + p23 + p3
p02 + p12 + p2 + p23
p01 + p1 + p12 + p13
p0 + p01 + p02 + p03

 (17)

where the size of Ti is d× d , the size of Vi is d× 1.
From (17), we can find that the product C includes ten partial products: p0 = T0∼3V0,

p1 = T1∼4V1, p2 = T2∼5V2, p3 = T3∼6V3, p01 = T1V01, p02 = T2V02, p03 = T3V03, p12 = T3V12,
p13 = T4V13, p23 = T5V23. Next lists generated sequences and complexity analysis for MUX
component in the figure 4.1.

(a) T Generator: S0and ACC1 generate the sequence {T0∼3, T1∼4, T2∼5, T3∼6} from the
input set T0, · · · , T6, required 6 MUX and 2d−1 XOR gates. S1 generate entire T sequence
{T0∼3, T1∼4, T2∼5, T3∼6} and {T1, T2, T3, T4, T5} needs 5 MUX.

(b) V Generator: S2 and S3 respectively produce the sequence {V0, V1, V2} and {V1, V2, V3}
and ADD add the two sequences generate {V0, V1, V2, V3} and {V01, V02, V03, V12, V13, V23}.
Therefore S2 and S3 required 2 MUX and ADD needs d XOR gates.

(c) TMVP Multiplication: product the ten partial products p0, p1, p2, p3, p01, p02, p03, p12, p13, p23.
(d) Reconstruction: reconstruct the m size C.
Table 2 lists four control vector for S0, S1, S2, S3to be used to determine the partial

products during each cycle. for example, S0 generate the T0 and S1generate the T0∼3
when i = 4.

5. Comparison. Recently, various digit-serial multipliers have been proposed in [9],
[20],and [21]. In [9], Lee et al. have presented a (b,2) - way KA decomposition to achieve
digit-serial multiplier with low-space complexity multiplier. Talapatra et al. [21] have
used the TMVP scheme to develop an efficient digit-serial systolic Montgomery multi-
plier for trinomials polynomials. Pan et al. [20], have used double basis multiplication
which combines the polynomial basis and the modified polynomial basis to develop a
new efficient digit-serial systolic multiplier. In this paper, we use modified polynomial
basis develop a low-space complextiy digit-serial multiplier for trinomial. Table 3 lists
the comparison results of our proposed multiplier and the existing digit-serial multipliers
proposed in [20], [21]. It can be seen from the table 4 that the architecture we design is
larger than the other two existing multiplier in the latency cycle, but in the number of
logical gates be less than [21, 20].

In order to make the results more close to the actual implementation, we using the
standard Nan-gate Open Cell Library typical obtained the ASIC synthesis results to
compares performance and complexities of the proposed multipier with the other two
multipliers, presented in Talapatra et al.[21] and Jeng-Shyang-Pan et al. [20]. We choose
the F (x) = x409 + x87 + 1 as the irreducible trinomial. The comparision of latency, area,
power and total-time of synthesis tabulated in Tables 4.
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Table 2. Four Control Tables. (a) S0 control table; (b) S1 control table;
(c) S2 and S3 control table; (d) S4 control table

(a)S0

i s00 s01 s02 s03 s04 s05 s06
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 0 0 1 0 0 0 0
3 0 0 0 1 0 0 0
4 1 0 0 0 0 0 0
5 0 0 0 0 1 0 0
6 0 1 0 0 0 0 0
7 0 0 0 0 0 1 0
8 0 0 1 0 0 0 0
9 0 0 0 0 0 0 1

(b)S1

i s10 s11 s12 s13 s14 s15
0 0 1 0 0 0 0
1 0 0 1 0 0 0
2 0 0 0 1 0 0
3 0 0 0 0 1 0
4 1 0 0 0 0 0
5 0 0 0 1 0 0
6 1 0 0 0 0 0
7 0 0 0 0 1 0
8 0 0 0 0 0 1
9 1 0 0 0 0 0

(c).S2

i s20 s21 s22 s23
0 1 0 0 0
1 1 0 0 0
2 1 0 0 0
3 0 0 0 0
4 1 0 0 0
5 0 1 0 0
6 0 1 0 0
7 0 1 0 0
8 0 0 1 0
9 0 0 0 0

(c).S3

i s30 s31 s32 s33
0 0 1 0 0
1 0 0 1 0
2 0 0 0 1
3 0 0 0 0
4 0 0 0 0
5 0 1 0 0
6 0 0 0 0
7 0 0 0 1
8 0 0 0 1
9 0 0 0 1

(d)S4

i s40 s41 s42 s43
0 0 0 1 1
1 0 1 0 1
2 1 0 0 1
3 0 0 0 1
4 0 1 1 0
5 1 0 1 0
6 0 0 1 0
7 1 1 0 0
8 0 1 0 0
9 1 0 0 0

Table 3. Comparisons of Various Digit-Serial Multipliers over GF (2m)

Multipliers Talapatra et al.[21] Pan et al.[20] Proposed Figure 4.1

Architecture Digit-Serial Digit-Serial Digit-Serial
Basis Montgomery DB PB

Polynomial type Trinomial Trinomial Trinomial

#AND kd2 k
3
2P2 m+ P2

#XOR kd2 + 2d m+ k
1
2P9 + d+ P4 m− 4d+ 11

2
P2 − 1

2

#MUX 2kd − 10m− 4k − 14d+ 5

Latency 2k 2k
1
2

k2+k
2

Critical path delay TA + P6Tx + TMUX (2 + P6)Tx 2TA + (2 + 2P6)Tx + P10TMUX

Note: P2 = dlog23, P3 = k(2.5dlog23 − 3d+ 0.5) + dlog23 − d , P4 = k(2dlog23 − 2d),
P5 = kdlog23, P6 = log2d, P7 = dlog2(2k − 2)e,

P8 = dlog2(2k − 3)e,P9 = 2d+ P3 + P5,P10 = P7 + P8

Proposed multiplier is based on the 2-way TMVP structure and we have considered
five different segmentation number k, i.e., 2, 4, 6, 8, and 10, for synthesizing and both
multipliers [21, 20], are also synthesized for the same segmentation number k. The cor-
responding digit-sizes d = m

k
of the three multipliers are same, i.e., 205,103,69,52, and

41. We note that choosing the same k and d will have a consistent comparison for all
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multipliers. In table 4, the area of our proposed MPB multiplication architecture is lower
than other multipliers under the same digit-size over GF (2409). comparably, as seen in
Table. The proposed architecture area - saving about 72.9% − 81.7% compared to the
multiplier [21] and area - saving about 61.1% − 86.6% compared to the multiplier [20]
when k = 2, 4, 6, 8, 10.

Table 4. The Comparison of Latency cycles, Area [µm2] , Power
[µW/GHz] and Total-time [ns× cycles] for the Previously-Presented Mul-
tiplier Architectures over GF (2409) for Different Digit-Sizes d

k 2 4 6 8 10
d-size 205 103 69 52 41

Talapatra et al.[21]

Latency 4 8 12 16 20
Area 225,750 114,740 77,748 59,256 46,372

Power 631,270 320,100 216,390 164,550 128,460
Total-time 3.84 7.68 11.52 15.36 19.20

Pan et al.[20]

Latency 2
√

2 4 2
√

6 4
√

2 2
√

10
Area 124,010 103,080 94,086 88,734 82,428

Power 302,120 253,250 232,180 219,630 204,510
Total-time 0.91 1.28 1.57 1.81 2.02

Proposed Figure 4.1

Latency 3 10 21 36 55
Area 47,473 20,657 14,618 12,277 10,871

Power 114,580 47,611 32,331 26,334 22,799
Total-time 2.88 9.6 20.16 34.56 52.80

6. Conclusions. In this paper, we have proposed a novel low-space complexity digit-
serial multiplier architecture for modified polynomial basis multiplication over GF (2m).
The proposed new basis MPB is generated by irreducible trinomial F (x) = xm + xn + 1
when m and n satisfies n ≥ m

2
or n < m

2
. The MPB multiplication can transform into

Toeplitz matrix-vector product. According to the property of Toeplitz we proposed a digit-
serial architecture. In section 4 and Table 1, we have provided a theoritical analysis of
the complexities of architecture component, including S0, S1, S2, S3, S4, P , ACC1, ADD,
ACC2. The proposed multiplier architecture involves significantly lower area complexity,
less energy consumption than the other existing digit-serial multipliers.
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