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ABSTRACT. The gravitational search algorithm has been extensively applied in various
fields, such as grid optimization, power system economic dispatching, pipeline scheduling,
data mining and others; however, it complex engineering optimization problems prone to
premature convergence. This paper proposes a gravitational search algorithm with the
dynamic learning strategy (DGSA). An adaptive function is used as an alternative to the
fized value method to speed up convergence, and gravitation is calculated through a linear
formula whereby individuals with high quality are selected iteratively to prevent falling
into local optima and enhance diversity. Simulation results on siz benchmark functions
showed that the DGSA performs very well at avoiding premature convergence. Compared
to GSA and other improved GSAs, the new algorithm likewise performs well in terms of
not only convergence rate but also convergence precision.
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1. Introduction. The gravitational search algorithm (GSA) is an innovative heuristic
algorithm based on the laws of gravity and motion, which were introduced recently by
Rashedi and Nezamabadi-pour. The general objective of the algorithm is using Newton'’s
law of gravitation and movement for the exchange of information [1]. Several studies have
shown that GSA function optimization performance has the best possible effect compared
to similar algorithms, e.g., the excellent particle swarm optimization algorithm, differen-
tial evolution algorithm, and others; as such, it has garnered significant research attention
and research on optimization problems becomes one of the hottest topics of intelligent
computation[2, 3]. Researchers developed a hybrid gravitational search algorithm in an
effort to solve the economic dispatch problem power systems, for example, by combin-
ing OBL technology and GSA [4]. In another study, scholars used GSA to optimize the
pipeline scheduling problem [5]. A novel gravitational search based kernel clustering tech-
nique was developed and applied to vibration fault diagnosis of hydro-turbine generating
units [6]. The algorithm was proven well capable of clustering around the faulty samples
of the units effectively and diagnosing different types of faults accurately. The GSA al-
gorithm allows these applications to obtain better results, but the algorithm itself makes
it easy to fall into local optima slows convergence speed, and introduces other important
shortcomings. To this effect, many recent scholars have focused on improving the GSA
algorithm to make it more directly applicable.

The gravitational particle swarm algorithm (PSOGSA), a combination of the charac-
teristics of PSO and GSA, converges more quickly than the traditional GSA [7]. Recent
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researchers inspired by astronomical phenomena, proposed an improved GSA based on the
black hole mechanism and verified its effectiveness by solving unimodal problems [8]. In
another study, an opposition-based gravitational search algorithm (OGSA) was developed
to avoid premature convergence [9]. These methods do, to a certain extent, improve the
overall performance of the algorithm, but without fundamentally eliminating its inherent
drawback. In this study, we utilized a dynamic adaptive function « to replace the static
set value a to improve the GSA convergence rate. In order to balance global exploration
and local search capacity while escaping local optimal, we also included a linear variation
to establish the gravitational weight formula. We evaluated the proposed gravitational
search algorithm with the dynamic learning strategy (DGSA) on six benchmark functions
and compared it against the standard GSA, OGSA and PSOGSA. The results showed
that DGSA performed better than the other algorithms in most of the test functions,
effectively improving the performance of the GSA algorithm.

2. Gravitational Search Algorithm. In the GSA, the population of particles by the
action of gravity of the mutual movement, due to the action of gravity causes the parti-
cles to move toward the most massive particle, and the quality’s largest particle in the
best position, the position information corresponding to the optimal solution of the op-
timization problem. GSA by gravitational interactions between the particles to optimize
information sharing, guiding groups to expand the search area the optimal solution, the
final movement of the particles of the optimal regional solutions.

To describe GSA in more detail, consider a D-dimensional space with N searcher agents
in which the position of the 7th agent is defined as follows:
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The position of the ith particle is denoted by z¢. The quality of particles is determined
by evaluating the fitness function values of the particles as follows:

_ fit; (t) — worst (t)
g (t) = best (t) — worst (t)

M) =i () /D0 0)

(1)

Where M; (t) represent the mass. Fit; (t) represents the fitness value of the ith particle
in iteration of the ¢. Best (t) represents the best fitness value in iteration ¢ and worst (t)
represents the worst fitness value in iteration ¢.

best (t) = min fit;(t) (2)
ie{1,2,,N}

worst (t) = max fit; (t) (3)
ie{1,2,,N}

Total forces applied on an agent from a set of heavier masses should be considered based

on the law of gravity as stated in (4).

Myi (t) Ma, (t)
Rij (t) +¢€

Fi(t) =G (1)

d d
i (25 (t) — 2{ (1)) (4)
Where M,; (t) is the active gravitational mass related to agent j, M, (t) is the passive
gravitational mass related to agent i, G (t) is gravitational constant at time ¢, € is a very
small value used in order to escape from division by zero error whenever the Euclidean
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distance between two agents ¢ and j is equal to zero, and R;; () is the Euclidian distance
between two agents i and j in (5)

Rij (1) = [I(Xi (), (X5 (£)l, (5)

In GSA, the gravitational constant G will take an initial value Gy, and it will be reduced
with time as given in (6)

G(t) =Gy x e T (6)

Where (G is a gravitational constant, usually 100. « is 10, ¢ and 7" are the current and
the total number of iterations (the total age of the system), respectively.

In a problem space with dimension equal to d, the total force that acts on agent 7 is
calculated by the following equation:

N
Fl(t)= ) rand;Fj(t) (7)
=1,
Where rand; is a random number in the interval [0,1]. The random component has been
included in this formula to have a random movement step along the gravitational force
of each agent and the final resultant force. This helps to have more diverse behaviors in
moving the search agents.

Newton’s law of motion has also been utilized in this algorithm, which states that the
acceleration of a mass is proportional to the applied force and inverse to its mass, so the
accelerations of all agents are calculated as follows:

d
(0 = 3o ®)

Where ¢ is a specific time and M; is the mass of object 7.
The velocity and position of agents are calculated as follows:

vd (t + 1) = rand; x v (t) + a? (t) (9)

2 (t+1)=2f () +of (t+1) (10)

Where rand; is a random number in the interval [0,1].
The flowchart of gravitational search algorithm is shown in Figure. 1.

3. Improved Gravitational Search Algorithm. At present, many intelligent opti-
mization algorithms including GSA suffer slow convergence and readily fall into local
optima [10]. We developed the DGSA technique in an effort to eliminate these problems.

3.1. Hyperbolic Tangent function dynamic adaptive a. Of course, the parameter
settings of the algorithm are crucial in terms of optimizing performance. In the GSA,
there are two fixed parameters: GGy and a. Under Rashedi settings, parameter G value
is 100 and « value is 20. The parameter o determines the global exploration and local
search development [9]. During the algorithm, « values should be small initially in order
to ensure the growth of the individual steps and to prevent falling into local optima. Later
in the algorithm, the values should become larger in order to accelerate the convergence
speed, with a relatively small step toward the optimal solution to ensure high accuracy.
In short, the a value should be increased algebraically at the appropriate iteration.

We identified a hyperbolic tangent function in which output increases nonlinearly as
the number of iterations increased. It is feasible to use a hyperbolic tangent function as
a and to control G.
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F1GURE 1. The flowchart of GSA algorithm

The attenuation factor function is defined by a hyperbolic function as follows:
t
a (t) = p* tanh(\ * (T —0.5))+k (11)

Where t is the current iteration and 7' is the maximum number of iterations; p, A, and
k are the parameters of the a function. We selected suitable parameters to control the
variation range of o and set p, A, and x to 0.2, 10, and 20, respectively. The dynamic «
produced a smaller GG in early iterations, helping GSA perform exploration, and a larger
G in later iterations, helping the GSA perform exploitation.

3.2. Gravity Improvement. The global exploration and local search have an important
influence on the performance of the optimization algorithm. Equations (1)-(8) can be
substituted into Eq. (9) to obtain the following formula:

N
Mt

o = gl + rand * v} + Z (GO x e R—j (rand * (z} — xf))) (12)
j=1 E

As evidenced by Eq. (11), the GSA algorithm is similar to the mutation operator in the

differential evolution algorithm [11]. The latter half of the formula is the product of the

difference vector, mass, and distance between the individual and other individuals. The

prediction formula of unrated knowledge is as follows after the time function is introduced:

L= Z (GO x e o R—j (rand = (2 — ﬁj))) (13)
j=1 ’

Equation (13) is the result of learning from the individual to the others. The quality and
the front part of the multiplication result can be utilized to determine the proportion of
the overall learning; this can be regarded as the overall difference in front of the weight,
which has a certain algebraic relation with the fitness value. To efficiently algebraically

calculate the function, we developed the following linear formula.

W = Wmax — (Wmax — Wmin) * (1 —t/T) (14)
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Where t is the current iteration and 7" is the maximum number of iterations. wp.x and
Wmin Were set to 0.9 and 0.7.
Equation (13) can be rewritten as follows:

F(t) =G (t) Z (w * ]]\jj (rand (=} — xf))) (15)

ij

j=1

Via the linear weighting formula, individuals explore larger regions in the initial iteration,
and then quickly locate the approximate location of the optimal solution; w decreases
as the number of iterations increases, then the individuals slow down and begin finer,
local search. The most prominent feature of GSA is the entire population, which must
rely on gravity to optimize between individuals. Gravity is equivalent to an information
transfer tools optimizations according to the characteristics of the algorithm, the finer the
individual quality, the finer the gravitational force. Under the action of gravity, the whole
population moves toward the quality of the largest direction to search the optimal solution
for the problem. The gravitational force is calculated as the first individual is added to
the last one. In the early iterations, due to the diversity of individual populations, the
population can quickly find optimal solutions. Population diversity is decreased in later
iterations, which can easily reduce accuracy and fall into the local optimal solution. The
quality of the individual is divided by quality into three categories: excellent, mid-level,
and poor in order jump local optima. At the beginning of the algorithm, the population is
given high probability and the individuals involved in the operation are given the highest
quality possible to strengthen the exchange of information between them to enhance the
population’s mining capacity, and to promote population convergence. In subsequent
iterations, it is necessary to enhance the local search ability to the individual, ensure
mid-level quality, and assign moderate probability to the population; this creates poor
individuals with relatively good individual movement able to conduct a fine-tuned search.
A smaller portion of a given population with high quality should be selected to altogether
avoid local optima; this balances the overall exploration and local development capabilities
of the algorithm. The pseudo code of gravity operator can be seen in following:

3.3. Step-wise DGSA Algorithm. The reactive power optimization based on DGSA
takes place in the following steps.

Stepl: Population initialization

Step2: Fitness evaluations of the agents

Step3: Update M; (t) based on Eq. (1)

Step4: Calculating « (t) based on Eq. (11) and updating G (t)based on Eq. (6)

Steph: Calculating the total forces in different directions using Eq. (15)

Step7: Calculating the acceleration a? (t) by Eq. (8) and updating velocity v (¢) and
position x¢ (t) by Eq. (9) and (10), where i = 1,--- N

Step8: Repeat Steps 2-7 until stopping termination condition is met.

4. Experiments and Results. We ran simulation experiments to evaluate the perfor-
mance of the algorithm and the effectiveness of the proposed technique. We applied the
proposed algorithm and a few others to six standard benchmark functions for the sake
of comparison [12, 13, 14, 15]. Table 1 describes the benchmark functions, the ranges of
their search space, and their optimal values. F; ~ Fj are unimodal. The convergence
rates of the functions increased to a greater extent than the final optimization results.
F5 ~ Iy are multimodal. Having many local minima, the algorithm must be capable of
finding the optimum solution without falling into local optima.
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if rand < P && t < T then
for:=1: N do
for j = 1: kbest do
calculating the total forces in different directions using Eq. (15)
end for
end for
else
if rand< P’ then
fori=1: N do
for j = 1: kbest! do
calculating the total forces in different directions using Eq. (15)
end for
end for
else
fori=1: N do
for j = 1: kbest2 do
calculating the total forces in different directions using Eq. (15)
end for
end for
end if
end if

Kbest, kbest1, and kbest2 stand for excellent, mid-level, and poor particle mass.

TABLE 1. Test Function

Function Range Opt
D
F (X) = Z a2 [—100, 100]” 0
F(X) = ]xz| + H EA [—10,10)" 0
1= : 5
FX)=Y (Z g;j> [—100, 100]” 0
i=1 \ j=1
D
Fy(X) =Y ([ 4 0.5)) [—100, 100]” 0
Dz:l .
Fy(X) = —a;sin (\ /y:m) (500, 500] 0
=1
D 22 D
Fy(X) = ¥ 5 H cos (%) +1 600, 600] 0

4.1. Set Experiment Parameters. We set the same initial parameters for the tests
we ran on GSA, OGSA, PSOGSA, and DGSA: population size=50; dimension = 30, and

maximum iterations =1000.

4.2. Simulation Results and Analysis. The performance of the DGSA algorithm was
compared against the standard GSA, OGSA, PSOGSA, and improved GSA in terms of

average, minimum, maximum, and standard deviation of best-so-far solutions. The results

are listed in Table 2

The algorithm with smaller average is stronger for searching the optimal solution. And
the algorithm with lower variance has higher stability. The results are shown in Table



126

Y.J. Wang, H.H. Tao, and X.J. Li

TABLE 2. The Result Of Test Function

Function | Algorithm | Minimum | Average | Maximum | Std. dev
GSA 1.21e-017 | 2.18e-017 | 3.90e-017 | 5.82e-018
OGSA 6.96e-017 | 1.06e-017 1.53e-16 | 2.37e-017
3 PSOGSA | 1.30e-019 | 2.51e-019 | 3.43e-019 | 5.78e-020
DGSA 4.88e-031 | 9.41e-024 | 1.86e-022 | 4.15e-023
GSA 1.70e-008 | 2.38e-008 | 3.12e-008 | 4.43e-009
OGSA 3.88e-008 | 4.56e-008 | 5.53e-008 | 4.17e-009
F PSOGSA | 1.78e-009 7.8479 118.6478 26.8984
DGSA 1.06e-015 | 2.85e-015 | 6.10e-015 | 1.38e-015
GSA 1.05e-095 | 6.83e-087 | 8.83e-088 | 2.14e-088
OGSA 1.14e-105 | 1.90e-101 | 3.78e-100 | 8.49e-101
Fs PSOGSA 23.687 6.63e4+004 | 1.51e+004 | 4.91e4-003
DGSA 1.21e-133 | 4.70e-121 | 9.40e-120 | 2.10e-120
GSA 1.22e-017 | 2.25e-017 | 3.7e-017 | 5.83e-018
OGSA 7.69e-017 | 1.10e-016 | 1.43e-016 | 1.69e-017
Fy PSOGSA | 1.61e-019 505.01 1.014-004 | 2.26e+003
DGSA 4.07e-031 | 1.58e-024 | 3.15e-023 | 7.03e-024
GSA -3.59e+003 | -2.86e+-003 | -2.16e+003 | 430.7376
OGSA | -4.12e4+003 | -2.91e+003 | -2.08e+003 | 581.3082
Fs PSOGSA | -3.304+003 | -2.43e+003 | -1.77e4+003 | 419.34
DGSA | -9.25e+003 | -7.74e4003 | -5.92e+003 | 853.2039
GSA 21.0592 39.2327 73.8426 12.5663
OGSA 20.82 41.07 62.70 11.36
Fe PSOGSA | 3.33e-016 9.090 90.7526 27.9244
DGSA 0 4.93e-004 0.0049 0.0015

2. In almost all test functions, both the accuracy stability and convergence of the DGSA
algorithm were optimal in terms of solving unimodal and multimodal functions.

For a more direct comparison of various algorithm’s convergence rates, we drew curves
of the convergence process as shown in Figure 2 and Figure 7, where the horizontal axis
represents the number of iterations of the population and the ordinate axis represents the
number of iterations corresponding to the optimal solution of the population.
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The simulation results showed that the convergence speed and accuracy of the DGSA
algorithm were significantly better than the standard GSA, OGSA, and PSOGSA algo-
rithms. In effect, the improvement measures we designed were effective; the dynamic
learning strategies effectively balance the global exploring ability and local search ability
while avoiding falling into local optima.

5. Conclusions. This paper presents a gravitational novel search algorithm with a dy-
namic learning strategy. The algorithm has two particularly notable characteristics: first,
the static dynamic adaptive function « () is replaced to set the value of a to acceler-
ate the convergence rate; second, gravity is calculated in different iterations according
to the size of the population and individual quality. In this way, population diversity is
effectively maintained during optimization. We tested ours and other similar algorithms
on six standard benchmark functions for the purposes of comparison and found that the
proposed algorithm yields better solutions with faster convergence.
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