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Abstract. To improve the classification accuracy of multiple power quality distur-
bances, a new feature extraction method for multiple power quality disturbances was
proposed based on the S-transform and wavelet transform energy distribution. The S-
transform and wavelet transform were used separately to extract the features for power
quality disturbances. Features extracted by the above two methods were used as the whole
feature to identify the power quality disturbances. The wavelet transform method was used
to extract the energy differences between the disturbance signals and standard signal for
each layer. The extracted energy differences were used as one part of power quality dis-
turbances features. The S -transform was used to analyze the time-frequency information
of the disturbance signals. The time-frequency information was expressed as a matrix
in S-transform. We extracted the maximum, minimum, mean, standard deviation, the
normalized mean, skewness, and kurtosis from the modulus time-frequency matrix. The
extracted features obtained from the S-transform were used as another part of the power
quality disturbances features. To improve the performance of S-transform, adjustment
factors were introduced to the Gaussian window function to enable a more flexible res-
olution for the S-transform. We used eleven types of power quality disturbances to test
the performance of the proposed method. The simulation results showed that the proposed
method had higher classification accuracy.
Keywords: Power quality disturbance; Wavelet transform; S-transform; Adjustment
factor

1. Introduction. With the increasing use of the electronic and power electronic equip-
ment, the augmentation of nonlinear, volatility, impact load, the pollution which the
power system suffered from is more and more serious. At the same time the development
of information technology requires improved power quality. Monitoring and analyzing the
power quality is highly important for discovering and managing the power quality. The
premise of the power quality analysis is the identification of power quality disturbance
(PQD). In the actual power system the power quality disturbance is usually the mul-
tiple power quality disturbances and the multiple power quality disturbances is formed
by the single disturbances interacting with each other. Traditional methods for identi-
fication of single power quality disturbances cannot identify the multiple disturbances
well. Therefore, the investigations of multiple power quality disturbances have been con-
ducted [1, 2, 3]. Common single power quality disturbances include: voltage sag, voltage
swell, harmonic, voltage interruption, transient oscillation, flicker, etc. Multiple power
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quality disturbances mainly include: voltage sag with harmonic, voltage swell with har-
monic, flicker with voltage sag, flicker with voltage swell, etc.

The identification of multiple power quality disturbances is composed of two parts: fea-
ture extraction and classification. Common feature extraction methods include: Fourier
transform(FT), short-time Fourier transform(STFT) [4], wavelet transform(WT) [5, 6]
and S-transform(ST) [7, 8, 9]. FT is suitable for analysis of stationary signals, fre-
quency spectrum leakage and fence effect. However, FT is not suitable for analysis of
non-stationary signals. To overcome the drawback of the FT, the STFT, which added a
window function to the FT, was adopted in [4] to obtain the time-frequency information
of the disturbance signals. However, the STFT with a fixed window could not trace the
transient and mutation signals. On account of the wavelet transform with a variable
resolution, the wavelet transform overcomes the disadvantages of the fixed- width STFT.
The wavelet transform operates with high frequency resolution in low frequency and with
high time resolution in high frequency and it can be used for multi-scale analysis [5].
The wavelet transform is not well suited for distinguishing the disturbances in the time
domain, such as voltage sag/swell. The S-transform can be viewed either as an extension
of the WT or a short-time Fourier transform with a variable window. The S-transform
introduces a Gaussian window function whose width is decreasing with frequency to pro-
vide a frequency-dependent resolution. The S-transform possesses good time-frequency
resolution. However, the disadvantages of the S-transform are a large transform module
matrix and long computing time.

In this paper, a feature extraction method based on the wavelet energy distribution
and improved S-transform for multiple power quality disturbances signals is proposed to
solve the problem of low identification accuracy for multiple power quality disturbances.
Firstly we used the wavelet transform for a multi-resolution decomposition of the power
quality signals. Secondly, we calculated the energy of each layer to obtain the energy
distribution by determining the energy difference between the power quality disturbances
signal and the standard signal. The energy difference was used as part of the feature vec-
tor. At the same time in order to improve the performance of S-transform, we introduced
adjustment factors, and used the improved S-transform time-frequency matrix to obtain
the maximum, minimum, mean, standard deviation, normalized average, skewness, and
kurtosis. We used these values as part of the feature vector. Finally, we used the wavelet
energy difference with the seven features extracted from the S-transform as the composite
features, and extracted composite features were used as input vectors for a support vector
machine (SVM) classifier.

Common classification methods in this field include neural network [10], decision tree [11]
and SVM [12]. Neural network has simple structure and strong ability to solve problems.
It can deal with the noise data well and it is an important classification method [13].
However, the algorithm has disadvantages, such as the algorithm exists the local optimal
problems and poor convergence performance. In addition, training time can be long and
over-fitting may occur. Decision tree method attempts to develop classification rules by
simulating the human mind, but rules establishment is highly complex. SVM has proven
to be an effective algorithm in recent years. It demonstrated good results in solving small
sample, nonlinear and high dimensional pattern recognition problems.

2. Feature extraction using wavelet transform.

2.1. Wavelet transform. The wavelet transform algorithm is a powerful tool which is
used to analyze the time-frequency feature of signals. The width of Gaussian window
can be adjusted based on the differences of the signal frequency. The essence of the
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wavelet transform is to express a signal function [5] using the wavelet function and wavelet
transform coefficient .The wavelet transform expression of the time domain signal f(x) is
defined as

f(x) =
∑

ai,jψi,j(x) (1)

where i and j are integers, i is the scalability factor, j is the shift factor; ai,j is the
discrete wavelet transform coefficient, ψi,j(x) is the wavelet function. The discrete wavelet
transform coefficients can be obtained by formula (2)

ai,j =

∫ +∞

−∞
f(x)ψi,j(x)dx (2)

The wavelet transform function can be obtained by the mother wavelet function for trans-
lation and dilating transform.

ψi,j(x) = 2−i/2ψ(2−ix− j) (3)

In the case of multi-resolution analysis, the mother wavelet function should meet the
two-scale equation:

φ(x) =
√

2
∑
k

h(k)φ(2x− k) (4)

ψ(x) =
√

2
∑
k

g(k)φ(2x− k) (5)

g(x) = (−1)kh(1− k) (6)

Where φ(x) is the scaling function, h(k) is the coefficient of low-pass filter, and g(k) is the
coefficient of the band-pass filter. The mother wavelet function ψ(x) can be created based
on the linear combination of the scaling function φ(x), which is scaled and translated. Its
construction process is the designing process of the low pass filter H(w) (the frequency
domain representation of h(k) ) and the band-pass filter G(w) (the frequency domain
representation of g(k) ) We choose the DB4 wavelet as the mother wavelet of the Mallet
algorithm, and the signal is 8 layers decomposed. The wavelet decomposition coefficient
of each layer is used for further processing.

2.2. Feature extraction using wavelet transform. According to Parseval theorem,
the input signal energy is loaded on the wavelet coefficients [14] , as formula (7)∫

[f(t)]2 =
∑

[cj(k)]2 +
∑
x=1:j

∑
k

[dx(k)]
2

(7)

Where f(t) is the wavelet signal to be decomposed, cj(k) is the approximate coefficient of
the jth layer, dj(k) is the detail coefficient of the jth layer. The energy in the approximate
coefficient is the base wave energy. The energy in the detail coefficient is the transient
energy. A power quality disturbance signal causes an energy change in various frequencies.
The transient energy distribution in various frequencies is different when the type of the
power quality disturbance signal is changed. Suppose the obtained PQD signal is jth layer
decomposed, therefore, the energy distribution of the wavelet transform is defined as:

Edj =
∑
n

(dj(n))2 (8)

Where j=1,2..., Edj is the detail coefficient energy of the jth layer, dj(n) is the detail
coefficient of the jth layer. We used the wavelet transform to decompose the PQD signal
into eight layers , and obtained the transient energy Ei i=1,2,...8 of each layer. We minus
the transient energy Ei with the standard signal energy Eref , constructed a feature vector
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using the acquired energy difference E∗i = Ei − Eref . Finally, we got the vector X which
can be seen as a part of the feature vector.

X = [E∗1 , E
∗
2 , E

∗
3 , E

∗
4 , E

∗
5 , E

∗
6 , E

∗
7 , E

∗
8 ] (9)

3. Feature extraction using S-transform.

3.1. S-transform. The ST proposed by Stockwell et al. [15] can be seen as the phase of
the wavelet transform and can be developed from the short-time Fourier transform. The
ST of the signal is defined as

S(τ, f) =

+∞∫
−∞

h(t)w(τ − t, f)e−i2πftdt (10)

w(t, f) =
|f |√
2π
e−t

2f2/2 (11)

s(τ, f) =

+∞∫
−∞

h(t)
|f |√
2π
e
(− (t−τ)2√

2π
)
e(−i2πft)dt (12)

Where w(t,f) is the Gaussian window function, and σ = 1
|f | is the width of window. In

formula (12), if the frequency f is 0, the value of the S-transform is 0. When the frequency
is 0, there is no characteristic quantity, s(τ, 0) is the time function. At this point, s(τ, 0)
is the mean value of the function h(t).

s(τ, 0) = lim
T→∞

1

T

T/2∫
−T/2

h(t)dt (13)

The ST can be defined as the convolution of two functions

s(τ, f) = p(τ, f) ∗ g(τ, f) (14)

Where

p(τ, f) = h(τ)e−i2πf (15)

And

g(τ, f) =
|f |√
2π
e−

τ2f2

2 (16)

If B(a, f) is the Fourier transform of s(τ, f),P (a, f) and G(a, f) are the Fourier transform
of p(τ, f) and g(τ, f), then

B(a, f) = P (a, f)G(a, f) (17)

Additionally

B(a, f) = H(a+ f)e
− 2π2a2

f2 (18)

Where H(a + f) is the Fourier transform of formula (16). When (f 6= 0), the Fourier
inversion of formula(19) is called the S-transform.

S(τ, f) =

+∞∫
−∞

H(a+ f)e
− 2π2a2

f2 ei2πaτda (19)
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The signal h(t) is sampled at equal interval, T is the time interval, and N is the number
of sampling points. Let f → n/(NT ),τ → kT , and the ST of a discrete time series is
given by

S(kT,
n

NT
) =

N−1∑
m=0

H(
m+ n

NT
)e−

2π2m2

n2 e
j2πnk
N (20)

S(kT, 0) =
1

N

N−1∑
0

h(
m

NT
) (21)

A two-dimensional matrix is obtained by the S-transform. It is a composite time-frequency
matrix with rows representing the frequencies and columns representing the time. The
modulus matrix of the ST is obtained by calculating absolute values of the elements of the
matrix. The columns of the matrix represent the disturbance signal amplitude varying
with the frequency at a certain time. The rows of the matrix represent the disturbance
signal amplitude varying with the time at a certain frequency.

3.2. Improved S-transform. The width of the Gaussian window function is the recip-
rocal of frequency σ = 1

|f | . For the fixed frequency point f , the width of the window

function is fixed. Therefore, the shape of the window function is fixed. The shape of the
window function directly affects the resolution of the ST, thus it can affect the feature
extraction of the disturbance signal. The power quality disturbances may consist of time,
frequency, and multiple time-frequency domain disturbances. Different disturbance sig-
nals have different requirements with regard to the resolution of the ST. If the window
function is fixed, the resolution is fixed, and it is difficult to attain the feature extraction
of diverse disturbance signals simultaneously.

In order to obtain better time-frequency resolution, the adjustment factors λ, p, q are in-
troduced, and the width of the Gaussian window is σ = λ

q+|f |p . According to the frequency

distribution of the signals, the Gaussian window width is adjusted based on the frequency,
so that the Gaussian window width changes at the multi-level with the frequency. The
parameter λ ensures that the Gaussian window width is inversely proportional to the
frequency, p has a translational relationship with f, and q has an exponential relationship
with f. when p and q are constants, by adjusting the value of parameter λ , the ratio
of the inversely proportional relationship between the width of the Gaussian window and
the frequency varies. When λ > 1 , the ratio is lower, the time resolution is lower, but the
frequency resolution increases. When 0 < λ < 1, the ratio of the width of window propor-
tional to the frequency is higher, and the time resolution increases. When the parameters
p, q changed the same value, the impact of p on the window function is greater than q.
The two adjustment factors can adjust the resolution of ST meticulously. Based on the
Heisenberg principle, time resolution and frequency resolution cannot improve simulta-
neously. When p and q increase, the amplitude of the window function increases. The
attenuation speed is faster and the time resolution increases, but the frequency resolution
decreases. On the contrary, when p and q decrease, the amplitude and time resolution de-
creases and the frequency resolution increases. Therefore, when λ > 1 and p, q decrease,
the frequency resolution of the improved ST is high. When 0 < λ < 1 and p, q increase,
the time resolution is high.

At the same time, for a non-stationary signal, the time-frequency distribution charac-
teristic of the different frequency components is different when the frequency components
are distorted. The low-frequency part of signal changes in a relatively stable manner and
the high-frequency part of signal changes in a relatively intense manner [16]. For the same
signal in different spectrum the intensity of change differs, therefore, the signal frequency



Identification of Multiple Power Quality Disturbances 193

spectrum is divided into low, intermediate, and high frequency. The width adjustment fac-
tor is determined respectively based on the different resolutions in the different frequency
domains. At this point, the improved S-transform is defined as

S(τ, f) =

+∞∫
−∞

h(t)
q + fp√

2πλ
e−

(t−τ)2[q+fp]2

2λ2 e−
i2π(q+fp)

λ dt (22)

After the improved S-transform modulus matrix is obtained, the effective features which
are extracted from the rich information in the S-transform modulus matrix are classified.
The experimental results suggest that the classification accuracy is improved significantly.
Figure 1 and Figure 2 show the maximum of the row vector after the S-transform and
the improved S-transform. Figure 3 and Figure 4 show the power frequency amplitude
curves of the S-transform and the improved S-transform. The results indicate that the
improved S-transform can detect some harmonic ingredient but the S-transform cannot
detect it (Fig1,Fig2), and the start and ending time of the swell are more obvious for the
improved S-transform (Fig3,Fig4).
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Figure 1. The Row Vector Maximum of S-transform
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Figure 2. The Row Vector Maximum of improved S-transform
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Figure 3. The Power Frequency Amplitude Curve Of S-transform
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Figure 4. The Power Frequency Amplitude Curve Of improved S-transform

3.3. Feature extraction using improved S-transform. We extracted features from
time, frequency and amplitude. The seven features(F1-F7) that we extracted from the
improved S-transform modulus matrix were as follows:.
F1: max of the maximum of each column in the modulus matrix
F2: min of the maximum of each column in the modulus matrix
F3: mean of the maximum of each column in the modulus matrix
F4: standard deviation of the maximum of each column in the modulus matrix
F5: normalized average of each column in the modulus matrix
F6: the skewness of the curve of maximum frequency
F7: the kurtosis of the curve of maximum frequency
When the type of power quality disturbance is large, it was difficult to establish a suitable
rule to distinguish all the disturbances with only one type of feature. Multiple features
were obtained by combining the features extracted by the ST with the features extracted
by the wavelet transform.

4. Identifying multiple power quality disturbances. This paper aimed to identify
power quality disturbances for seven single disturbances (voltage swell, voltage sag, har-
monic, voltage interruption, transient oscillation, transient pulse, voltage flicker) and four
multiple disturbances (swell with harmonic, sag with harmonic, flicker with swell, flicker
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with sag). [17] described the mathematical model for the eleven power quality distur-
bances. The identification of multiple power quality disturbances was divided into two
steps: feature extraction and classification.

The S-transform and the wavelet transform were used separately to extract features for
power quality disturbances. The wavelet transform was used to dispose the eleven power
quality disturbance signals. We used the DB4 wavelet as the mother wavelet for the Mal-
lat algorithm and decomposed the signal into eight layers. We extracted the decomposed
wavelet coefficient for each layer, using the parseval theorem to calculate the wavelet
energy for each layer, and calculated the energy differences between the power quality
signal and the standard signal. The eight energy differences were used as part of the
characteristic vectors. The S-transform was used to extract features. In order to obtain
the more flexible time-frequency resolution, the adjustment factors λ, p, q were introduced
to improve the S-transform. This changed the rate which the width of Gaussian window
varied with the frequency at the multilevel. The change in intensity of the power quality
disturbance at different frequencies is different, and in order to solve this problem, the
spectrum of signals was divided into three frequency areas. The width factor of the win-
dow function was defined separately for the different frequency areas in order to identify
different disturbance signals. The improved S-transform was used to dispose the power
quality disturbances. We extracted the maximum, minimum, mean, standard deviation,
the normalized average, skewness, kurtosis of the modulus time-frequency matrix. The
seven features were used as part of the characteristic vector. Features extracted with the
above two methods were used as the composite feature of power quality disturbances.
Then the features were normalized for processing and were classified in the next step.

SVM was used for classification. A portion of the normalized data was used as training
samples. The training samples was trained to establish the classification model. The re-
maining data were used as testing samples to obtain the classification accuracy. Therefore,
we can achieve the accurate identification of the multiple power quality disturbances.

5. Simulation experiment and analysis. We classified the eleven power quality dis-
turbance signals, then, put the features into the support vector machine classifier to
verify the effectiveness of the disturbance identification method. 200 simulated events
of each disturbance were generated according to [17]. In order to create different distur-
bance cases, the parameters for each different disturbance, such as disturbance amplitude,
starting and end time, duration were changed randomly as described in [17]. We used
80 training samples and 120 test samples. During processing, the fundamental frequency
was 50 HZ. There were 1281 sampling points per cycle. The width of the signal was ten
cycles.Table 1 shows the classification accuracy of the eleven power quality disturbance
signals for the extracted feature vectors for the S-transform, improved S-transform, and
the improved S-transform with wavelet transform.

Table 1 shows that: the classification accuracy of the method using the improved S-
transform with wavelet transform was higher overall compared to the other two methods,
and the classification accuracy of nearly every disturbance type was also higher. Due
to the voltage swell, sag, interruption and flicker at the amplitude characteristics change
significantly. The classification accuracy of the three methods for these four disturbances
was very high. The fundamental frequency property of the harmonic is stable. The
high-frequency portion influenced by harmonic changed significantly. For the improved
S-transform, the adjustment factors were defined separately for different frequency areas,
and this helped with the identification of the harmonic. Therefore, the classification accu-
racy for the improved S-transform and the wavelet transform with improved S-transform
was clearly higher than that for the S-transform. The results for the transient pulse were
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Table 1. Classification accuracy of various disturbance signals

Classification accuracy (in %)

Disturbance types S-transform Improved S-transform Wavelet transform and
improved S-transform

Average classifi-
cation accuracy

77.7273 92.2727 99.697

Swell 100 100 100
Sag 100 100 100
Interruption 100 100 100
Harmonic 50.8333 72.5 100
Transient pulse 59.1667 91.6667 99.1667
Transient oscil-
lation

95 68.3333 100

Flicker 100 100 97.5

Swell with har-
monic

69.1667 93.3333 100

Sag with har-
monic

60 98.3333 100

Flicker with
swell

63.3335 91.6667 100

Flicker with sag 57.5 99.1667 100

similar to that of the harmonic. The signal distortion of the transient oscillation was
mainly reflected in the high-frequency part. The frequency range of the distortion was
higher for the transient oscillation than for the harmonic, the harmonic with sag, and the
harmonic with swell. The width adjustment factor was set respectively for low, intermedi-
ate, and high frequency. The adjustment factor was the same in the high-frequency part.
However, the distortion of these four types of disturbances was in the high-frequency part.
Therefore, the classification accuracy of the improved S-transform was lower for the tran-
sient oscillation than the S-transform. However, the classification accuracy of the wavelet
transform with improved S-transform was high. The flicker is amplitude modulated wave
and low frequency, time-varying, non-stable disturbance signal. Because of the variation
of the flicker amplitude modulated wave , the time-frequecy property of flicker has high
requirement of the frequency-selection characteristic with the wavelet function . Flicker
needs different values of the DB wavelet to decmpose it, or it will generate spectrum leak-
age. In this paper, we choose DB4 wavelet to decompose the power quality disturbance
signals, then extracted the wavelet energy differences as the feature vectors . We have not
used the different values of DB wavelet, therefore it leads to decline of the classification
accuracy for flicker.

The swell with harmonic, sag with harmonic, flicker with swell, and flicker with sag
retained the variation characteristics of the harmonic and flicker, and the amplitude of
the sag and swell variation was clear and easy to distinguish. The promotion of the
classification accuracy were apparent for the four multiple power quality disturbance. This
indicated that the identification method proposed in this paper could extract features
effectively and resulted in high classification accuracy for the common multiple power
quality disturbances. It was concluded that the method was feasible for the intended
application.
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6. Conclusion. This paper has presented a new approach for identification of multiple
power quality disturbance signals using the wavelet energy distribution and improved
S-transform. The improved S-transform resulted in better differentiation of the signals
features and in improved classification accuracy. The method was used to develop a
composite feature vector which was extracted using the wavelet transform and improved S-
transform, followed by a classification using the SVM. The average classification accuracy
was higher for the proposed method than the other two methods.
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