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Abstract. Due to various factors such as partial occlusions, fast motion and illumi-
nation variations, developing an effective and efficient appearance model is a challeng-
ing task. In this paper, we propose a simple and effective tracking algorithm with an
appearance model based on `1-regularized hull representation with target templates. `1-
regularized affine combinations can cover target appearances which do not appear in tar-
get templates. `1 constraint enables the tracking algorithm to robustly deal with partial
occlusions and outliers. A novel likelihood function is introduced, which is derived from
the reconstruction residual between a target candidate and the target templates and target
template coefficients. Experimental results on several challenging video sequences against
state-of-the-art tracking algorithms demonstrate that the proposed tracking algorithm is
robust to partial occlusions, illumination variations, background clutters, etc.
Keywords: Visual tracking, Regularized hull, Sparse representation, Particle filter

1. Introduction. Visual tracking is a fundamental research problem in computer vision
with a variety of applications such as vehicle navigation, human-computer interaction,
video surveillance, etc. The goal of visual tracking is to locate a tracked target across
a video sequence. In recent decades, much progress has been made in visual tracking
[1]. However, it is a challenging tasks to design a robust target appearance model due
to the influence of factors such as illumination variation, fast motion, partial occlusions,
background clutters and out-of-plane rotation.

Generally speaking, tracking algorithms can be classified as either generative [5, 6, 7, 8,
9, 10, 12, 13], or discriminative [14, 17, 18, 20] based on types of observation. Generative
tracking algorithms typically consider tracking problem as searching for an image region
that has the minimal reconstruct residual to the tracked target in the current frame. In
[2], a target candidate is divided into multiple non-overlapping image patches, which are
represented by intensity histograms. The tracking algorithm in [2] can alleviate the drift
problem because the fixed target template are used, however it is not robust to dynamic
scene variations. Kwon et al.[3] use multiple basic appearance models to adapt significant
appearance variations, and use multiple basic motion models to cover motion variations.
The algorithm [3] is robust to complicated appearance variations. He et al.[4] represent a

313



314 J. Wang, Y. Y. Wang, K. Wang, and C. Z. Deng

target by a locality sensitive histogram, which is robust to drastic illumination variations.
Wang et al.[11] propose a Least Soft-thresold Squares (LSS) regression to represent a
target candidate and compute the reconstruction error by the LSS distance.

In a discriminative tracking algorithm, visual tracking is formulated as a binary classifi-
cation problem and learn a classifier to distinguish the tracked target from its surrounding
background. In [16], Zhang et al. construct a very sparse measurement matrix to extract
feature for target appearance. A naive Bayes classifier is learnt to distinguish a target
from surrounding background. Babenko et al. [15] propose a discriminative tracking
algorithm by introducing multiple instance learning to update the classifiers. In [19], a
tracking algorithm based on detection is proposed to track a target in a long-term. In
[21], Wang et al. introduce a sequential training method for CNN into visual tracking.

Recently, sparse representations are successfully used in visual tracking [22, 23, 26].
Sparse based target representations are robust to partial occlusions and outliers. The L1
tracking algorithm [22] combines target templates and trivial templates to represent target
candidates. In [24], local patches of a target candidate are sparsely represented by the
corresponding patches in the dictionary templates. Based on both holistic templates and
local representations, Zhong et al.[25] propose a sparsity-based collaborative appearance
model. Zhang et al.[27] use a sparse and discriminative hashing method for visual tracking,
and introduce sparsity into the hash coefficient vectors for select the discriminative feature.
In [28], by exploiting temporal consistency, a robust appearance model with low-rank
constraints is proposed. In [29], a sparse tracker is proposed based on circulant target
templates, which sample particles by using circular shifts of target templates.

Recently, convex and affine hull models based on image sets are proposed [30] and
used to face recognition and image set classification. In [13], `2-regularized affine hull
representation is proposed.

Motivated by the above-mentioned work, we propose an `1-regularized hull representa-
tion based tracking algorithm. A target candidate is approximated by an `1-regularized
affine combinations upon target templates. The proposed appearance representation has
the advantages of both of affine hulls (i.e., covering the unknown target appearances that
do not appear in target templates) and sparse representation (i.e., it is robust to partial
occlusions and outliers). We also present an effective function to evaluate observation
likelihoods of a target candidate belonging to the tracked target. Preliminary results of
this work are presented in [31]. Numerous experiments on challenging video sequences
against state-of-the-art tracking algorithms demonstrate the effectiveness and robustness
of the proposed appearance model and the tracking algorithm.

2. Particle filter for visual tracking. In a particle filter framework, the target state
and the corresponding observation are denoted as st and yt at frame t, respectively. The
tracking problem is formulated as an estimation of the posterior distribution p(st|y1:t),
where y1:t = {y1,y2, · · · ,yt} are observations from previous t frames. In the first frame,
a set of target candidates X1 = {x1

1,x
2
1, · · · ,xm1 } are sampled by extracting image re-

gions surrounding s1 with importance weights wi1 = 1
m

. These particles are propagated
according to the motion model p(xit|xit−1). Based on particles Xt = {x1

t ,x
2
t , · · · ,xmt } with

weight wit, st is estimated as

ŝt =
m∑
i=1

witx
i
t. (1)

In the tracking process, the state xit is often assumed to relate to xit−1. As a result, wit
is updated as

wit = wit−1p(y
i
t|xit), (2)
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as shown in Eqn. (8), p(yit|xit) is the observation likelihood of particle xit.

3. Proposed tracking algorithm. In this section, we propose a novel tracking algo-
rithm where a target candidate is represented by `1-regularized affine combinations of a
set of target templates. The observation likelihood of a target candidate is derived from
both the reconstruction error and the `1-regularized template coefficients.

3.1. Target Representations. In sparse representation based visual tracking algorithms,
the sparse representation of a target candidate y is represented by sparse combinations
of target templates and trivial templates as [22, 24, 25]:

min ‖y−Bc‖22 + λ‖c‖1, (3)

where B is templates, ‖ · ‖2 and ‖ · ‖1 denote the `2 and `1 norms respectively. In [22],
B includes target templates D and trivial templates I, which are used to represent the
target candidates and to represent partial occlusions, respectively.

The sparse appearance model is robust to partial occlusion and outliers. However,
When significant appearance variations appear, the target representation based on sparse
constrain is sensitive to illumination variations, severe occlusions and background clutters.

Inspired by hull representation based face recognition and sparse representation tech-
niques, in the proposed target representation, a target candidate y is represented by
`1-regularized affine combinations of target templates in a template dictionary D as:

min
α
‖yit −Dα‖22, s.t. ‖α‖1 ≤ δ,

n∑
j=1

αj = 1, (4)

where
∑

(·) is the affine constraint [30], D = [d1,d2, · · · ,dn] is a set of target templates,
α = [α1, α2, · · · , αn]T ∈ Rn is the template coefficient vector which is to be estimated. The
affine combinations of target templates can cover unknown target appearances that do not
appear in the template set. With the estimated α̂, the target candidate y is approximately
represented as Dα̂. Using the Lagrangian function, Eqn. (4) can be rewritten as follow

F (α, λ2) = ‖y−Dα‖22 + λ1‖α‖1 + λ2(eα− 1) + λ3‖eα− 1‖22, (5)

where λ1 is a positive parameter to balance the reconstruction error and the regularizer,
λ2 is the Lagrange multiplier, and λ3 is a penalty parameter. e is a row vector whose
elements are 1. Then, α and λ2 are optimized alternatively. The iteration processing of
minimizing α goes as

α(t+1) = arg min
α
F (α, λ

(t)
2 )

= arg min
α
‖y−Dα‖22 + λ1‖α‖1 +

λ3
2
‖eα− 1 +

λ
(t)
2

λ3
‖22,

= arg min
α
‖Ỹ− D̃α‖22 + λ1‖α‖1,

(6)

where Ỹ = [y; (λ3
2

)
1
2 (1 − λ

(t)
2

λ3
)], D̃ = [D; (λ3

2
)
1
2 e]. The solution of α(t+1) can be obtained

by solving `1-minimization optimization problem such as LASSO.

When α(t+1) is obtained, λ
(t+1)
2 is updated as follows

λ
(t+1)
2 = λt2 + λ3(eα

(t+1) − 1). (7)

In the proposed target appearance, a target candidate is represented by an affine hull
of target templates with sparse constraint. The representation Dα̂ of y can be considered
as a point in the affine subspace upon target templates, which is the closest point to y.
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As shown in experimental results, the target representation based on `1-regularized hull
is robust to illumination variations and background clutters.

3.2. Likelihood Evaluation. The observation likelihood of a target candidate reflects
the probability that a target candidate belongs to the tracked target. Different from
existing visual tracking algorithms, in the proposed algorithm, the likelihood evaluation
of a candidate y is derived from both the reconstruction error and the template coefficients
as

p(y|x) ∝ exp {−γ(d(y,Dα̂)) + η‖α̂‖1} , (8)

where d(y,Dα̂) is the reconstruction residual between the target candidate y and the
target templates D, γ is the standard deviation of the Gaussian. By introducing the tem-
plate coefficients α̂ into the observation function, the more stable observation likelihood
is obtained. The term ‖α̂‖1 in Eqn. (8) introduces the discriminative information for the
evaluation function.

The reconstruction error between a target candidate y and the corresponding templates
D is computed as

d(y,Dα̂) = (y−Dα̂)T (y−Dα̂), (9)

where D is target templates, α̂ is the coefficient vector estimated by Eqn. (4).

3.3. Template Update. In order to adapt to target appearance variations, a template
update scheme is necessary. In our work, in the first frame, the tracked target is selected
as a target template. The other target templates are initialized by perturbing a few pixels
within a radius (3 pixels in our algorithm) around the target center location. The template
that has the least template coefficient in estimated vector α̂ in Eqn. (4) is swapped out,
in the meantime, the current tracking result is added to the template set as a new target
template.

Based on the proposed target representation, the likelihood evaluation and the template
update, we present the proposed tracking algorithm which is outlined in Algorithm 1. For
all the video sequences, we manually select the initial target locations and initialize a set
of particles in a particle filter framework.

Algorithm 1: Proposed tracking algorithm

1 Select a set of image patches as targe templates D1 = [d1, · · · ,dn] according to
state s1 in the first frame F1, sample m particles {xi1}mi=1 with equal weights.
Input: t-th video frame.

2 Resample m particles {xit}mi=1 according to p(xit|xit−1).
3 Crop the corresponding image patches {yit}mi=1 according to {xit}mi=1.
4 for i = 1 to m do
5 Evaluate the observation likelihood p(yit|xit) using Eqn. (8).
6 Update particle weight wit via Eqn. (2).
7 end
8 Obtain state ŝt with Eqn. (1).
9 Extract yt according to ŝt, and estimate template coefficient α̂ via Eqn. (4).

10 Update Dt according to the update scheme in Section 3.3.
11 Return ŝt.
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Table 1. The main attributes of the twelve video sequences. Target size:
the initial target size in the first frame; BC: background clutter; OPR: out-
of-plane rotation; IPR: in-plane rotation; IV: illumination variation; Occ:
occlusion; Def: deformation.

Sequence Frames Image size Target size Color BC OPR IPR IV Occ Def

Basketball 725 576×432 34×81 RGB
√ √ √ √ √

Bolt 350 640×360 26×61 RGB
√ √ √ √

CarDark 393 320×240 29×23 RGB
√ √

CouponBook 327 320×240 62×98 RGB
√ √

David2 537 320×240 27×34 Gray
√ √

Fish 476 320×240 60×88 Gray
√

Football 362 624×352 39×50 Gray
√ √ √ √

Football1 74 352×288 26×43 RGB
√ √ √

Man 134 241×193 26×40 RGB
√

MountainBike 228 640×360 67×56 RGB
√ √ √

Singer2 366 624×352 67×122 RGB
√ √ √ √ √

Sylvester 1345 320×240 51×61 Gray
√ √ √

4. Experiments. The proposed tracking algorithm is evaluated with 9 state-of-the-
art tracking algorithms. These state-of-the-art tracking algorithms include: Struck[17],
VTS[6], Frag[2], SCM[25], FCT[16], OAB[14], L1[22], LSST[11] and PCOM[12]. For fair-
ness, we use the source codes or the binary codes provided by the authors, and initialize
all the evaluated algorithms with default parameters in our experiments.

In our experiments, 12 challenging video sequences from a recent benchmark [1] are used
to evaluate the tracking performance of the ten tracking algorithms. Table 1 summarized
the main challenging aspects of the video sequences.

The proposed tracking algorithm is implemented in MATLAB. All the evaluated track-
ing algorithms are tested on a PC with Intel(R) Core(TM) i5-2400 3.10GHZ and 8GB
memory. The number of particles is set to 400. The histograms of sparse coding (HSC)
[32] is used as the feature descriptor. The value of γ in Eqn. (8) is set to 20. The values of
λ1, λ2 and λ3 are initialized as 0.001, 0.05 and 0.1, respectively. In our experiments, the
size of the dictionary templates is 25 for maintaining the effectiveness and diversity of the
dictionary templates. The average processing time of the proposed tracking algorithm is
0.72 s per frame.

4.1. Quantitative evaluation. Table 2 presents the average center location errors (in
pixels) for all the tracking algorithms on the 12 video sequences. Fig. 1 shows the precision
plots for the evaluated algorithms on the 12 video sequences. From Table 2 and Fig. 1, it
can be seen that the proposed tracking algorithm achieves the best tracking results in 7
out of the 12 video sequences. Struck achieves the best tracking results on the CarDark,
David2 and man sequences. LSST performs well on the Fish, CarDark and David2
sequences. Additionally, the proposed tracking algorithm obtains the smallest average
center location error over all the 12 video sequences.

Table 3 presents the success rates for the evaluated algorithms on the 12 sequences.
Fig. 2 shows the success rate plots for all the tracking algorithms. As seen from Table 3
and Fig. 2, the proposed tracking performs well against the state-of-the-art algorithms. It
achieves the best tracking results in 9 out of the 12 video sequences. The proposed tracking
algorithm achieves the highest average success rate over the 12 sequences. Besides, Struck
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obtains the best or the second best results in 5 video sequences, and achieves the second
highest average success rate over the 12 sequences.

Table 2. Average center location errors (in pixels). The best two results
are shown in red color and blue color, respectively.

Sequence Struck VTS Frag SCM FCT OAB L1 LSST PCOM Ours

Basketball 176.7 7.0 29.0 13.3 89.9 136.1 77.8 19.9 22.8 11.5
Bolt 387.8 369.8 150.5 203.2 267.9 31.2 118.4 376.4 363.3 6.3

CarDark 1.0 17.7 30.7 10.0 46.5 2.8 32.7 1.6 2.7 4.6
CouponBook 15.0 65.1 56.2 6.0 18.6 24.9 66.3 8.0 8.3 4.9

David2 1.6 55.1 4.5 5.1 14.6 28.8 56.4 1.8 1.8 4.3
Fish 3.9 43.6 24.7 8.3 19.6 39.8 36.4 2.9 11.8 7.2

Football 15.3 115.3 14.6 6.9 15.8 19.4 68.4 13.2 54.2 4.4
Football1 7.0 7.5 11.9 10.4 23.7 36.7 59.3 8.6 23.4 5.4
Man 2.3 22.7 44.6 2.9 16.5 2.8 2.6 2.4 2.5 2.5

MountainBike 12.9 17.0 34.0 10.1 155.0 12.6 141.8 131.2 8.0 7.2
Singer2 174.7 101.9 35.9 172.2 22.9 170.5 145.8 14.2 188.7 12.1
Sylvester 11.7 22.0 22.7 7.9 7.7 11.9 31.0 67.5 62.3 4.8

Average 67.5 70.4 38.3 38.0 58.2 43.1 69.7 54.0 62.5 6.3

Table 3. Success rates (%). The best two results are shown in red color
and blue color, respectively.

Sequence Struck VTS Frag SCM FCT OAB L1 LSST PCOM Ours

Basketball 11.5 86.1 51.7 59.0 23.3 1.2 24.0 11.3 23.5 72.0
Bolt 1.4 2.9 3.7 14.3 0.9 2.3 1.4 0.9 0.9 92.9

CarDark 100 68.5 45.8 61.8 12.2 89.8 64.9 100 100 98.5
CouponBook 100 39.4 40.9 100 98.5 57.6 39.4 97.0 100 100

David2 100 36.1 89.8 80.1 48.6 36.1 27.9 100 100 100
Fish 100 35.9 47.3 86.6 54.0 23.5 20.2 100 96.4 100

Football 69.3 41.4 72.9 88.7 55.3 68.5 16.3 62.7 53.9 93.1
Football1 89.2 58.1 43.2 39.2 6.8 44.6 12.2 51.4 44.6 96.0
Man 99.3 22.4 21.0 98.5 13.4 99.3 98.5 100 100 99.3

MountainBike 81.6 86.0 70.6 95.2 39.5 81.1 25.9 44.3 99.6 100
Singer2 3.6 36.1 45.9 3.0 71.0 3.6 4.1 74.9 3.6 97.8
Sylvester 80.3 69.7 50.3 86.6 91.0 71.2 55.5 30.3 45.2 100

Average 69.7 48.5 48.6 67.8 42.9 48.2 32.5 64.4 64.0 95.8

Table 4 presents the average overlap rates on the 12 video sequences. As seen from
Table 4, the proposed tracking achieves the best tracking results on 8 video sequences
and the highest average overlap rate over all the sequences. Struck obtains favorable
tracking results among all the other algorithms.

4.2. Qualitative evaluation. Next, a detailed analysis on the 12 video sequences for all
the evaluated tracking algorithms are given. Fig. 3 represents some tracking results.

Background Clutters: As shown in Fig. 3, VTD is able to track the target in the
Football1 sequence due to the use of multiple basic appearance models. Because using
of the partial and spatial information, ASLA achieves favorable tracking results in the
CarDark sequence. In the CouponBook sequence, when the drastic appearance variation
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Table 4. Average overlap rates (%). The best two results are shown in
red color and blue color, respectively.

Sequence Struck VTS Frag SCM FCT OAB L1 LSST PCOM Ours

Basketball 12.9 67.2 49.2 55.3 23.0 2.5 44.6 24.1 22.8 57.1
Bolt 1.7 2.3 3.3 12.9 1.4 2.2 3.5 1.0 1.0 69.6

CarDark 89.0 56.0 42.7 54.5 13.9 79.7 56.5 86.3 80.5 70.4
CouponBook 70.2 35.5 37.1 82.3 64.8 57.1 35.2 80.2 80.5 86.2

David2 85.7 25.7 72.3 65.6 44.3 39.2 26.3 72.8 82.3 73.9
Fish 84.3 34.4 48.9 74.0 54.3 31.6 28.6 80.9 65.4 79.7

Football 55.7 30.8 56.2 60.3 47.5 52.1 16.2 53.0 42.4 70.7
Football1 66.0 53.2 48.4 45.4 16.9 37.8 13.1 53.9 48.2 70.8
Man 81.9 27.4 17.5 71.9 26.4 80.0 65.3 70.0 82.3 82.7

MountainBike 62.2 60.5 53.7 67.3 30.9 62.6 23.4 36.4 73.1 74.4
Singer2 4.2 27.5 44.9 5.3 56.9 4.3 6.0 66.4 4.4 67.3
Sylvester 66.0 57.6 46.4 67.8 67.6 61.4 46.4 27.7 35.9 75.0

Average 56.6 39.8 43.4 55.2 37.3 42.5 30.4 54.4 51.6 73.1

occurs, L1, Frag and VTS drift away from the target and track the other distracter until
the end of the sequence. SCM achieves robust tracking performance due to the sparsity-
based discriminative classifier, which distinguishes the target from a cluttered background
in these sequences. The proposed tracking algorithm can performs well in these sequences.
This is attributed to that affine combinations cover unknown appearances that do not
appear in the template set.

Illumination variation: In the Fish, Man, Sylvester, Singer2 and CarDark se-
quences, the targets undergo drastic illumination variation. Especially, in the CarDark
sequences, the contrast between the target and the background is low. ASLA captures the
appearance variation due to the illumination variation by exploiting the partial and spatial
information in the Fish, CarDark and Sylvester sequences. Frag can track the target
when there is no drastic illumination variation, however it drifts away from the target
when it undergoes drastic illumination variation. L1 only achieves robust tracking results
in the man sequence. SCM is robust to illumination variation by holistic templates and
local representations in the Man and CarDark sequences. In SCM, the sparsity-based
discriminative classifier model selects discriminative features and introduces backgrounds
as the negative templates to obtain accurate confidence values. In our tracking proposed,
the proposed appearance model takes advantage of the affine combinations and sparse
representation and achieves favorable performance in these sequences.

In-plane and out-of-plane rotations: TheDavid2, Bolt, Sylvester andMountainBike
sequences consist of both in-plane and out-of-plane rotations. The proposed tracking al-
gorithm performs well in the Bolt sequence and accurately track the target until the end
of the sequence, but all the other tracking algorithms only track the target in the first
50 frames. Struck and PCOM are robust and accurate in the David2 sequence. Frag
uses fixed target templates, so it keeps away from the target when the target appearances
undergo out-of-plane rotation in the Sylvester sequence. FCT learns a representative
feature to track the target and achieve robust tracking results. In the MountainBike
sequence, L1 and FCT lose the target when it rotates and drift away from the target
until the end of the sequence. In the Bolt and Singer2 sequences, SCM and L1 lose
the tracked targets when severe rotations happen. The proposed tracking algorithm use
hull representation with `1-constraint to model target appearances. The proposed tracker
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Figure 1. Precision plots in terms of location error threshold (in pixels).

select the closest affine combination as the current target representation. The proposed
algorithm can successfully track the target in these sequences.

Occlusion and deformation: The target in the Basketball sequence undergoes occlu-
sion and non-rigid deformation. Overall, VTS, SCM and the proposed tracking algorithm
perform well on this sequence. In the Football sequence, the target is occluded by multiple
similar objects. SCM takes advantage of generative and discriminative models, and dis-
tinguishes the target from cluttered background. VTS and L1 fail to track the target, and
track an incorrect object when the target is occluded by a similar object. In the Bolt se-
quence, the target undergoes partial occlusion and deformation. L1 and SCM fail to track
the target after the 50th frame. As shown in Fig. 3(b), the proposed tracking performs
robustly to those appearance variations. This attributes to two reasons: (1) the template
set include representative target appearances from previous frames. The template set
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Figure 2. Success plots in terms of overlap threshold.

maintains the diversity and effectiveness of target templates; (2) the `1-regularized affine
combinations of target templates can cover unknown target appearances. The other track-
ing algorithms fail to track the target after the 50th frame in the Bolt sequence.

From the quantitative comparisons and qualitative analysis, it can be seen that the
proposed algorithm is robust to background clutters, in-plane and out-of plane rotations,
illumination variations.

5. Conclusion. We have presented a simple yet efficient visual tracking algorithm based
on `1-regularized hull representations. A target candidate is represented by an `1-regularized
affine combination of target templates, which can cover unknown target appearances. The
proposed appearance model exploits the advantages of both affine hull representation and
sparse constraint in visual tracking. The novel observation likelihood function introduces
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(a) Basketball (b) Bolt

(c) CarDark (d) CouponBook

(e) David2 (f) Fish

(g) Football (h) Football1

(i) Man (j) MountainBike

(k) Singer2 (l) Sylvester

Figure 3. The tracking results on the 12 sequences.

discriminative information and helps to predict the target location accurately. Compre-
hensive experiments show that the proposed target representation is robust to illumination
variation, background clutters, rotations and partial occlusions. Both quantitative and
qualitative comparisons demonstrate the effectiveness and robustness against state-of-the-
art tracking algorithms.
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