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Abstract. Having attracted attention worldwide, air pollutions are considered to have
detrimental effects on human health. Forecasting performance of air quality, thus, be-
comes an important issue for the welfare of people. In this research, we attempt to use a
deep learning method to predict Air Quality Classification (AQC) on three different in-
dustrial cities in United States. The Recurrent Neural Network (RNN) of deep learning
is used to build a major prediction model. RNN can process and memorize the sequential
data such as data concerning daily air quality in a given period of time. The experimen-
tal results show the performances on three models including Support Vector Machine,
Random Forest and RNN. Our proposed RNN model has best results compared with two
machine learning approaches. In addition, the sequential data on air quality problem
used by RNN with memory model outperforms without memory operation.
Keywords: Air Quality Classification, Recurrent Neural Network, Deep Learning, Clas-
sification Problems

1. Introduction. Today, air quality attracts serious attention worldwide, as many cities
suffer from severely polluted air [10]. The number of death related to air pollution was
estimated approximately two million which shows the effects of air pollution to human
[16]. Therefore, air quality forecasting is worthy of investigation. According to the US
Environment Protection Agency (U.S. EPA), Air Quality Index (AQI) is defined with re-
spect to five main common pollutants, including carbon monoxide (CO), nitrogen dioxide
(NO2), ozone (O3), particulate matter (included PM10 and PM2.5) and sulphur diox-
ide (SO2) [8]. AQI is a rating scale for reporting daily combined effects of ambient air
pollutants.
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Many researchers have focused on forecasting of AQI and concentrations for decades.
Zhao and Hasan [18] predicted PM2.5 concentration level in Hong Kong rural area using
three methods, and they showed potential predictability to air quality. Chelani [4] used
nearest neighbors technique to forecast the PM10 concentrations in an Indian city. Jiang
and Riley [6] successfully implemented Random Forest (RF) for forecasting O3 in Sydney.
The results were satisfactory especially in high ozone pollution regions. There were studies
that focused on the multiple pollutants forecasting. Shaban et al. [15] used three machine
learning methods to forecast concentrations of NO2, O3 and SO2 one-step and multi-step
in advance. Peng et al. [12] forecasted concentrations of O3, PM2.5 and NO2 in Canada
using several updatable nonlinear machine learning methods to improve performances.
Recently, some researches converted to forecasting AQI. Kumar and Goyal [9] forecasted
daily AQI of Delhi using a neural network based on principle component analysis. The
results were promising in all the four seasons.

However, as the concentration and air quality index are technically complex subjects,
researchers paid little attention to Air Quality Classification (AQC) forecasting which
may help the public understand the degree of severity of air pollution. Hajek and Olej
[5] predicted AQI classes of three monitoring stations in the Czech Republic using several
computational intelligence methods, and the results of their study appeared to be promis-
ing. The current study attempts to focus on the AQC forecasting, which is expected to
educate the public with the air quality status for their health.

In past years, machine learning methods were used in many fields [7, 17], especially in
forecasting air quality [12]. In recent years, the deep learning methods raised considerable
academic and industrial awareness [2], and this method was successfully applied to artifi-
cial intelligence [1], pattern recognition [14] and other fields. Li et al. [11] found that deep
learning methods can extract air quality features and achieve good performances for air
quality predictions. One of deep learning approaches is the deep Recurrent Neural Net-
work (RNN), an effective neural network for capturing non-linearity of data, which helps
solve the sequential problems [13]. Biancofiore et al. [3] used RNN model in forecasting
O3 concentrations in Italy, and their study found that the predictability was improved
significantly. RNN is a reliable classifier capable of addressing issues related to AQC
forecasting.

This paper is to forecast daily AQC based on RNN model in three different industrial
cities in the United States, including Los Angeles (LA), Houston (HOU) and Atlanta
(ALT). This paper offers three contributions to the fields of air quality forecasting and
deep learning. First, the RNN method seems to be useful in addressing AQC forecasting
and successfully improve performances. Second, the length of time appears to be an
important factor affecting performances since the air pollutants may remain in the air
in several days. Last, the RNN method with sequential data in AQC can obtain better
performances compared with flat data. The remainder of this paper is organized as follows.
In section 2, the proposed methodology RNN-AQC system is introduced. In section 3,
the experiment and experiment results are presented. The conclusions are discussed in
Section 4.

2. Methodology. In this study, the air quality data is collected from U.S. EPA databases
including six concentrations of pollutants (CP), six individual air quality indexes (IAQI)
of pollutants along with the daily AQI for input variables. In order to capture information
more effectively and predict more accurately for AQC forecasting, we propose using the
RNN approach to learn and predict daily AQC. RNN is one of deep learning architectures,
and it can process sequential data. The advantage of RNN is that it can build sequential
structure of the historical data and let near years outweigh distant ones. The forecasted
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AQC is based on information from previous days. Therefore, an effective RNN classifier
is very useful for daily AQC forecasting. There are two processes to build a RNN-AQC
system including data pre-processes and RNN classifier building as following:

2.1. Data Pre-Processes. According to the U.S. EPA, daily AQI is the maximum
among IAQI of all key pollutants, and it classifies as six state categories such as good, mod-
erate, unhealthy for sensitive groups (unhealthy−), unhealthy, very unhealthy (unhealthy+),
and hazardous. The higher the AQI value, the severer the status of air pollution and the
greater the health concerns. The Air Quality Classification (AQC) and explanations are
shown as following:

Table 1. The AQC and explanations

Category Range Explanation
Good [0,50] Very satisfactory air quality

Moderate [51,100] Satisfactory air quality
Unhealthy− [101,150] Acceptable air quality
Unhealthy [151,200] Dangerous air quality for sensitive population

Unhealthy+ [201,300] Dangerous air quality for the whole population
Hazardous [301,500] Harmful air quality

In this study, the six pollutants observations are CO, NO2, O3, SO2, PM2.5 and PM10.
We will explain the features combinations in experiment section.

2.2. Air Quality Classifier Based on RNN. The aim is to fit a function between
the input features such as CP and IAQI, and the target as AQC. RNN, as one of the
deep learning methods, specializes in addressing sequential process. The training process
of RNN is based on the LSTM cell to process sequence of the air quality information.
The computing flow for each daily AQC is shown in Figure 1. For example, the AQCt is
predicted tth day AQC based on the sequence {inputt−4, inputt−3, inputt−2, inputt−1} if
we want to consider the information of previous 4 days. The LSTM cell is shared at all
time-steps process.

LSTM LSTM LSTM LSTM

RNN

AQCt

Inputt-4 Inputt-3 Inputt-2 Inputt-1

 

Figure 1. The process flow of RNN model for AQC forecasting

The RNN model utilized in this study consists of one input layer, one recurrent hidden
layer and one output layer. These layers are associated with each neuron of the next
layer by the weights with feedback. The weights of the network are modified iteratively
to minimize the categorical cross entropy between the desired target and actual output
values. Differing from the traditional neural network, the basic unit of the hidden layer
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is the memory block. The memory block contains memory cells with self-connections
for memorizing the temporal state, and a pair of adaptive, multiplicative gating units
to control information flow in the block. Two additional gates, named the input gate
and output gate, respectively, control the input and output activation in the block. It
has demonstrated that the special unit structure is very effective regarding long-term
sequence dependency. These equations give the full algorithm for a modern LSTM. The
input gate i is computed as following:

it = σ(Wixt + Uiht−1 + bi) (1)

where the it is the input gate at time t. The Wi is the weight matrix of the input gate
for the input vector. The xt is the input vector to memorize cell layer at time t. The Ui

is the weight matrix of input gate to hidden vector. The ht−1 denotes the hidden state
at time t− 1. The bi denotes the bias of the input gate. The σ is the logistic sigmoid
activation function. The forget gate f is computed as following:

ft = σ(Wfxt + Ufht−1 + bf ) (2)

where the ft denotes the forget gate at time t. The Wf denotes the weight matrix of
the forget gate for the input vector. The Uf denotes the weight matrix of forget gate for
hidden vector. The bf denotes the bias vectors of forget gate. The cell state c is computed
as following:

ct = ft ∗ ct−1 + it ∗ φ(Wcxt + Ucht−1 + bc) (3)

where the ct is the cell state at time t. The Wc denotes the weight matrix of cell state for
the input vector. The Uc denotes the weight matrix of cell state for hidden vector. The bf
denotes the bias vectors of cell state. The * is the element-wise multiplication operation.
We use the tanh function φ for the input gate. The output o is computed as following:

ot = σ(Woxt + Uoht−1 + bo) (4)

where the ot is the output at time t. The Wo is the weight matrix of output for the input
vector. The Uo is the weight matrix of output for hidden vector. The bo denotes the bias
vectors of output. The hidden vector h is computed as following:

ht = ot ∗ φ(ct) (5)

where ht is the hidden state at time t.

2.3. Evaluation. We have a comparison between our major prediction tool RNN and
two machine learning methods, SVM and RF, to confirm that RNN can process sequential
data effectively when forecasting air quality. In this study, prediction models, feature sets
and data lengths are three key elements in the experiments. The criterion of measuring
performances in the experiments is the level of accuracy for the AQC forecasting as
following:

accuracy =
the right predicted count

the total predicted count
× 100% (6)

3. Experiments. In the experimental section, we use three prediction models, seven
feature sets and seven different data lengths for AQC forecasting problem.
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Table 2. The basic information and observation sites on three cities

Name Rank Population CBSA Site ID
LA 2 3,949,149 Los Angeles-Long Beach-Anaheim, CA 06-037-1103

HOU 4 228,4816 Houston-The Woodlands-Sugar Land, TX 48-201-1035
ALT 40 462,970 Atlanta-Sandy Springs-Roswell, GA 13-089-0002

Table 3. The distribution of train data and test data on four classes

City
Class

Good Moderate Unhealthy− Unhealthy
Train Test Train Test Train Test Train Test

LA 895 177 897 174 31 13 3 1
HOU 866 175 932 178 22 9 6 3
ALT 1,066 268 708 92 44 4 8 1

3.1. Datasets. We choose three industrial cities in the United States, including Los
Angeles (LA), Houston (HOU) and Atlanta (ALT). The basic information of the three
cities is explained as following:

• Los Angeles (34◦03′N 118◦15′W ), located in Southern California, is the second-most
populous city in the United States. It is the largest manufacturing center in the
western United States.
• Houston (29◦45′46′′N 95◦22′59′′W ), located in Southeast Texas, is the fourth-most

populous city in the U.S. Houston is well-known for its energy industry, especially
for oil and natural gas.
• Atlanta (33◦45′18′′N 84◦23′24′′W ), located in Georgia state. It is the vital trans-

portation center of the Southeastern United States. Railroad industry and logistics
are major components of the city’s economy.

In summary, the three industrial cities in the sample are selected based on the large
size of population and the air quality that has detrimental effects on human health.
Among a wide range of monitoring sites in each sampled city, one specific site is selected
based on the level of data integrity. The rank of the three cities indicates that they
are important cities in U.S. The census data is obtained from the U.S. Census Bureau
(http://www.census.gov/) by the end of the December 31, 2015. The basic information
of three cities and the monitoring sites is shown in Table 2.

The air quality data is collected based on U.S. EPA (https://www.epa.gov/) for the
period from January 1, 2010 to December 31, 2015, including a total of 2,191 observations.
We split the data into two datasets including train data and test data. The period of
train data starts from January 1, 2010 to December 31, 2014. The period of test data
starts from January 1, 2015 to December 31, 2015. We extract 10% from the train data
as validation data for best model selection. In this research, we collect daily CP and
IAQI of six pollutants. We only use the first 4 air quality classes for all experiments
because both unhealthy+ and hazardous classes do not appear in all train and test data.
The distribution of the data of three cities is shown in Table 3. The good and moderate
classes account for at least 80% in train data and test data.

3.2. Results on Different Prediction Models. In this section, we implement two
machine learning approaches, SVM and RF, in AQC forecasting for comparison. The
results of all models are obtained using same seven feature sets and same seven data
lengths. Table 4 shows that the RNN model among all experiments achieves best accuracy
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Table 4. The performances comparison on RNN, SVM and RF prediction models

Model
City

LA HOU ALT
RNN 76.44 75.07 80.27
SVM 75.89 76.71 79.73
RF 75.07 75.07 79.45

Table 5. Notations for the CP and IAQI

Pollutant
Notation

of CP
Value
Range

Units
Notation
of IAQI

Value
Range

Explanation

CO CCO [0,2.4] ppm ICO [0,27] Daily Max 8-hour CO
NO2 CNO2 [2.4,109.6] ppb INO2 [2,103] Daily Max 1-hour NO2
O3 CO3 [0.002,0.102] ppm IO3 [2,192] Daily Max 8-hour Ozone

SO2 CSO2 [0,95.2] ppb ISO2 [0,110] Daily Max 1-hour SO2
PM2.5 CPM2.5 [0,96.8] ug/m3 IPM2.5 [0,172] Daily Mean PM2.5
PM10 CPM10 [0,130] ug/m3 IPM10 [0,88] Daily Mean PM10

of 76.44 and 80.27 in Los Angeles and Atlanta, respectively. The SVM achieves 76.71
accuracy in Houston and is better than RNN and RF. Therefore, RNN can take advantage
of memorizing previous air quality information sequentially compared with two machine
learning models.

3.3. Results on Different Feature Sets. In this section, there are six CPs and six
IAQIs where CPs are the variables of the concentrations of six pollutants, and IAQIs are
the variables of the individual air quality index of six pollutants. All variables notated in
Table 5 are used as independent inputs in the network. The notations and explanations
for each CP and IAQI are shown in Table 5.

We construct seven feature sets for evaluating our proposed model as following:

• C: There are the six concentrations of pollutants to be a feature set. Let C =
{CCO, CNO2, CO3, CSO2, CPM2.5, CPM10} for each day.
• I: There are the six individual air quality indexes to be a feature set. Let I =
{ICO, INO2, IO3, ISO2, IPM2.5, IPM10} for each day.
• A: There is the one AQI to be a feature. Let A = {AQI} for each day.
• CI:There are the six concentrations of pollutants and the six individual air quality in-

dexes to be a feature set. Let CI = {CCO, CNO2, CO3, CSO2, CPM2.5, CPM10, ICO, INO2,
IO3, ISO2, IPM2.5, IPM10} for each day.
• CA:There are the six concentrations of pollutants and the one AQI to be a feature

set. Let CA = {CCO, CNO2, CO3, CSO2, CPM2.5, CPM10, AQI} for each day.
• IA:There are the six individual air quality indexes and the one AQI to be a feature

set. Let IA = {ICO, INO2, IO3, ISO2, IPM2.5, IPM10, AQI} for each day.
• CIA: There are the six concentrations of pollutants, the six individual air quality in-

dexes and the one AQI to be a feature set. Let CIA = {CCO, CNO2, CO3, CSO2, CPM2.5,
CPM10, ICO, INO2, IO3, ISO2, IPM2.5, IPM10, AQI} for each day.

As shown in Table 6, the AQC forecasting using the features of CP such as CI is useful
for three models in Houston. Using AQI features such as CA is very useful for three
models in Los Angeles. Using IAQI features such as I and IA is useful for RNN and SVM
models in Atlanta, whereas the CA feature is useful for RF model. In summary, different
cities depending on different feature sets achieve different performances.
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Table 6. The performances of different features

Feature
LA HOU ALT

RNN SVM RF RNN SVM RF RNN SVM RF
C 74.52 74.25 73.97 73.97 76.71 74.79 79.45 77.81 79.18
I 75.34 73.15 74.52 75.07 75.07 74.52 79.18 79.73 78.90
A 75.89 75.34 74.25 72.60 73.97 73.15 78.63 77.26 77.26
CI 75.89 74.52 74.79 75.07 76.71 75.07 79.45 79.18 78.08
CA 76.44 75.89 75.07 73.97 76.16 74.25 79.45 79.45 79.45
IA 76.44 74.25 74.79 74.52 74.52 73.97 80.27 79.45 79.18
CIA 76.44 74.79 74.25 74.52 76.44 75.07 79.73 79.18 79.18

Table 7. The performances comparison on different data lengths

Length
LA HOU ALT

RNN SVM RF RNN SVM RF RNN SVM RF
T1 76.44 75.89 73.42 74.52 74.25 72.33 78.90 79.73 76.99
T2 75.89 74.52 75.07 73.97 73.70 72.05 79.73 79.45 77.26
T3 76.44 73.97 74.79 75.07 75.07 73.97 79.45 79.18 78.90
T4 74.52 73.15 74.79 75.07 76.44 75.07 78.36 78.08 77.81
T5 75.89 73.42 74.25 74.52 76.71 74.25 78.90 78.36 78.63
T6 76.44 72.33 74.79 74.52 75.34 74.79 79.18 78.63 79.45
T7 75.34 70.68 74.25 73.97 76.71 73.42 80.27 78.63 79.18

3.4. Results on Different Data Lengths. In this section, we explore how much pre-
vious daily information has effective improvement in AQC forecasting. We design the
data lengths T from T1 to T7 for different data lengths because the impact period of air
quality is not too long. The longest period of time for considering information is one week.
T1 data is designed to indicate that it is used the information on day t− 1 to predict
AQC on day t; T2 data is used the information on day t− 2 and t− 1 to predict AQC
on day t. T7 data is used the information on day t− 7 to t− 1 to predict AQC on day
t. These models predict AQC using mostly one-week information. In addition, the RNN
model uses sequential data for learning and other models use flat data. For example, we
consider length of sequence is 3 and use A feature set for day t. For the RNN model,
the data is {{AQIt−3}, {AQIt−2}, {AQIt−1}}; for the other models, the data is {AQIt−3,
AQIt−2, AQIt−1}. All the models use same variables for prediction. Table 7 shows that
the consideration of the information on the previous one day in Los Angeles obtains best
accuracy on RNN and SVM models. In the case of Houston, all of three models obtain
best accuracy when the data length is more than one. In Atlanta, the RNN and RF
models result in higher accuracy, using T7 and T6 data, respectively, whereas the SVM
leads to results that using T1 has better accuracy.

3.5. Sequence Effect Comparison on RNN model. In order to verify the advantage
of the time step as sequence length in RNN, a comparison experiment is implemented. In
the flat data, the time step always sets 1 in RNN model. All the sequential data improves
the performances compared with flat data on RNN. As shown in Table 8, the time step
has an advantage in AQC forecasting, especially in Houston and Atlanta.

4. Conclusions. The current study shows that daily AQC forecasting performs better
using RNN model in three industrial cities in the U.S. In this study, RNN obtains more
desirable results compared with other machine learning methods. The findings in the
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Table 8. The performances comparison on sequence and flat data

Length
LA HOU ALT

Sequence Flat Sequence Flat Sequence Flat
T2 75.89 75.34 73.97 70.96 79.73 76.44
T3 76.44 71.78 75.07 68.22 79.45 75.62
T4 74.52 68.22 75.07 70.96 78.36 75.34
T5 75.89 68.22 74.52 69.86 78.90 74.79
T6 76.44 69.86 74.52 70.41 79.18 73.97
T7 75.34 68.77 73.97 71.51 80.27 75.34

current research indicate that the prediction models are efficient for daily AQC forecasting
depending on different feature sets and data lengths. Using IAQI of six pollutants as input
variables makes accuracy higher compared with those of concentrations. Concentrations
of six pollutants combined with AQI are considered as the most efficient feature sets. The
forecasting results enable the concerned authorities to provide the public with necessary
information concerning air quality. This research using sequential learning of RNN paves
a way for future air quality forecasting studies. In the future, the architecture of RNN
should be further developed to make an advance model for capturing more information,
and the advance technique can be considered bidirectional RNN. Other variables that
may help improve the analysis should be identified.
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