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Abstract. In this paper, Sparse Representation-based Classification(SRC) is used for
automatic chord recognition in music signals. It extracts Pitch Class Profile (PCP)
features from raw audio and achieve sparse representation of classes via `1-norm mini-
mization on feature space and uses Viterbi algorithm to recognize 24 major and minor
triads. But in the real word, the music usually is corrupted by noise. This recognition
model is evaluated on MIREX09 dataset. And it compares the recognition rates when the
music contains Gaussian white noise or not. Experimental results demonstrate that the
method is robust to the Gaussian white noise.
Keywords: Chord recognition, Noisy Music, PCP, Sparse Representation-based Clas-
sification, Viterbi algorithm

1. Introduction. In music, a chord is a set of three or more notes that is played simul-
taneously. Chords are mid-level musical features which concisely describe the harmonic
content of a piece. Automation labeling of chord is called chord recognition, which finds
many applications such as music segmentation, cover song identification, audio matching,
music similarity identification, and audio thumb nailing[1]. So automatic chord recogni-
tion is very important in musical information retrieval (MIR) in recent years.

In chord recognition, the features used may may not be identical. But in most cases,
one of the most commonly used features is variants of the Pitch Class Profile (PCP)
introduced by Fujishima (1999)[2]. PCP is also called chroma vector, which is often a
12-dimensional vector. It can convert pitch features into chroma features by adding up all
values that belong to the same pitch class. The calculation of an audio file into a chroma
representation is based either on the short-time Fourier transform (STFT) in combination
with binning strategies [3-6] or on the constant Q transform (CQT) [7-11]. The musical
content of audio musical signals can be well described with the chromagram.

The chord recognition is the chord labeling of each chord. Our chord recognition sys-
tem is based on the sparse representation-based classification (SRC) [12] which has been
proposed with amazing identification capability in recent years. Based on 12-dimensional
PCP features, SRC discriminately selects the subset that most compactly expresses the
input signal and rejects all other possible but less compact representations. Besides of
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these, we use the method to recognize the chords of noisy music, and compare the recog-
nition rates of ideal music and noisy music.

The rest of this paper is organized as follows: Section 2 reviews previous the related
work of this area; Section 3 gives a description of our construction of the feature vector;
Section 4 describes the recognition method; Section 5 gives the results on MIREX09
datasets and a comparison between the recognition rates of ideal music and noisy music;
Finally we will draw some conclusion and give possible developments for further work.

2. Related Work. In audio chord estimation, it mainly includes the feature extraction,
modelling techniques, evaluation strategies and so on. Some features are used, such as non-
negative least squares (NNLS)[13], chroma DCT-reduced log pitch(CRP)[14], loudness
based chromagram (LBC)[15], Mel PCP (MPCP)[16]. But the most popular feature is
a chromagram, also known as chroma vectors or Pitch Class Profile (PCP). Fujishima
developed a real-time chord recognition system, where he derived a 12-dimensional pitch
class profile from the DFT of the audio signal, and performed pattern matching using the
binary chord type templates[2]. Lee also used binary chord templates[17]. He introduced
a new feature called Enhanced Pitch Class Profile (EPCP) using the harmonic product
spectrum. Gómez and Herrera [18] used Harmonic Pitch Class Profile (HPCP) as the
feature vector.

In modelling techniques, it usually uses the templates-fitting methods [9, 19-23]. Besides
templates-fitting methods, it is widely used machine-learning methods such as hidden
Markov Model (HMM) [4, 24-30] and DBNs(Dynamic Bayesian Networks)[15, 31] for
this recognition process. Sheh and Ellis proposed a statistical learning method for chord
segmentation and recognition[24]. Bello and Pickens also used the HMMs with the EM
algorithm, but they considered the inherent musicality of audio into the models for model
initialization[26].

PCP feature vectors are very important in our recognition system. In the next section,
we will describe the main steps for the calculation of log PCP.

3. Feature Vectors. First of all, the recognition system extracts a sequence of suitable
feature vectors from the audio signal. In our system, the features are log PCP vectors.
Mller and Ewert propose feature vectors 12-dimensional Quantized PCP[32, 33] which
avoids a possible frequency resolution and is sufficient to separate musical notes of low
frequency comparing with others. The calculation of feature vectors PCP can be divided
into the following steps: (1) Calculating the 36-bin chromagram with the constant Q
transform; (2)Mapping spectral chromagram to a particular semitone; (3)Segmenting the
audio signal with beat tracking algorithm; (4)Reducing the 36-bin chromagram to 12-bin
chromagram based on beat-synchronous segmentation; (5) Chromagram normalization.
Refer to [26] for more detailed steps on how to calculate chromagram.

(1)36-bin chromagram calculation. Using the constant Q transform, it can get Xcqt(k)
of a audio signal x(m):

Xcqt(k) =
1

Nk

Nk−1∑
m=0

x(m) · wNk
(m)e−j2πmQ/Nk (1)

Where k is the bin position, w(Nk)(m) is the hamming window and its length Nk =
Q · fk/fs. And fk is the center frequency of the k bin and fs is the sample frequency. In
this paper, the music signal is down-sampled to 11025Hz.
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By adding all Xcqt(k) that correspond to a particular frequencythen it get 36-bin chro-
magram of each frames. The specific formula is as follows:

QPCP (p) =
M−1∑
m=0

|Xcqt(p+mb)|, p = 1, 2, ·, 36 (2)

Where M is the total number of octaves and b is the number of bins per octave.
(2)Chromagram tuning. In the 36-bin chromagram, 3 bins represent one note in the

octave. Each spectral components of 36-bin is maped to a particular semitone. The
mapping formula is as follows:

P (k) = 36 ∗ [log2(fs/Nk ∗ k/f0)]mod36 (3)

(3)Beat-synchronous segmentation. In our system, it use the beat tracking with dy-
namic programming method proposed by Daniel P.W. Ellis [34]. This approach has been
found to work very well in in many types of music. Segmenting the audio signal with beat
tracking algorithm has additional advantage that the chroma feature is a function of beat
segments, rather than time.

(4)12-bin chromagram reduction. Finally, averaging the each spectral components of 36-
bin in beat segments and summing them in semitones, thus the dimension of chromagram
is reduced to 12 from 36. Then the chromagram of audio music can represented with
these 12 dimensional vectors.

(5)Chromagram normalization. QPCP12(p) is the 12-bin chromagram. It can get the
normalized value with p-norm. The formula is as follows:

QPCPlog(p) = log10[C ∗QPCP12(p) + 1] (4)

QPCPnorm(p) = QPCPlog(p)/‖QPCPlog(p)‖ (5)

If it performs the logarithm and normalization, the chromagram is called Log PCP. In
step (5) it has only normalization, it is called PCP.

As can be seen in Figure 1, the left picture shows a PCP of C major triad. The right
one shows its Log PCP, as we can see, the strongest peaks are found at C, E, and G,
since C major triad comprises three notes at C (root), E (third), and G (fifth). From the
Figure 1, it can see that Log PCP is clear than PCP.

Figure 1. PCP and Log PCP of an E major triad
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4. Auto Chord Recognition. In our chord recognition method, the system includes
two sections: (1) Sparse representation-based classification (SRC); (2) Viterbi algorithm.
Based on labeled musical fragments, the system uses SRC method and only relies on frame-
wise classification. The method doesnt need amount of training data. If it has amount of
training data, the system can add Viterbi algorithm by using transitions between chords
to recognize chords.

4.1. Sparse Representation-based Classification. Template-based chord recognition
methods used the chord definition to extract chord labels from a music piece. In fact,
neither training data or extensive music theory knowledge is used[35]. The most HMM
methods need amount of training data, parameters are learned from data. If labeled
musical fragments are selected in template-based chord recognition, then the template
is the PCP matrix of chords. So the basic problem in chord recognition is to use la-
beled training musical fragments from k distinct object chords to correctly determine the
chord to which a new test musical fragments belongs. This problem can solved by sparse
representation-based classification (SRC) [12, 36].

In recent years, the sparse representation become an important research focus in the
field of pattern recognition, and has attracted wide attention in areas such as machine
vision, machine learning, pattern recognition. The earliest in the field of sparse repre-
sentation have been proposed[37, 38]. Its core idea is that the test sample is the linear
representation of labeled training samples which the test sample belongs to. Obviously,
only a few of the linear coefficient are zero, that is to say the coefficient vector is sparse.

Our chord recognition system is based on the sparse representation-based classification
(SRC) [12]. Labeled samples by this algorithm can directly be used as the classifier
training samples, saving lots of time and system resources. The following sections outline
the method.

At first, we define a matrix D = [D1, D2, , Dk] = [u1,1, u1,2, · · · , uk,nk
] ∈ Rm×n by

collecting n classifier training samples of all k classes, where m is the dimension of the
feature set. For a given test sample y ∈ Rm from subject i, can be rewritten in terms of
all training samples as:

y = Dx0∈ Rm (6)

Where x0 is a coefficient vector, whose entries ideally the coefficient vector x0 =
[0, · · · , 0, ai,1, ai,2, · · · , ai,ni

, 0, · · · , 0] are mostly zero except the values corresponding to
the i-th class are non-zero and other coefficient values should be 0.

As coefficient vector x0 can identify the test sample y, it can be obtained by solving the
linear equation (6). Recent development in the emerging compressed sensing theory and
sparse representation reveals that if the solution x0 sought is sparse enough, the solution
to the system of equation (6) is equivalent to the following `1-minimization problem:

x̂1 = argmin‖x‖1 subject to y = Dx (7)

Since real music are noisy, it may not be possible to express the test sample exactly
as a sparse representation of the training samples. Account for small noise, the model(6)
can be modified to explicitly, as following

y = Dx0 + E∈ Rm (8)

Where E is a noise term with bounded energy ‖E‖2 < ε. The sparse solution x0 can
still be obtained by solving the following `1-minimization problem:

x̂1 = argmin‖x‖1 subject to ‖y −Dx‖2 ≤ ε (9)
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According to these non-zero coefficient x1, it can quickly know the test sample belongs
to the class. Actually, because of noise and model errors, some of entries with multiple
object classes is small nonzero values. For each class i, the given test sample y can
be approximated as ŷi = Dδi(x̂1), where δi : Rn → Rn is the characteristic function
which selects the coefficients associated with the ith class. We then calculate the residual
between y and ŷi:

ri(y) = ‖y −Dx‖2 (10)

At last, we classify y based on these approximations by assigning it to the object class
that minimizes the residual, as follow:

identity(y) = argmin
i

ri(y) (11)

The resulting SRC algorithm is summarized below.

Algorithm 1 Recognition via Sparse Representation Classification (SRC)

1: Input: D is a matrix of classifier training samples, D = [D1, D2, · · · , Dk] ∈ Rm∗n for
k classes, a test sample y ∈ Rm.

2: Output: identity(y) = argmin
i

ri(y)

3: Solve the `1-minimization problem: x̂1 = argmin‖x‖1 subject to ‖y −Dx‖2 ≤ ε
4: Compute the residuals ri(y) = ‖y −Dx‖2, for i = 1, · · · , k

If it selects a sample of D chord, using SRC solves its coefficients. Its residual of
subset chord and coefficients of sparse linear combination are shown in figure 2. Many
of these coefficients are zero. And the minimum residual of subset chord is the correct
chord. When the sample contains Gaussian white noise and SNR is 10dB, its residual
and coefficients are shown in figure 3. Through the sample contains noise, the SRC can
recognize the correct chord. But the coefficient has many nonzero values. The proportion
of the maximum residual and minimum value is reduced and the minimum increased.

4.2. Viterbi Algorithm. In SRC method, it uses the residuals ri(y) to recognize the
chord. The method recognizes the chord on frame-wise classification. If it uses transitions
between chords, it can improve the recognition rates of chord. Our system uses the
Viterbi algorithm. Suppose the system has hidden N states, and we denote each state
as Si, i ∈ [1 : N ]. The observed events are Qt, t ∈ [1 : T ]. The current observed events
Q = Q,Q2, · · · , QT , t ∈ [1 : T ]. Aij represents the probability chord Si jump to chord Sj.
At an arbitrary time point t, for each of the states Si, a partial probability δt(Si) is defined
to indicate the probability of the most probable path ending at the state Si, given the
current observed events Q,Q2, · · · , Qt: δt(Si) = max

j
(δt−1(Sj)A(Sj, Si)P (Qt|Si)).Here,

we assume that we already know the probability δt−1(Sj) for any of the previous states
Sj at time t − 1. P (Qt|Si) is the current observation probability. After having all the
objective probabilities for each state at each time point, the algorithm seeks from the
very end backwards to the beginning to find the most probable path of states for the
given sequence of observation events Ψt(i) = argmax

1≤j≤N
[(δ(t−1)(Sj)A(Sj, Si))].Where Ψt(i)

indicates which state is the most optimal state at time t based on the probability computed
in the first stage.

The Viterbi algorithm is as follows:
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Figure 2. The residual and sparse linear coefficient of D chord sample

Figure 3. The residual and sparse linear coefficient of D chord sample
when it contains noise

Algorithm 2 Recognition via Sparse Representation Classification (SRC)

1: Initialization: δt(Si) =
∏
i

P (Q1|Si),Ψt(i) = 0, 1 ≤ i ≤ N .

2: Recursion:δt(Si) = max
j

(δt−1(Sj) · A(Sj, Si) · P (Qt|Si)), Ψt(i) = argmax
1≤j≤N

[(δt−1(Sj) ·

A(Sj, Si))] .
3: Termination: q∗T = max

1≤i≤N
[δt(Si)], P

∗ = max
i

[δt(Si)].

4: Path Backtracking: q∗t = Ψt+1q
∗
t+1.
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In our method, the initialization observation probability
∏
i

is equal to 1/24. The

observed events are yt, where yt is the PCP feature of tth frame. And current observation
probability is ri(yt) and replaces the P (Qt|Si) in Viterbi algorithm. Si represents the
chord i ∈ [1 : 24], where N is the number of chord and set to 24.

The following figure 4 is the comparison of ground truth chord and estimated chord of
the Beatles song Misery. In the top figure, it only uses the SRC method to recognize
the chord and the bottom uses SRC and Viterbi decoding. The ground truth chord is
represented in pink and the estimated chord labels are in blue. From the figure 4 it can
see that the estimation is more stable when it uses the Viterbi than without.

Figure 4. The comparison of ground truth chord and test chord

5. Evaluation. For evaluation, we use the MIREX09 dataset in Audio Chord Estimation
task of MIREX. The dataset consists of 12 Beatles albums (180 songs, PCM 44 100Hz,
16 bits, mono). Besides the Beatles albums, in 2009, an extra dataset was donated by
Matthias Mauch which consists of 38 songs from Queen and Zweieck.

This database based been extensively used for the evaluation of many chord recogni-
tion systems, in particular those presented at MIREX 2013, 2014 for the Audio Chord
detection task. The evaluation is realized thanks to the chord annotations of the Beatles
albums kindly provided by Harte and Sandler[39], and the chord annotations of Queen
and Zweieck provided by Matthias Mauch.

The chord dictionary used in this work is the set of 24 major and minor triads, one each
for all 12 members of the chromatic scales: C Major, C minor, C# Major, C# minor,
· · · , A# Major, A# minor, B Major, B minor. Each triad contains 50 labeled musical
fragments which select from the Beatles albums.

To evaluate the quality of an automatic transcription, a transcription is compared to
ground truth created by one or more human annotators. Since 2013, MIREX typically
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uses chord symbol recall (CSR) to estimate how well the predicted chords match the
ground truth:

CSR =
totaldurationofsegmentswhereannotationequalsestimation

totaldurationofannotatedsegments
(12)

Because pieces of music come in a wide variety of lengths, we will weight the CSR by
the length of the song when computing an average for a given corpus. This final number
is referred to as the weighted chord symbol recall (WCSR).

In order to verify the robustness of SRC, it first tests the algorithm of SRC adding
different signal to noise ratio (SNR) noises. For the convenience of testing, the adding
noise is white noise.

From the figure 5 and figure 6, it can see that the recognition rate of SRC with viterbi
is higher than without, and SRC with LPCP higher than with PCP. When the noises
add to the music, the recognition rates decrease hardly. When the noise is very large, for
example SNR is 10dB, the rate decrease 8 percent.

Figure 5. Recognition Rate
with PCP

Figure 6. Recognition Rate
with LPCP

6. Conclusion. In this paper, we have presented a new machine learning model-SRC for
chord recognition. In comparison with different SNR, the method is robust to Gaussian
white noise. When it uses the viterbi algorithm, the recognition rate can increases 9
percent with PCP feature, 6 percent with LPCP feature. The key part of our new method
is the training chord samples, which are randomly cut down from the songs of Beatles.

Based on MIR development and combined our research, the following work is proposed.
First, this paper only involved chord recognition which is a part of chord transcription
task. Future work will consider adding recognition of more complex chords to our work.
Chord recognition will find many applications in the field of MIR such as song identifi-
cation, query by similarity or structure analysis. Second, in this work we take the effect
of different features into account in SRC. We could add appropriate other features in the
feature.
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