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Abstract. Software development planning and the optimization of requirements are in-
creasingly complicated due to the complex technical and functional dependency relations
among software development requirements. In this article, a directed graph model is
adopted to describe the dependency relations among requirements from a global perspec-
tive. The concepts of value and cost were introduced into this model to describe resource
limitations and employer expectations during the development of a software system. The
resultant requirement sets are evaluated according to the ratio of the software value to
its costs (i.e., value-to-cost ratio). Furthermore, we design a heuristic function which
could consider one requirements’ value form the global view, and propose an A*-pruning
algorithm based on the A* algorithm to obtain the requirement sequence set of a global
optimum. The results generated with this approach are compared with those of five other
methods under various goals and constraints. Experimental findings indicate that the A*-
pruning algorithm can outperform other methods in terms of value-to-cost ratio. This
work therefore provides an optimization scheme for requirement analysis in software en-
gineering.
Keywords: Requirement dependency, Directed graph, A*-pruning algorithm, Require-
ment optimization

1. Introduction. Software development is essentially a process of constructing a soft-
ware system based on user requirement analysis findings. A clear understanding of user
requirements for software functions and performance is a prerequisite to the successful
implementation of a software project[1]. The CHAOS Report of the Standish Group
listed the success rates of projects from 1994 to 2012, and problems in requirement en-
gineering were determined to be the primary reason for project failure[2]. According to
a study conducted by the European Software Institute, 50% of companies regarded re-
quirement specification and requirement management as the most significant challenges
in system development[3]. The rapid and accurate acquisition of core requirements to
save development costs and satisfy employer requirements is a fundamental issue in soft-
ware development. As the scale of a software project expands continuously, the problem of
repetitive and overlapping requirements increases in severity. For example, the developers
of the FBI Virtual Case File project, which cost 1.7 million dollars, held joint application
design meetings for almost six months before finally establishing a requirement specifi-
cation of approximately 800 pages[4]. The security consultant of the project indicated
that the project requirement document was too bloated to highlight the essential require-
ments; under such circumstances, identifying the requirements that must be satisfied and
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Table 1. Classification and description of common dependency relations

prioritizing them with proper selection methods are key steps in the development of a
complex software project.

In the process of identifying software requirements, many dependencies are detected
among the requirements. According to the Tracking of the Projects Requirements es-
tablished by IBM developer Works, the major reason for the failure of a project is the
unsuccessful management of requirements[5]. When mistakes are detected and solved
late, the costs of correcting these errors increase. Therefore, a developer should guaran-
tee the traceability of software requirements, including the source of these requirements,
reasonability, realization conditions, and the influence of requirement changes, at the
development planning and requirement optimization stage. The processes of analyzing
and managing the dependency relations among these requirements are referred to as re-
quirement interaction management (RIM)[9, 10]. RIM can directly affect the selection
of requirements, traceability management, evolutionary process, and the importance at-
tached to these requirements[11].

Previous work can rank the priorities of requirements, e.g., requirement A is of higher
priority than requirement B[13]. However, this optimization model may be improper or
erroneous if requirement B precedes requirement A. For example, employers generally have
two basic requirements for an E-commerce platform, namely, online searches for commodi-
ties and online commodity transactions. From the perspective of a merchant, the latter
should be prioritized; however, without the feature of online search for commodities, on-
line transactions can hardly be conducted. Aside from the precedent relation, many other
dependency relations are detected, including the and/or relation, complex correlations,
and dependency in consideration of costs, values, technology, structure, and functions.
Table I lists several dependency relations.

With the existence of dependency relations among requirements, the priority selec-
tion problem is certainly complex[68], which involves several formidable challenges: (1)
formalizing the dependency relations among various requirements; (2) taking the over-
all considerations of the priority order and dependency relations of the requirements as
well as balancing the conflicts between these factors; (3) incorporating real-life constraint
conditions into requirement priority selection (e.g., constraints on development resources,
such as resources and costs, as well as the expectation of employer benefits); (4) determin-
ing an effective dependency management method for these requirements to meet diverse
requirements and thus enhance the management efficiency.
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To solve the above issues, we propose the A*-pruning algorithm, a path finding algo-
rithm based on a heuristic function. The primary contributions of this study are sum-
marized as follows. (1) A method is proposed for converting the requirement dependency
relation graph to an activity-on-vertex (AOV) network. The requirement optimization
problem, which is nondeterministic polynomial-time hard (NP-hard), can thus be con-
verted into an optimal path search problem on the graph. (2) On the basis of the concept
of heuristic value in path finding algorithms, the A*-pruning algorithm is established so
that the optimal solution set can be determined in polynomial time. (3) The experimen-
tal results obtained for a large requirement data set indicate that the proposed method
outperforms five other counterpart techniques. The remainder of the article is organized
as follows. Section II presents the background of the study and related works. Section III
describes the modeling and solving processes of dependency relations with the A*-pruning
algorithm. Section IV discusses the quantitative evaluation of our approach and presents
the analysis results. Finally, we close with conclusions in Section V.

2. Related Work. Requirement optimization is a popular research area, and much re-
search has been conducted in this regard. Early solutions developed include the analytic
hierarchy process [32], quality function deployment [33], cumulative voting (100-Dollar
Test) [34], and requirement- prioritization approaches [12]. However, the requirement pri-
ority must be manually annotated and then democratically ranked using these methods;
that is, these methods are relatively subjective. Moreover, these methods do not consider
the different interests of users in determining requirements or the dependency relations
among requirements [13–15].

Donald et al. [16] described the necessity of dependency relations among requirements
and pointed out the major challenges in the process of requirement priority selection.
These challenges include numerous requirement items, the restrictions of limited resources
and requirement quality, requirement conflicts among different users, requirement changes,
and incompatible requirements. Nevertheless, these researchers did not propose an auto-
matic processing method, and continued to adopt the human-mediated modeling method
of guiding requirement optimization. Greer et al. [17] used the genetic algorithm (GA)
to iteratively solve the optimization issue; however, this method is difficult to converge
and is highly unpredictable. Moreover, the results are highly dependent on the quality
of the objective function. Therefore, the GA-based method is improved by a modified
multi-objective evolutionary algorithm [18]. However, the dependency relations among
requirements remain neglected. An increasing number of works focus on the dependency
relations among requirements. These studies can be classified into two categories as fol-
lows.

The first category defines the dependency relation. For example, Zhang et al. [19] deter-
mined five fundamental relations among the requirements that involve and, or, precedence,
value-related, and cost-related relations. The first three relations are used as parameters
in applicability equations, whereas the latter two are applied as performance parameters.
Li et al. [20] defined four fundamental relations, that is, task dependency, goal depen-
dency, resource dependency, and soft-goal dependency. Luo et al. [21] highlighted six
fundamental relations, namely, calling, interrupting, informing, arousing, revising, and
resource control. These studies have presented the dependency relations of requirements
from different perspectives.

The second category emphasizes the solving of requirement priority problems on the
premise of dependency relation. Carlshamre et al. [22] combined linear programming
techniques with the interdependency relations among requirements to model requirement
prioritization and selection. Ruhe and Saliu proposed the combination of computational
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intelligence and artificial judgment into integer linear programming to solve the conflicts
between these factors [23]. Van den Akker et al. improved on the linear programming-
based method proposed by Ruhe and Saliu and maximized the benefits under limited
budgets [24, 25]. Bagnall et al. considered the precedence dependency among require-
ments and used a directed acyclic graph to describe this dependency relation [26]. This
work was then improved by Greer and Ruhe by including the and dependency in the
model. Consequently, the precedence and and dependencies are both adopted as con-
straint conditions to guide the optimization search [27]. To represent the interdependency
relations among requirements, Moisiadis et al. [28] developed a requirement prioritization
tool based on either the binary matrix or the tree structure. Laurens [29] proposed an
identification method and a modeling approach to determine unnecessary requirement
dependencies. Alebrahim et al. [30] presented a problem-based requirement dependency
analysis method and constructed a problem graph with requirements based on domain
knowledge. The requirements can be simplified by utilizing weak dependencies.

The aforementioned methods are limited in the following ways. Concretely, linear pro-
gramming is merely a single-objective algorithm and can handle only constraint conditions
that can be transformed into either equations or inequalities. Search-based requirement
interaction approaches can address only the precedence and and dependencies among the
requirements. These approaches merely define relations and provide weight-allocation
methods; the interaction approaches do not solve the problem of requirement prioritiza-
tion with multiple dependency relations from a global perspective. Some methods classify
requirements through clustering and allocate weights for different categories of require-
ments. However, the samples are insufficient and may not resemble the actual situation
because practical conditions and industrial peculiarities are neglected.

To overcome the limitations of previous works, we propose an A*-pruning algorithm
for requirement optimization. Unlike prior methods, the A*-pruning algorithm introduces
additional constraint conditions into requirement priority selection (e.g., constraints on
development resources, such as resources and costs, as well as the expectation of employer
benefits). This algorithm also designs a heuristic function that can assess potential value-
to-cost ratio. Through the overflowing-pruning process, the value-to-cost ratio of the
entire system can be maximized under the constraints of dependency relations among
requirements so that employer resources can be reasonably utilized.

3. A*-Pruning Algorithm.

3.1. Overview. The problem of requirement optimization is selecting an appropriate
subset from the universal set to optimize value-to-cost ratio. Given a requirement set
consisting of n requirements, the number of corresponding subsets is 2n. Under the con-
dition of requirement dependency, the requirement may fall into a local optimum instead
of a global optimum. Furthermore, the optimality of a solution set cannot be verified
in polynomial time, i.e., this problem is NP-hard. In fact, the requirement optimization
problem under the condition of requirement dependency can be converted into a node
expansion problem in an AOV network. To describe the problem formally, we construct
a requirement model, namely, M = (V,E,A,C, I), to define a software project. Specif-
ically, V denotes the requirement set, where each element vi represents a requirement;
E denotes the dependency relation set, in which each edge ei represents a requirement
dependency; A denotes the value set in which each element ai(ai ≥ 0) represents the
benefit corresponding to each requirement vi; C denotes the resource set in which each
element ci(ci ≥ 0) refers to the resources needed to achieve requirement vi; and I denotes
the heuristic value set in which each element ii(i ≥ 0) represents the heuristic values after
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Figure 1. A*-pruning algorithm process

requirement vi has been met. An A*-pruning algorithm is proposed based on the idea of
heuristic value in the A* algorithm. First, a directed graph G is constructed to represent
the requirements and their dependency relations. This graph is then converted into an
AOV network. After assessing the heuristic value for each node, we expand the nodes
according to the assessed values. Consequently, the overflowing solutions can be acquired.
Finally, these solutions are pruned to meet employer requirements. Fig. 1 illustrates the
A*-pruning algorithm procedure. As shown in the figure, the main difference between our
algorithm and A* is the parts of overflowing and pruning.

3.2. Construction of the directed graph. The directed graph model that describes
the dependency relations of the requirements is constructed according to the following
rules. For a directed graph that represents a software project, G = (V,E); each vertex vi
represents a requirement and each edge e = (vi, vj) denotes a dependency relation; that
is, requirement vi must be met to achieve requirement vj. In graph theory, this directed
graph can be regarded as an AOV network. In such a network, vi is regarded as the
precedent vertex of vj given e = (vi, vj) ∈ E. A directed cycle is generally not allowed in
an AOV network. However, such a cycle may be generated because of the complexity of
the requirement dependency. This issue should be addressed and is presented in Section
III.C. Table II lists the general dependency types and corresponding legends.

3.3. Elimination of interdependency and cyclic dependency. In this study, we
designed a legalization algorithm for AOV and converted the directed graphs with cyclic
dependency and interdependency relations into the equivalent AOV networks. The specific
procedure is described as follows. (1) If all the vertices in the graph have been detected,
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Table 2. Common dependency relations among requirements

then the algorithm is terminated; else, an undetected vertex v is selected and the algorithm
proceeds to (2).

(2) The direct precedent vertices of V comprise set P , and the subsequent vertices of
V comprise set Q. Then, the algorithm progresses to (3).

(3) If the intersection of P andQ is empty, then the algorithm proceeds to (4); otherwise,
it progresses to (6).

(4) Set P ′ is composed of the precedent vertices of all the vertices in P , and set Q′

is composed of the subsequent vertices of all the vertices in Q. If P = P ′ and Q = Q′,
then v is labeled as detected. Subsequently, the procedure reverts to (1); otherwise, the
algorithm proceeds to (5).

(5) Let P be the union of P and P ′ and Q the union of Q and Q′. Then, the procedure
progresses to (3).

(6) J is referred to as the intersection of P and Q. Vertex jvis chosen from J , and
vertex v is merged with j to form a new vertex v′. The values of v′ (namely, a) are the
sums of the values of vertices v and j, and similarly the resource cost (namely, c) are
the sums of the corresponding values of vertices v and j, i.e. a(v′) = a(v) + a(j) and
c(v′) = c(v) + c(j).

Furthermore, the sets of the precedent and the subsequent vertices of v′ are produced
from the union of the corresponding sets v and j. Vertices v and j are deleted along with
the related edges, and new edges are added according to the precedent and subsequent
vertices of v′. Moreover, v′ is labeled as undetected. Then, the procedure returns to (1).

The interdependency and cyclic dependency relations in the directed graph can be
converted into a vertex created as a combination of various requirements by following
the aforementioned steps. Meanwhile, the original directed graph is simplified to form an
AOV network.

3.4. Topological sorting to calculate the heuristic values of nodes. In the process
of developing a software project, requirements with high value and that consume less re-
sources (i.e., high value-to-cost ratio) should be implemented first to maximize employer
benefits given limited resources. However, the achievement of a requirement with high
value-to-cost ratio may depend on the meeting of a few requirements with low value-to-
cost ratios given the dependencies and constraints among the requirements. Thus, the
value-to-cost ratio of the entire system may decrease significantly. A simple local opti-
mization algorithm cannot obtain a satisfactory global optimal solution when designing a
requirement optimization algorithm because of the lack of global information. To address
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Figure 2. Requirements and their dependencies in an E-commerce system

this problem, a heuristic function is introduced into the search algorithm; then, global
information is assessed carefully based on the requirement dependency. This process can
improve the value-to-cost ratio of an entire system after requirement optimization. The
total resources and costs needed to meet user requirements in a software system are gener-
ally fixed. To optimize overall value-to-cost ratio, we must consider both the value-to-cost
ratio of current requirement examination and potential benefits when travelling along the
AOV network to select requirements. In other words, this approach can continuously
select subsequent requirements with high value-to-cost ratio as well. The heuristic value
i can be defined as follows:

it =
∑(

ij ∗
ct∑
ck

)
+ at (1)

where ij denotes the heuristic value of vi, which is the direct subsequent vertex of Vt[i.e.,
an edge (vt, vj) exists in the network] and ck denotes the resource cost of vk[vk is the
direct precedent vertex of vj, i.e., an edge (vk, vj) exists in the network]. The definition
of heuristic value i is recursive; therefore, topological sorting should be conducted on the
AOV network before calculating the heuristic values to obtain the topological sequence
of ST . Then, the heuristic value of each vertex in sequence ST is calculated in the reverse
order; this process avoids the repetitive computation in the recursion procedure. Finally, a
directed graph model that considers requirement dependencies is constructed successfully.

3.5. A* process in the A*-pruning algorithm. Following the construction of the
directed graph model, the requirement optimization problem is equivalent to the problem
of effectively searching for a path with a high value-to-cost ratio in a directed graph. Hart
et al. proposed the A* search algorithm for a pathfinding problem with given starting and
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terminal points and proved that the A* algorithm can generate an appropriate heuristic
function for the optimal path [31]. The evaluation function in the A* algorithm is written
as:

f(x) = g(x) + h(x), (2)

where g(x) denotes the cost to proceed from the initial state to state x and is thus referred
to as the cost function. h(x) denotes the estimated cost required to travel from state x
to the optimal state with the algorithm and is thus referred to as the heuristic function.
The closer the value of the heuristic function is to the true value, the more quickly the
A* algorithm can approach the terminal pathfinding point. The A* algorithm cannot be
applied directly because the terminal pathfinding point does not exist in the requirement
selection problem. Nonetheless, we can incorporate the idea that the A* algorithm can
quickly approach the terminal point by adopting the weighted cost and heuristic functions.
The A*-pruning algorithm is proposed to search for paths with a high value-to-cost ratio
and to satisfy the dependency relations of the requirements. Specifically, we design a
heuristic function that can assess potential value-to-cost ratio and maximize the overall
value-to-cost ratio of the system on the premise that each requirement can satisfy its
dependency relations under the constraints of limited resources through the overflowing-
pruning process. To fit the optimal value-to-cost ratio, the evaluation function f(v) is
used to assess the effect of one vertex von the value-to-cost ratio of the entire software
project.

f(v) = g(v) + h(v) (3)

where the cost function g(v)is written as:

g(v) =

∑
ai∑
ci

(4)

In this equation, v denotes the vertex that may be explored further. ai and ci denote the
cost and resource requirements of vertex v and of all the vertices explored (i.e., whose
requirements have already been met), respectively. The heuristic function h(v) is defined
as:

h(v) = θ ∗ ij (5)

where ij denotes the heuristic value of vertex vj and θ denotes the empirical parameter
that aims to match the heuristic value to the true value. θ value is set to 0.2 in this work,
and i can be calculated as follows:

it =
∑(

ij ∗
ct∑
ck

)
+ at (6)

When the heuristic value is obtained, the algorithm runs according to the procedures
described below until the terminal condition is satisfied (i.e., employer requirements are
met).

The A* process in the A*-pruning algorithm is described as follows:
(1) An initial set of expansible vertices (also called the expansible set) and a set of

expanded vertices are inputted. The expansible set cannot be empty.
(2) The estimated values of all vertices in the expansible set are calculated according

to the evaluation function in the A*-pruning algorithm.
(3) A vertex is selected from the expansible set with the maximum estimated value and

then added to the expanded vertex set.
(4) The variation of the expansible set is computed based on the rules of the AOV

network.
(5) When the terminal condition is satisfied or the expansible set becomes empty, the

algorithm stops outputting expanded nodes; otherwise, the process reverts to (3).
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Once the process is terminated, the resultant optimal solution set is a sub-network of
the original AOV network. This set is referred to as the solution of the A* process, is
abbreviated as A* solution, and is denoted as GA. Only one vertex is expanded at each
iteration in the A* process, and the time complexity of the operations in each iteration
is denoted by O(n). Therefore, the time complexity of the A* process is represented by
O(n2).

3.6. Overflowing coefficient and pruning process in the A*-pruning algorithm.
The solution obtained for the problem is incomplete; thus, an error is detected between
the estimated value and the actual value. The A* solution can then be optimized further
toward the global optimum. For example, many vertices with high value-to-price ratios
depend on a large number of precedent vertices in an AOV network. When employer
resources are limited, these vertices are difficult to expand in the A* process and may
limit the improvement of the overall value-to-cost ratio. In addition, certain vertices are
challenging to expand because their subsequent vertices are composed of value-to-cost
ratio vertices that are both high and low. Thus, a solution can be improved if the A*
solution set can be expanded to cover more vertices with high value-to-cost ratio and if
solutions are pruned to meet resource constraints.

Specifically, an overflowing coefficient is set (α > 0) during the A* process of the pro-
posed A*-pruning algorithm. This coefficient affects the terminal condition of the algo-
rithm and represents the overflowing limit of the solution set. For example, if an employer
requires an optimization solution under the condition that the expenditure cannot exceed
50% of total resources given α = 0.2, then the maximum expenditure in the A* process
should be determined according to the following formula: (1 + α) × 50% = 60%. Once
the expenditure limit is reached, the algorithm terminates and outputs the corresponding
overflowing solution denoted as GA+. α is related to the specific structure of the AOV
network; when is too small, the space for local optimization improvement is insufficient
and the solution approaches the A* solution. When α is too large, the overflowing solu-
tion may deviate from the global optimum under the constraints, and the post-pruning
solution may fall into the trap of the local optimum.

The overflowing solution GA+ exceeds the resource limit; therefore, the A*-pruning
algorithm first selects the vertices without subsequent vertices from GA. Then, this algo-
rithm removes the vertex with the minimum value-to-cost ratio. This process is repeated
until the original requirements of the employer can be met, and the final set of optimal
requirements is outputted. The pruning process is described in Algorithm 2.

The resource sum function is used to calculate the total resources consumed by a re-
quirement set, whereas the delete worst v function is applied to delete the vertex with
the minimum value-to-cost ratio and without subsequent requirements in the given re-
quirement set.

Algorithm 2: A*-pruning algorithm (pruning process) During the pruning process, the
time complexity of selecting and removing a vertex is denoted by O(n). A maximum of
n vertices can be removed. Thus, the overall time complexity is represented by O(n2).

By combining the time complexities in both the A* and pruning processes, the time
complexity of the A*-pruning algorithm is denoted by O(n2). A requirement optimization
solution can therefore be obtained in a polynomial time.

3.7. Case study. The requirements of a typical E-commerce system (shown in Fig. 2)
are considered in a case study to explain the proposed approach.

An E-commerce system is a typical software system in these years, which should gener-
ally be capable of managing commodities and displaying them to consumers online. When
an employer chooses one or several commodities, an order is created. Then, the employer
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Figure 3. Legal AOV network after processing

is required to fill in the shipping address, and payment options are provided. Once the
employer completes the payment process, the merchant should prepare the order and ship
the commodities out through logistics. Once the employer receives the requested com-
modities, the main transaction process is completed. Viral marketing activities and user
feedback are also involved in this procedure. There are complex dependencies between
the corresponding system modules for these functions, so we choose it as an case of our
optimization algorithm. As depicted in Fig. 2, the system includes 24 requirements, 24
direct precedent dependencies, 5 interdependencies, and 1 cyclic dependency. By adopt-
ing the algorithm described in Section III.C, cyclic dependency can be eliminated and an
AOV network derived, as displayed in Fig. 3. No interdependency or cyclic dependency
relations are observed in the network.

As exhibited in Fig. 3, the member system module consumes much development re-
sources but cannot generate high values directly; that is, this module has a low value-
to-cost ratio. A few modules rely on the member system, such as member activities,
point accumulation, and commodity recommendation, to achieve their functions. On the
one hand, the member system module is difficult to expand with local optimum-based
algorithms (such as the uniform cost search algorithm) because its value-to-cost ratio
is low. This low ratio may result in the abandonment of subsequent requirements with
high value-to-cost ratios. On the other hand, a global-optimum-based algorithm is likely
to omit the requirements at the boundary (i.e., requirements with low heuristic values
and no subsequent dependency). Even algorithms that combine both local and global
characteristics (such as the A* process in the proposed algorithm) may terminate in the
process of expanding a vertex with a low value-to-cost ratio but a high heuristic value;
this termination leads to sub-optimality. To address the aforementioned problems, the
A*-pruning algorithm is proposed in which weights are considered for both the local and
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global information on each requirement. In addition, the A* overflowing coefficient is
introduced to increase the optimization search space, and the pruning process is adopted
to filter low value-to-cost requirements at the boundary of the overflowing solution set.
In the next section, we analyze the A*-pruning algorithm experimentally.

4. Experimental Analysis.

4.1. Experimental data. To avoid the subjectivity of experimental data, we developed
a program for simulating user requirements. This system is based on the requirement ar-
chitecture model of the E-commerce system and can produce several groups of simulation
data (the number of groups is preset). The system also assigns values and resource costs
for each requirement in each data group at random. To ensure that the experimental data
were statistically stable, we applied 20 groups of simulated requirement data that were
randomly generated by this program to test and estimate this algorithm.

4.2. Evaluation index. The total values and total resources of all the requirements in
the requirement system are fixed for a software project. If all these requirements can
be satisfied by the resources of the employer, then all the requirements will certainly be
achieved and optimized. Therefore, limit conditions must be set for requirement opti-
mization so that the system retains room for this process. Employers typically expect to
obtain the maximum ratio of realized values to input resources. Therefore, the effective-
ness of the proposed algorithm is verified by the following two evaluation indices. a) The
maximum value can be achieved by the system when the total resources are fixed. In
reality, the total available resources of a software project are always limited and cannot
meet all requirements. Therefore, maximizing employer benefits is an important index for
assessing a requirement optimization algorithm. When the total quantity of resources is
fixed, the ratio of the maximum value among various selection schemes can be equivalent
to the ratio of the value of the requirement given the resource cost in each scheme. In
this study, the value-to-cost ratio of the optimization solution set when total resources
are limited can be calculated as:

Rcost limit =

∑
ai

cost limit
(7)

where cost limit denotes the total resources limited by the employer and ai denotes the
value of the requirements in the optimization solution set G. Statistically, we utilized the
average value of the value-to-cost ratios obtained under different resource limitations to
assess the optimization results of the algorithm. b) The minimum resources required for
the system to achieve a certain value. Another common issue in the implementation of
a software project involves the amount of resources that should be invested to achieve a
certain value goal. From the perspective of an employer, the amount of required resources
that corresponds to the requirement optimization scheme should be minimized. Therefore,
the occupation of a few resources in the optimization scheme increases value-to-cost ratio
given the same value goal. This outcome indicates the superiority of the algorithm. In
this study, the value-to-cost ratio of the optimization solution set can be calculated as
follows when the value goal of the system is fixed:

Rvalue limit =
value limit∑

ci
(8)

where value limit denotes the total value that should be achieved according to the re-
quirements of the employer and ci denotes the resources occupied by the requirements in
the optimization solution set G. Statistically, the average value of the value-to-cost ratios
under different value goals is adopted to assess the optimization results.
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Table 3. Parameters for test data under different conditions

4.3. Experiment settings. According to the typical limit conditions and evaluation
indices in software development, the following parameters were set to verify and assess
the algorithm. To illustrate the role of the A*-pruning algorithm in improving the overall
value-to-cost ratio of the system, another five optimization methods were considered to
be baseline methods in the contrast analyses performed on the 20 aforementioned groups
of requirement data. These methods were based on breadth-first traversal, depth-first
traversal, uniform cost, greedy, and A* algorithms (referring to the A* process in the
A*-pruning algorithm, and the same below).

4.3.1. Breadth-first-based optimization. Breadth-first traversal is a widely applied graph
traversal strategy. The method starts from a specified vertex in the graph and traverses
all the neighboring vertex sets of this vertex preferentially. Therefore, breadth-first-based
optimization begins at a given vertex (expansible vertex); then, it preferentially traverses
all requirement vertexes that are reachable and are adjacent to the given vertex in the
AOV network model.

4.3.2. Depth-first-based optimization. As another common graph traversal strategy, depth-
first traversal starts from a specified vertex, visits a certain neighboring vertex, and fi-
nally traverses all other vertices in the neighborhood that has not been visited previously.
Depth-first-based optimization begins at a given expansible vertex and then traverses the
reachable requirement vertices in the AOV network model.

4.3.3. Uniform cost-based optimization. Uniform cost-based optimization is a part of the
A* algorithm and does not contain information in which the evaluation function f(x) is
equal to g(x). Therefore, this optimization method starts from a given expansible vertex
and gradually selects reachable requirement vertices with the maximum value-to-cost
ratios in the AOV network model.

4.3.4. Greedy algorithm-based optimization. The greedy algorithm is the heuristic part of
the A* algorithm. The corresponding evaluation function is expressed as f(x) = g(x).
Therefore, greedy algorithm-based optimization starts from a given expansible vertex and
gradually selects the reachable requirement vertices according to favorable heuristic values
in the AOV network model.

4.3.5. A* algorithm-based optimization. The A* algorithm combines the greedy and uni-
form cost algorithms with the evaluation function f(x) = g(x) + h(x). Therefore, the
greedy algorithm-based optimization starts from a given expansible vertex and gradually
selects the reachable requirement vertices given favorable assessment values in the AOV
network model. The average value-to-cost ratio is introduced into the present experiment;
this ratio represents the ratio of the total values of all requirements to total resource cost.
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Figure 4. Experimental results given limited resources. The x-coordinate
denotes the serial number of the experimental data set, and the y-coordinate
represents the average value of value-to-cost ratios under the limited re-
source percentages of 30%, 50%, and 70%.

4.4. Experimental results. Denotes the serial number of the experimental data set,
and the y-coordinate represents the average value of value-to-cost ratios under the limited
resource percentages of 30%, 50%, and 70%.

As shown in Fig. 4, the A*-pruning algorithm reported favorable results in the require-
ment optimization of 20 groups of random data when the total quantity of resources was
limited. The value-to-cost ratio obtained with the A*-pruning algorithm was the most
favorable among those generated by other methods for most test groups. In fact, this
ratio outclassed the average value-to-cost ratio of the system and the results of the ex-
tensively applied breadth-first- and depth-first-based optimization methods. The results
produced by the other methods were comparable with those obtained with the A*-pruning
algorithm in only a few groups.

Fig. 5 depicts the experimental results under different value goals. The A*-pruning
algorithm also produces favorable results under value-preset conditions, as under resource-
limited conditions. With these two figure of merit as standards, the A*-pruning algorithm-
based optimization scheme can generate a preferable value-to-cost ratio under different
limit conditions to meet the goal of requirement optimization. Table IV lists the average
value-to-cost ratios obtained with different optimization methods for 20 groups of test
data. To analyze the variations of the optimization results further under the limitations
of system resources and value goals, a fixed data group was selected to test the value-
to-cost ratios of the optimal requirement sets obtained with various algorithms. The
resource limitation was gradually increased by setting the stepping interval to 10% of the
total quantity of the needed resources. The related experimental results are presented in
Fig. 6.

Under different resource limitations, the A*-pruning algorithm reported a favorable
optimization result that was either superior or equivalent to the results calculated by other
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Figure 5. Experimental results under different value goals. The x-
coordinate denotes the serial number of the experimental data set, and
the y-coordinate represents the average value of value-to-cost ratios when
value can be attained to the extent of 30%, 50%, and 70%.

Table 4. Value-to-cost ratios of optimal requirement schemes generated
using different optimization methods

algorithms. Conclusively, we can obtain stable optimization results using the method
proposed in this study. By contrast, the variation tendencies of the results calculated
with different algorithms indicate that the more abundant resources are (i.e., the resource
limitation is close to the total quantity of the resources needed), the smaller the room
for optimization is. These findings also fit well with the actual results of software project
development simulation. We also applied 10% of the total values as the stepping interval
and tested the value-to-cost ratios of the optimal requirement solution sets established
with different algorithms by gradually raising the value goal. The related experimental
results are displayed in Fig. 7.

Under the conditions of different value goals, the A*-pruning algorithm can generate
favorable requirement optimization results.
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Figure 6. Variations in the value-to-cost ratios of the optimal requirement
solution sets as generated by different algorithms with varying resource
limitations

Figure 7. Variations in the value-to-cost ratios of optimal requirement
solution sets obtained using different algorithms given varying value goals
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In summary, when the employer requirements vary, we can obtain optimization results
with high value-to-cost ratios using the A*-pruning algorithm on the premise of satis-
fying the dependency relations of the requirements. As the findings of the experiment
conducted under different limitation conditions, the average value-to-cost ratio of the
optimal requirement solution set that was calculated using the proposed algorithm was
27% higher than that expected for the system. In fact, the proposed method enhanced
the expected value-to-cost ratio of the solution set by 10% more than the other common
algorithms did for the optimal requirement solution sets. Consequently, the A*-pruning
algorithm is a more favorable requirement optimization method than the other algorithms
described in this article.

5. Conclusion. In this article, the A*-pruning algorithm is developed by modeling and
analyzing the types of dependency relations in a software project based on the applica-
tions of topological sorting, the heuristic search method, and the post-pruning method.
By using this algorithm, we can obtain an optimization solution set with a high value-
to-cost ratio when the dependency relations among requirements are satisfied and when
the resource costs of the employer are limited. We present a scientific and reasonable op-
timization method for requirement analysis in the field of software engineering; nonethe-
less, optimization is incomplete because of the project properties and because of certain
differences between the results derived through heuristic search and the actual results.
Experimental results show that our proposed approach can achieve better performance
than state-of-the-art baselines.
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