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Abstract. Recently, we have introduced a Digital Micro-mirror Device (DMD) based
multispectral imaging using Fourier spectrum. The sinusoid pattern is used for encoding
the pixel spectrum and the Inverse Fourier Transform (IFT) decodes the spectrum. In
this paper, an enhanced multispectral imaging is introduced. On one hand, the spatial
resolution is improved considering the difference between CCD pixel and DMD coding
pixel size. On the other hand, the modern spectrum estimation method is applied to im-
prove the reconstructed spectral curve using limited coefficients. The experiment shows
that this method performs well. The decoded images have the maximal spatial resolution
which is the same as CCD detected image without pixel merging. And the modern spec-
trum estimation method is better than Inverse Fourier Transform (IFT) using the same
number of Fourier coefficients.
Keywords: Multispectral imaging, Fourier transform, Modern spectrum estimation

1. Introduction. Multispectral imaging combines the spectrometer and imaging. It
includes two-dimensional spatial information and one-dimensional spectral information.
It is a 3D data set and can be viewed as a datacube. It is widely used in remote sensing,
biology, etc. There have been many methods for spectral imaging. Mainly, it can be
divided into wavelength-scan method, spatial-scan method, time-scan method, the non-
scanning method which measures the spatial and spectral simultaneously [1, 2]. Fourier
spectral imaging [3, 4] and Hadamard transform spectral imaging (HTSI) [5, 6] are both
time-scan method [1]. They are multiplex measurement and suitable for weak signals.
Fourier spectral imaging is usually based on interferometer [3] or sinusoidal filters [7, 8].
The Fourier Transform is used to obtain the spectrum in wavenumber domain. HTSI is
based on the Hadamard coding pattern. The Hadamard transform is used to decode the
spectrum in wavelength domain.

In this paper, the multispectral imaging system has the similar optical structure of
HTSI, but realizes the Fourier transform. The sinusoid pattern [9, 10] is used for encod-
ing the pixel spectrum and transforms the spectrum into Fourier domain. Our research
has validated that the DMD is feasible to generate different periods of sinusoid patterns
to implement spectral imaging [11]. But it has some limitations. First, there is the pixel
matching problem for DMD coding pixel and CCD pixel. Usually, CCD pixels should be
merged to match the coding pixel size. This will decrease the spatial resolution. Second,
the generated sinusoid pattern is the sampled value of the ideal sinusoidal pattern using
DMD coding pixel. It has large difference between generated sinusoidal pattern and ideal
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pattern when sinusoidal period is small. Therefore, a limited Fourier coefficients are used
and avoid the error of high-order Fourier coefficients. In this paper, the CCD pixels are
not merged to get the maximal spatial resolution. Besides, instead of setting the unde-
tected coefficients to zeros, the modern spectrum estimation method [12] is introduced
to estimate the undetected values. It will improve the decoded spectrum using limited
coefficients.

The paper is organized as follows. Part 2 is the theory, including the pixel spectrum
encoding, decoding and sinusoid pattern generation. Part 3 shows a simulation. Part 4
gives the experimental results. And finally, part 5 is the conclusions.

2. Theory.

2.1. Spectrum encoding using sinusoid pattern. Fig.1 gives the optical schematic
of multispectral imaging system. It is similar to the HTSI system. The first grating
disperses the object light to a serial of wavebands. Then, coding pattern encodes the
dispersed spectrum. Finally, the second grating recombines the wavebands and CCD
detects the encoded image. Suppose the spectrum is dispersed along n axis and forms K
wavebands (λr, r = 0, 1, · · · , K − 1). The datacube is denoted as {I(m,n, λr)}.

Figure 1. Optical schematic of multispectral imaging

Assuming the grating is linear dispersion, the spectral intensity after grating with linear
dispersion α is then

I1(m,n, λr) = I(m,n+ α(λr − λ0), λr) (1)

Immediately after the coding pattern, the spectral intensity is given by:

I2(m,n, λr) = T (m,n)I1(m,n, λr) (2)

where T (m,n) is the transmission function imposed by coding pattern. After a set of
imaging optics and the second grating, the spectral density is:

I3(m,n, λr) = I2(m,n− α(λr − λ0), λr) = T (m,n− α(λr − λ0))I(m,n, λr) (3)

This indicates that the coding pattern is shifted with wavelength for different spectral
band image. However, the CCD detector is wavelength-insensitive. It gathers the spectral
images of different wavelength, illustrated in Eq.(4).

I4(m,n) =
K−1∑
r=0

T (m,n− α(λr − λ0))I(m,n, λr) (4)

Different with HTSI, the sinusoid pattern is used for coding in this paper. The patterns
are generated by Digital Micro-mirror Device (DMD). The Fig. 2(a) is Hadamard patterns
used for HTSI. They are 0-1 values. Fig. 2(b) is sinusoid patterns which are gray values.
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Varying the harmonic order k of sinusoid pattern, we can get a series of encoded spectrum.
The encoded spectrum is in Fourier domain and can be decoded using Inverse Fourier
Transform (IFT). Fig.3 shows the process of encoding and decoding.

(a)

(b)

Figure 2. (a)Hadamard coding patterns, (b)sinusoid patterns

Figure 3. Illustration of the spectrum encoded by sinusoid pattern and
decoded by IFT

For pixel (m,n) on the CCD, the encoded spectrum is given by:

I4(m,n) =
K−1∑
r=0

cos

(
2πkr

K
+ ϕ

)
· I(m,n, λr) (5)

where ϕ is the initial phase; k = 0, 1, · · · , K−1 is the harmonic order; r = 0, 1, · · · , K−1is
used to index the wavebands. The Fourier coefficient P (m,n, k)is obtained by combining
the sinusoidal patterns with phase ϕ = 0 and ϕ = π/2, expressed by:

P (m,n, k) =
K−1∑
r=0

I(m,n, λr) · exp

(
−i2πkr
K

)
(6)

For pixels with different n, the coding pattern of its spectrum has a shift ∆n. The
shift is 1 for adjacent pixels when CCD pixel and DMD coding pixel has the same size.
However, the CCD pixel size is smaller than DMD coding pixel usually. The commonly
used method is merging the CCD pixels to match the DMD coding pixel size. Taking the
Fig. 4 for example, one DMD coding pixel has the same size with 2 CCD pixels. When
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the CCD pixels are merged, the spatial resolution will decrease. Here, the pixels are not
merged and the coding pattern for every pixel is analyzed.

Figure 4. An example of the pixel mismatching and the DMD coding
pixel size is double the CCD pixel. The spectrum of (m,n) is one-to-one
correspondence with DMD coding pixel, but the spectrum of (m,n′) has a
shift and encoded by two DMD coding pixels partially

For the adjacent CCD pixel (m,n′), the wavebands are not one-to-one with DMD coding
pixels. Every waveband is encoded with two neighbor coding values partially. The Eq.
(5) is improved considering the pixel size scale, given by Eq. (7).

I4(m,n
′) =

K−1∑
r=0

[
cos

(
2πkr

K
+ ϕ

)
· d1 + cos

(
2πk(r + 1)

K
+ ϕ

)
· d2
]
· I(m,n′, λr)(7)

where d1 and d2 are relevant with DMD coding pixel size and CCD pixel size.
Changing the sinusoidal pattern using different order k and looping the aforementioned

procedure, a series of Fourier coefficients can be obtained. Then, the pixel spectrum can
be decoded using Inverse Fast Fourier Transform (IFFT).

I(m,n′, λr) = C · F−1 [P (m,n′, k) · Cn′ ] , r = 0, 1, · · ·K − 1; k = 0, 1, · · ·K − 1 (8)

where Cn′ = exp
(
i2πk
K

)
·
[
d1 + d2 · exp

(
i2πk
K

)]
is a constant for pixel (m,n′) and order k.C

is a constant for IFFT.
Similarly, we can get the entire datacube when the spectrum of every pixel is decoded.

2.2. Decoding using modern spectrum estimation. The information of natural ob-
ject is usually sparse in Fourier domain, so the signal can be compressed and only a
part of Fourier coefficients are detected. When k < K, the rest Fourier coefficients are
defaulted as zeros when using IFFT, in fact, they are not all zeros. Here, the modern
spectral estimation [12] is used to improve resolution using limited measurements. AR
(Auto-Regressive) is a linear prediction model that it could be employed for predicting
the rest Fourier coefficients using a set of known data. The q order AR model is used.

P (k) = −
q∑

v=1

avP (k − v) + ω(k) (9)
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where P (k) is the random sequence, in our system it is the Fourier coefficients. ω(k) is
white noise and ak is factor. And its power spectral estimation is:

PAR(w) =
σ2
w∣∣∣∣1 +

q∑
v=1

ave−jwv
∣∣∣∣2 (10)

where σ2
w is the variance of prediction error. The power spectrum can be estimated by

calculating σ2
w and ak. Burg algorithm is a useful method to calculate the parameters

of AR model directly from the detected Fourier coefficients. Then, the spectrum can be
reconstructed using the estimated parameters and appropriate order q.

2.3. Sinusoid pattern generation. As mentioned above, sinusoid pattern is used to
encode the pixel spectrum. This is done using DMD. In general, the sinusoid pattern
shall be a series of gray values. Because of the binary nature of DMD, time dithering
is therefore needed to generate the gray values. The workflow is as Fig. 5. The ideal
sinusoid is firstly sampled according to the DMD coding pixel size. And the gray values
for every coding pixel are obtained. Then several binary values are composed to generate
gray values.

Figure 5. The workflow of generating DMD sinusoid pattern

There are two factors affecting the generated values. The first factor is the DMD coding
pixel sampling. When k is large, the sinusoid period is small. The coding pixel sampling
will not satisfy the Nyquist theory and bring errors. The Fig. 6 is an example. The
sampled pattern is greatly different with ideal sinusoid pattern. The coding pattern error
will bring false detection. Therefore, increasing sampling number may bring extra errors.

The second factor is the number of binary values used for composing a gray value.
For example, the grayscale of the resulting pattern is composed by the L(L = 8) binary
values. Suppose a grayscale value 0.9, 7 binary values should be set to 1 and the other
binary values are set to 0, so as to up to the nearest value 7/8. If L=5, the nearest value
is 4/5 or 1 with larger difference. So, the binary number L must not be too small. The
proper number L will be discussed in the simulation part.

3. Simulation. A sample set of multispectral images [13] is used for simulation. The
image set includes K = 31 wavebands of images from 400nm to 700nm with an equal
spectral spacing of 10nm.

Multispectral images are reconstructed using different number of Fourier coefficients.
The mean Peak Signal to Noise Ratio (PSNR) is used to judge the similarity between the
reconstructed spectral images and the original spectral images. Fig. 7 shows mean PSNR
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Figure 6. The sampled pattern with great errors under small sinusoid
period(k is large)

versus coefficient number. When the number of Fourier coefficients used is larger than 5,
the mean PSNR is over 30dB. It indicates the reconstructed spectral images are similar to
the original images. With the increase of Fourier coefficients number, the mean PSNRs rise
and then reduce. This is consistent with the analysis above. When the number of Fourier
coefficients is large, it will have extra error and decrease the spatial quality. Thanks
to the signal sparsity in Fourier domain, only a part of Fourier coefficients can be used
for reconstruction.And the modern spectrum estimation will improve the reconstructed
spectral images with limited coefficients.

Besides, the effect of binary number L is analyzed. The larger L is better, but larger L
may increase measurement time. According to the Fig. 7, the L=8 is a proper value. To
see the results clearly, Fig. 8 displays the simulation results using 5 Fourier coefficients and
different number L. The reconstructed images with L=5 have slight strips and decrease
the spatial quality. For the L=8, the images are almost the same as original images.

Figure 7. The PSNRs of reconstructed spectral images using different
number of Fourier coefficients and different binary number L

4. Experiment.
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Figure 8. Simulation results using 5 Fourier coefficients and different num-
ber L

4.1. Experiment setup. To further validate our new method, an experimental testbed
is built as shown in Fig. 9. The optical system is similar with HTSI. The grating 1
disperses light and DMD encodes the spectrum. Then, grating 2 recombines the dispersed
spectrum. Finally, CCD detects the encoded spectral images.

Figure 9. A photo of the testbed

The custom-made collimating and focusing lenses (Lens 1, 2 and Lens 3, 4) are opti-
mized for the spectral range from 480nm to 660nm. In the experiments, the entire visible
wavelength between 400 and 700nm are encoded. It covers about 93 DMD pixels and
hence, the number of spectral bands K is set to 93. According to the specifications of
the devices, 2 CCD pixels (QHY21, pixel size is 4.54×4.54µm) are approximately equal
to one DMD pixels in size (DLP4500, pixel size is equivalent to 10.8×5.4µm due to the
diamond pixel configuration).

4.2. Experiment results. In the test, a set of digital numbers with different colors
are used as shown in Fig. 10(a). Fig. 10(b) shows a selection of multispectral images
reconstructed using 9 Fourier coefficients and IFFT method. The digital numbers appear
in the multispectral images gradually. It indicates that the multispectral images can
distinguish different colors exactly. Because the spectrum of every pixel is decoded using
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Eq. (8), the reconstructed spectral images have the same spatial resolution as CCD
detected image without pixel merging.

Fig. 11 shows the corresponding spectral curves. The reference spectrum are measured
by a commercial spectrometer (Manufacturer: Ocean Optics, Model: USB4000). Fig.
11(a), 11(b), 11(c) and 11(d) are the spectral curves at digital number 1, 2, 4 and 5,
respectively. The half-peak width of reconstructed spectrum becomes wider with the
decrease of Fourier coefficients. The spectrum using 9 coefficients is better than the 5
coefficients and more similar to the reference spectrum. Besides, the spectral curves using
AR algorithm with 5 coefficients are similar to the IFFT with 9 coefficients. That is,
AR method improves the reconstructed spectrum when using the same number of Fourier
coefficients.

(a)

(b)

Figure 10. The testing results, (a) photo of the object; (b) reconstructed
spectral images using 9 Fourier coefficients and IFFT

5. Conclusions. This paper introduces a multispectral imaging using sinusoid pattern
and modern spectrum estimation. The sinusoid pattern is used for encoding the pixel
spectrum. And modern spectrum estimation is applied to decode the spectrum using
limited Fourier coefficients. The experiment shows that only a small number of Fourier
coefficients can reconstruct the spectral images well and distinguish different colors. The
reconstructed spectral images have the same spatial resolution as CCD detected image
without pixel merging. And the spectrum is improved using modern spectrum estimation
with the same number of coefficients.
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