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Abstract. In this paper, we will solve sparse regularization with ill-conditioned prob-
lems. Typically, sparse regularization method is appropriate for compressive sensing
problem, where random matrices are well-conditioned. For ill-conditioned problems, for
example image inpainting, image deblurring, sparsity regularization is often unstable.
The motivation of this paper is that the traditional sparse regularization method cannot
effectively recovery the approximate solution with ill-conditioned problems because the
stability of `1 regularization is weaker than `2 regularization in statistics. To improve
the stability of sparsity regularization, a smooth `2 term is added to original sparsity
regularization. This method admits sparsity inverse problems are ill-conditioned. Con-
tributions of this paper are as follows. Convergence of the minimizer and its stability are
studied. A stable multi-parameter thresholding algorithm for ill-conditioned problems are
proposed and numerical results are presented to illustrate the features of the functional
and algorithms.
Keywords: Sparse signal recovery, regularization, Multi-parameter thresholding, Ill-
conditioned problems, balancing principle

1. Introduction. In the present manuscript we are concerned with ill-posed linear op-
erator equation

Kx = y (1)

where x is sparse with respect to an orthonormal basis and K : D(K) ⊂ X → Y is a
bounded linear operator. In practice, exact data y are not known precisely, but that only
an approximation yδ with

‖ y − yδ ‖≤ δ (2)

is available. We call yδ the noisy data and δ the noise level. It is well known that the
conventional method for solving (1) is sparsity regularization, which provides an efficient
way to extract the essential features of sparse solutions compared with oversmoothed
classical Tikhonov regularization.

In the past ten years, sparsity regularization has certainly become an important con-
cept in inverse problems. The theory of sparse recovery has largely been driven by the
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needs of applications in compressed sensing [1, 2], bioluminescence tomography [3], seis-
mic tomography [4], parameter identification [5], etc. For accounts of the regularizing
properties and computational techniques in sparsity regularization we refer the reader to
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the references given there.

The aim of this paper is to consider sparsity regularization functional of the form

J (x) = min
x
‖ Kx− yδ ‖2

`2 +α
∑
i

ωi|〈φi, x〉| (3)

where K is bounded linear ill-conditioned operator, we call (3) `2+`1 problem. In the
past few years, numerous algorithms have been systematically proposed for the `2+`1

problems. For sparsity regularization, the popular algorithms, e.g. homotopy (LARS)
method [16, 17] and iteratively reweighted least squares method (IRLS) [18] cannot be
directly applied to `2+`1 problem if A is ill-conditioned and regularization term lack of
stability. For ill-conditioned problems, these methods are often unstable[20][Chaper 5].

Ill-conditioned sparse linear systems arise in a wide variety of science and engineering
applications, ranging from geomechanical problems to computational number theory. On
the other hand, in spite of growing interests in the ill-conditioned sparse linear systems, we
can indicate limited work has been done for numerical methods of sparsity regularization
with ill-conditioned problems. In [21] Herrholz and Teschke concerned with compressive
sampling strategies and sparse recovery principles for linear inverse and ill-posed prob-
lems. They provide compressed measurement models for ill-posed problems and recovery
accuracy estimates for sparse approximations of the solution of the underlying inverse
problem. Gholami and Siahkoohi[22] adopt sparsity regularization to solve geophysical ill-
posed problems and developed a new regularization scheme for a high resolution solution
of linear and non-linear inverse problems which benefits from the advantages of two differ-
ent sparsifying operators in representation of the desired model. Haber, Magnant etc.[23]
proposed a new numerical methods for A-optimal designs with a sparsity constraint for
ill-posed inverse problems. In[24], Golmohammadi, Khaninezhad and Jafarpour proposed
a group-sparsity regularization for ill-posed subsurface flow inverse problems. Carson and
Higham[25] gave a new analysis of iterative refinement and its application to accurate
solution of ill-conditioned sparse linear systems.

The motivation of this paper is that the traditional sparse regularization method cannot
effectively recovery the approximate solution with ill-conditioned problems because the
stability of l1 regularization is weaker than l2 regularization in statistics[26]. To improve
the stability of sparsity regularization, inspired by multi-regularization theory[31, 32, 33],
a smooth l2 term is added to original sparsity regularization to construct multi-parameter
regularization.

The advantage of problem multi-parameter regularization in place of (3) is that the
regularization effect of `1 penalty is weak, `2 penalty can improve the stability of (3).
Moreover, such functional is appropriate for the sparsity recovery due to the fact that
sparse signal typically contain smooth and impulsive features simultaneously. We inves-
tigate regularizing properties of multi-parameter regularization with ill-conditioned prob-
lems, a stable multi-parameter iterative threshold algorithm is applied to multi-parameter
regularization for numerical solution.

An outline of this paper is as follows. We devote Section 2 to a discussion of regularizing
properties, including well-posedness and convergence rate. In Section 3, multi-parameter
iterative threshold algorithm is applied to compute the minimizers. Section 4 provides
a detailed exposition of multi-parameter choice rule based on the balancing principle.
Finally, Numerical experiments involving compressed sensing and image inpainting are
presented in Section 5, showing that our proposed approaches are robust and efficient.
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2. Regularizating properties. In general, for the approximate solutions of Kx = y,
sparsity regularization is given by

min
x
‖ Kx− yδ ‖2

`2 +α ‖ x ‖pw,p (4)

where ‖ x ‖pw,p=
∑
γ

ωγ|〈ϕγ, x〉|p(1 ≤ p ≤ 2), α is the regularization parameter balancing

the fidelity ‖ Kx − yδ ‖2
`2 and regularization term ‖ x ‖pw,p. The problem (4) is not

convex if p < 1, it is challenging to investigate the regularizing properties and numerical
computing method of minimizers. Limited work has been done for p < 1, we refer the
reader to references [27, 28, 29, 30] for a recent account of the theory.

In this paper, We add the smooth penalty β ‖ u ‖2
`2 to traditional sparsity regularization

(3) to consider the minimization of the following multi-parameter regularization functional

Γα,β(x) = ‖Kx− yδ‖2
`2 + α

∑
i∈N

ωi|〈φi, x〉|+ β‖x‖2
`2 (5)

where R(x) = α‖x‖1
ω,1 + β‖x‖2

`2 , ‖x‖1
ω,1 =

∑
i∈N

ωi|〈φi, x〉|, the subdifferential of R(x) at x

is denoted by ∂R(x) ⊂ X. All along this paper, X and Y denote Hilbert space which is
a subspace of `2 space and 〈·, ·〉 denotes the inner product. K : dom(K) ⊆ X → Y is
a bounded linear operator and dom(K) ∩ dom(R) 6= ∅. (φi)i∈Λ ⊂ X is an orthonormal
basis where Λ is some countable index set. From now, we denote

xi = 〈x, φi〉,
and

‖x‖`2 = (
∑
i

|〈φi, x〉|2)
1
2 = (

∑
i

|xi|2)
1
2 .

To prove convergence rate results we denote by xδα,β the minimizer of the regularization
functional Γα,δ(x) for every α > 0 and use the following definition of R(x)-minimum norm
solution.

Definition 2.1. An element x† is called a R(x)-minimum norm solution of linear problem
Ax = y if

Kx† = y and R(x†) = min{R(x)|Kx = y}.

We define the sparsity as follows:

Definition 2.2. x ∈ X is sparse with respect to {φi}i∈Λ in the sense that supp(x) := {i ∈
Λ : 〈φi, x〉 6= 0} is finite. If ‖supp(x)‖0 = s for some s ∈ N, the x ∈ X is called s-sparse.

In this subsection, well-posedness and convergence rate of the regularization method
are given.

Proposition 2.1. (stability)Let α > 0, β > 0. {yk} and {xk} are two sequences. If
yk → yδ, for every {xk}, there exists

xk ∈ arg min{‖Kx− yk‖2
`2 + α‖x‖1

ω,1 + β‖x‖2
`2}.

Then there exists a convergent subsequence of {xk}. And the subsequence convergence to
the minimizer of (5).

Proof: By definition of {xk}, we have

‖Kxk − yk‖2
`2 + α‖xk‖1

ω,1 + β‖xk‖2
`2

≤ ‖Kx− yk‖2
`2 + α‖x‖1

ω,1 + β‖x‖2
`2

(6)
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for ∀x ∈ dom(K)∩dom(R). As ‖xk‖1
ω,1 and ‖xk‖2

`2 are bounded, there exist a subsequence
{xm} of {xk} and a x̄, such that

xm ⇀ x̄

and

Kxm ⇀ x̄,

where we denote by ⇀ weak convergence. By weak lower semi-continuity of the norm, we
have

‖x̄‖1
ω,1 ≤ lim inf

m→∞
‖xm‖1

ω,1,

‖x̄‖2
`2 ≤ lim inf

m→∞
‖xm‖2

`2
(7)

and
‖Kx̄− yδ‖2

`2 ≤ lim inf
m→∞

‖Kxm − ym‖2
`2 . (8)

Hence that
‖Kx̄− yδ‖2

`2 + α‖x̄‖1
ω,1 + β‖x̄‖2

`2

≤ lim inf
m→∞

(‖Kxm − ym‖2
`2 + α‖xm‖1

ω,1 + β‖xm‖2
`2)

≤ lim sup
m→∞

(‖Kxm − ym‖2
`2 + α‖xm‖1

ω,1 + β‖xm‖2
`2)

≤ lim
m→∞

(‖Kx− ym‖2
`2 + α‖x‖1

ω,1 + β‖x‖2
`2)

= ‖Kx− yδ‖2
`2 + α‖x‖1

ω,1 + β‖x‖2
`2).

(9)

This implies that x̄ is a minimizer of (5), and that

lim
m→∞

(‖Kxm − ym‖2
`2 + α‖xm‖1

ω,1 + β‖xm‖2
`2)

= ‖Kx̄− yδ‖2
`2 + α‖x̄‖1

ω,1 + β‖x̄‖2
`2 .

(10)

Now, assume that

xm → x̄

is false. Then

c := lim sup
m→∞

(‖xm‖2
`2 + ‖xm‖1

ω,1 > ‖x̄‖2
`2 + ‖x̄‖1

ω,1)

and there exists a subsequence {xn} of {xm} such that

xn → x̄,

,

Kxn → Kx̄

and

‖xn‖2
`2 + ‖xn‖1

ω,1 → c.

Then we obtain
lim
n→∞

(‖Kxn − yn‖2
`2)

= ‖Kx̄− yδ‖2
`2 + (α‖x̄‖1

ω,1 + β‖x̄‖2
`2 − c)

< ‖Kx̄− yδ‖2
`2

(11)

in contradict to (8). This argument shows that xm → x̄.

Assumption 2.3. The functional ‖Kx − yδ‖2
`2 vanishes if and only if Kx = yδ, and

satisfies

‖Kx− yδ‖ ≤ c(‖Kx′ − (yδ)
′‖+ ‖Kx− (yδ)

′‖)
for constant c and x

′
with Kx

′
= yδ.
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According to discrepancy principle, we have a appropriate regularization parameter
(α, β) by

‖Kxδα,β − yδ‖2
`2 = cmδ

2 (12)

for some constant cm ≥ 1.
Let ωi = β below.

Theorem 2.1. (convergence)Let Assumption 2.3 be satisfied and the operator K be in-
jective. Then for any (α, β) ≡ (α(δ), β(δ)) satisfying ‖Kxδα,β − yδ‖2

`2 = cmδ
2 and c0 ≤

α(δ)

β(δ)
≤ c1 for some c0, c1 > 0, there holds lim

δ→0
xδα,β = x† in X.

Proof: Because xδα,β is minimizer of the regularization functional Γα,δ(x), which implies
that

‖Kxδα,β − yδ‖2
`2 + (α, β) · (

∑
i∈N

ωi|〈φi, xδα,β〉|+ ‖xδα,β‖2
`2)

≤ ‖Kx† − yδ‖2
`2 + (α, β) · (

∑
i∈N

ωi|〈φi, x†〉|+ ‖x†‖2
`2)

≤ δ2 + (α, β) · (
∑
i∈N

ωi|〈φi, x†〉|+ ‖x†‖2
`2).

(13)

Combination of (13) and discrepancy principle imply that

(α, β) · (
∑
i∈N

ωi|〈φi, xδα,β〉|+ ‖xδα,β‖2
`2)

≤ (α, β) · (
∑
i∈N

ωi|〈φi, x†〉|+ ‖x†‖2
`2).

(14)

Therefore, either ∑
i∈N

ωi|〈φi, xδα,β〉| ≤
∑
i∈N

ωi|〈φi, x†〉|

or ‖xδα,β‖2
`2 ≤ ‖x†‖2

`2 holds. The assumption

c0 ≤
α(δ)

β(δ)
≤ c1

implies that the penalties are bounded. From the coercivity of ‖x‖2
`2 and ‖x‖1

ω,1, we have

the sequence {xδα,β} is uniformly bounded. Thus there exists a subsequence, also denoted

by {xδα,β}, and some x∗, such that xδα,β → x∗ in X. The lower semi-continuity of the

functional ‖Kx− yδ‖2
`2 and Assumption 2.3 yields

0 ≤ ‖Kx∗ − y†‖2
`2 ≤ c lim inf

δ→0
(‖Kx† − yδ‖2

`2 + ‖Kxδα,β − yδ‖2
`2)

≤ lim inf
δ→0

c(1 + cm)δ2 = 0.
(15)

In particular, ‖Kx∗ − y†‖2
`2 = 0, i.e. Kx∗ = y† and K be injective, which imply that

x∗ = x†.
Next we use Bregman distance to measure the convergence rate. The definition of the

Bregman distance in this work is

dξ1(x, x
†) = ‖x‖1

ω,1 − ‖x†‖1
ω,1 − 〈ξ1, x− x†〉

or

dξ2(x, x
†) = ‖x‖2

`2 − ‖x†‖2
`2 − 〈ξ2, x− x†〉.
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Theorem 2.2. [33] (convergence rate)If the exact solution x† satisfies the source condi-
tion:

range(K∗) ∩ ∂(‖x†‖2
`2) ∩ ∂(‖x†‖1

ω,1) 6= ∅.

Then for any α, β solving (12), there exists ξ2 ∈ ∂(‖x†‖2
`2)(or ξ1 ∈ ∂(‖x‖1

ω,1)) such that

dξ2(x
δ
α, x

†) ≤ Cδ

or

dξ1(x
δ
α, x

†) ≤ Cδ.

Proof: Because xδα,β is minimizer, it implies that

‖Kxδα − yδ‖2
`2 + (α, β) · (

∑
i∈N

ωi|〈φi, xδα〉|+ ‖xδα‖2
`2)

≤ ‖Kx† − yδ‖2
`2 + (α, β) · (

∑
i∈N

ωi|〈φi, x†〉|+ ‖x†‖2
`2)

≤ δ2 + (α, β) · (
∑
i∈N

ωi|〈φi, x†〉|+ ‖x†‖2
`2).

(16)

According to discrepancy principle

(α, β) · (
∑
i∈N

ωi|〈φi, xδα〉|+ ‖xδα‖2
`2)

≤ (α, β) · (
∑
i∈N

ωi|〈φi, x†〉|+ ‖x†‖2
`2).

(17)

Consequently, we have that there holds

‖xδα‖2
`2 ≤ ‖x†‖2

`2 (18)

or ∑
i∈N

ωi|〈φi, xδα〉| ≤
∑
i∈N

ωi|〈φi, x†〉|. (19)

Therefore, by the source condition, and Cauchy-Schwarz inequality, we have

dξ(x
δ
α, x

†) = ‖xδα‖2
`2 − ‖x†‖2

`2 − 〈ξ, xδα − x†〉
≤ −〈ξ, xδα − x†〉 = −〈K∗ωi, xδα − x†〉
= −〈ωi, K(xδα − x†)〉 ≤ ‖ωi‖2

`2‖K(xδα − x†)‖2
`2

≤ ‖ωi‖2
`2(‖Kxδα − yδ‖2

`2 + ‖yδ −Kx†‖2
`2)

≤ (1 + cm)‖ωi‖2
`2δ

(20)

where ωi is source representer. The proof is similar if∑
i∈N

ωi|〈φi, xδα〉| ≤
∑
i∈N

ωi|〈φi, x†〉|

3. The Multi-parameter Iterative Threshold Algorithm. The multi-paremeter it-
erative threshold algorithm plays an important role of solving regularization. In this
section, the iterative algorithm will be introduced. Define functional

Θ(x; a) = ‖x− a‖2 − ‖Kx−Ka‖2 (21)

and

Φα,β(x, a) = Γα,β(x) + Θ(x; a). (22)
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Denote ωi := αωi, then

Φα,β(x, a) = Γα,β(x)− ‖Kx−Ka‖2 + ‖x− a‖2

= ‖Kx− yδ‖2 +
∑
i

ωi|〈x, φi〉|+ β‖x‖2

−‖Kx−Ka‖2 + ‖x− a‖2

= ‖x‖2 − 2〈x, a+K∗yδ −K∗Ka〉
+
∑
i

ωi|〈x, φi〉|+ ‖yδ‖2 + ‖a‖2 − ‖Ka‖2 + β‖x‖2

=
∑
i

[x2
i − 2xi(a+K∗yδ −K∗Ka)i

+ωi|xi|] + ‖yδ‖2 + ‖a‖2 − ‖Ka‖2 + β‖x‖2.

(23)

The Euler equation of (23) is

2(1 + β)xi + ωisign(xi) = 2(ai + [K∗(yδ −Ka)]i).

For xi > 0, we have

xi =
1

1 + β
(ai + [K∗(yδ −Ka)]i)−

ωi
2(1 + β)

,

that is
1

1 + β
(ai + [K∗(yδ −Ka)]i) >

ωi
2(1 + β)

.

For xi < 0, we will see that

xi =
1

1 + β
(ai + [K∗(yδ −Ka)]i) +

ωi
2(1 + β)

,

that is
1

1 + β
(ai + [K∗(yδ −Ka)]i) < −

ωi
2(1 + β)

.

Let xi = 0, if

|ai + [K∗(yδ −Ka)]i
1 + β

| ≤ ωi
2(1 + β)

.

To summarize

xi = Sωi,1(
ai + [K∗(yδ −Ka)]i

1 + β
), (24)

where {
〈Kuβ − yδ, p− pβ〉 ≥ 0,

〈vβ, q − qβ〉 ≥ 0
(25)

Sβω,1(u) =


u− ω

2(1+β)
, u ≥ ω

2(1+β)

0, |u| < ω
2(1+β)

u+ ω
2(1+β)

, |u| ≤ − ω
2(1+β)

(26)

The Algorithm 1 is given as follows: Multi-parameter iterative threshold method for Φα,β,
1:Choose a, set ω0, α0, β0, x0 = a, n = 1
2:xn = S

βn−1

ωn−1,1
(xn−1 +K∗(yδ −Kxn−1))

3:Compute αn and βn using fixed point Algorithm 2
4:Compute ωn = αn · ωn−1

5:n = n+ 1
Until a stopping criterion satisfied.
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4. Choice of parameter α and β. The choice of regularization parameter of (5) is also
important for the performance of algorithm from the numerical perspective. Morozov
discrepancy principle is a good choice from theoretical perspective. However, it is difficult
to compute because we usually cant obtain accurate estimate of noise. So in this paper
we adopt balance principle. The solution uδα,β of Γα,β(x) in (3) converges theoretically to

the solution uδα of J (x) in (5) as β → 0. Obviously smaller β is better. However, the
smaller β weaken the regularization effect of the `2 penalty, which leads to instability. If
the solution is sparse, we can say that the non-zero coefficients are impulsive parts and
the zero coefficients are smooth parts. Multi-parameter optimization functional

Γα,β(x) = ‖Kx− yδ‖2
`2 + α

∑
i∈N

ωi|〈φi, x〉|+ β‖x‖2
`2 (27)

is a conventional method for ill-posed problems if the solutions have a number of different
structures. In [31, 33], numerical experiments show that multi-parameter regularization
can recover the different part of solutions efficiently. If the solutions contain only a sin-
gle structure, multi-parameter regularization also have better performance. So when we
choose the parameters α and β, it is not necessarily require the parameter β tending to
zero. A conventional method for the choice of parameters α and β is multi-parameter
regularization choice principle, e.g., discrepancy principle[31], balance principle[33]. In
this paper, we use multi-parameter balance principle for the choice of regularization pa-
rameters α and β.

Balance principle is to compute minimizers of the function

Φγ(α, β) = cγ
(inf ‖ Ku− yδ ‖`1 +α ‖ u ‖`1 +β ‖ u ‖2

`2)
γ+2

αβ
, (28)

where cγ is a fixed constant, (28) is equivalent to [33]

γα ‖ uδα,β ‖`1= γβ ‖ uδα,β ‖2
`2=‖ Kuδα,β − yδ ‖`1 . (29)

The Algorithm 2 is given as follows:
Fixed point algorithm for α and β according to eq.(29),
1:Choose α0 and β0, and let k=0

2:uk+1 = arg min
x

(‖ Ku− yδ ‖`1 +α ‖ u ‖`1 +
β

2
‖ u ‖2

`2)

3:αk+1 =
1

1 + γ

‖ Kuk+1 − yδ ‖`1 +β ‖ uk+1 ‖2
`2

‖ uk+1 ‖`1

βk+1 =
1

1 + γ

‖ Kuk+1 − yδ ‖`1 +β ‖ uk+1 ‖`1
‖ uk+1 ‖2

`2

Until a stopping criterion satisfied.

5. Numerical implementation. In this section, we present practical application frame-
work and some numerical experiments to illustrate the efficiency of the proposed method.
In Section 5.1, we first discuss the practical application framework that how to apply
our theory in practical applications. In Section5.2, we give three examples including
well-posed and ill-posed problems to support our theory.

5.1. Practical application framework. To apply our theory in practical applications,
the first step i.e. how to choose orthogonal basis or dictionary is critical. If the true
image or signal is sparse itself, then it is not necessary to choose orthogonal basis. On the
contrary, if the true image or signal is not sparse, we should choose suitable basis where
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image is sparse under the basis. Traditional selection for basis is wavelets. Wavelets pro-
vide orthogonal bases of L2(Rd) with localization in space and in scale. This makes them
more suitable than, e.g., Fourier expansions for an efficient representation of functions
that have space-varying smoothness properties. However, wavelets are not suitable for
the images which have lots of curve. On the contrary, in order to obtain more efficient
(sparser) expansions of image which have lots of curve, other expansions have to be used,
using e.g. ridgelets, curvelets or shearlet.

A strict sparsity assumption, as introduced above, is that the orthogonal basis has
to be perfectly adapted to the original image or signal, in the sense that image is only
allowed to have finitely many non-zero expansion coefficients with respect to basis. While
in some application the basis arises naturally, in other applications this might not be
the case. For example if there is a natural image e.g. of a human face, which basis
should be chosen to ensure sparsity? One remedy to this problem might be to choose
a more general basis than an orthogonal basis, say a frame or a dictionary. However,
the heart of the problem remains unchanged, even in these cases: the function is still
allowed to have only finitely many non-zero expansion coefficients. Furthermore, one must
be very cautious when dealing with function systems which are non-orthogonal, since a
badly chosen system might worsen the stability of the reconstruction and hence render it
meaningless. Fortunately, in most cases one has an idea which system should be chosen,
in order to ensure almost sparsity. By this we mean that only a small number of expansion
coefficients carry almost all information about image. Returning to our example of face
images, it is well-known that the Fourier-basis or the Daubechies-basis are good choices,
since images are almost sparse with respect to these basis. Image compression algorithms
like the JPEG algorithm or the JPEG2000 algorithm employ this idea in order to store
images in an efficient way.

If a strict sparsity assumption is hold, then at the next step, the linear equation Kx = yδ

should be discretized to a matrix equation. For example, if it is a image denoising problem,
then linear operator K is discretized to the identity matrix. If the linear equation is inverse
integration (or differentiation) equation, then linear operator K is discretized to the lower
triangular matrix. Then the linear equation Kx = yδ is discretized to a discrete system
Kx = yδ where K is K : RN → RN .

With the discrete system, one can construct optimization functional

Γα,β(x) = ‖Kx− yδ‖2
`2 + α

∑
i∈N

ωi|〈φi, x〉|+ β‖x‖2
`2 (30)

Given initial value u0,α0, β0, ω and noise level δ, one can use Algorithm 1 to solve u1.
Then one can use Algorithm 2 to solve α1, β1. Then with the update u1,α1, β1, one
can solve the new iterative image u. Until the stop principle is fulfilled, one can obtain
the numerical solution. With some evaluation criteria, e.g. PSNR, one can evaluate the
performance of our method with other algorithm.

5.2. numerical experiments. In Section5.2.1, we first compare the performance of
the multi-parameter iterative threshold(MPIT) method with the alternating direction
mehtod(ADM) and truncated Newton interior-point(TNIP) method by well-conditioned
compressive sensing problems. In the second example, we discuss an ill-conditioned prob-
lem where the condition number of linear operator K is 255, we aim to demonstrate that
the proposed method is stable. In Section5.2.2, we discuss the image inpainting where
images are sparse with respect to the Daubechies 4 wavelets. For image inpainting, the
linear operator K is moderate ill-conditioned and the condition number is around 4000.
To compare the restoration results, the quality of the computed solution x is measured
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by relative error Rerr and PSNR which are respectively defined by

Rerr(x) =
‖x− x†‖
‖x†‖

× 100% (31)

and

PSNR(yδ) = −20log10(
‖x− x†‖

n
). (32)

where x and x† are iterative solution and true solution respectively. All experiments were
performed under Windows 7 and Matlab R2010a on Thinkpad P50s with Intel Core i7
6500U CPU 2.50GHz 2.59GHz and 8GB RAM.

5.2.1. Comparison of MPIT with ADM-`2 and TNIP. This example involves compressive
sensing problem

Kx = yδ (33)

where matrix K is random Gaussian, yδ = Kx† + δ is the observed data containing
white noise. We present the comparison results of MPIT with ADM-`2 and TNIP. ADM-
`2[15] is an efficient alternating direction method for `2+`1 problem. TNIP[34] method
uses truncated Newton interior-point for `2+`1 problem. In the first experiment, we use
random Gaussian matrix Am×n, where sampling length is m, signal length n = 200.
The condition number of random Gaussian matrix Am×n is around 5. The signal is p-
sparsity. We add 1% Gaussian noise to exact signal. For each fixed pair (m, p), we
take 100 iterations, where m/n=0.5,0.4,0.3,0.2 and 0.1, p/m=0.1 and 0.2. Fig.1 presents
comparison results for three different iterative algorithms. The left column describes
convergence rates of Rerr(x) for p/m = 0.1. The right column describes convergence
rates of Rerr(x) for p/m = 0.2. m/n increase from top to bottom row. As can be seen
from Fig.1, ADM-`2 converges faster than DSPG and the accuracy is better than MPIT
when m/n = 0.4. With m/n decreasing, MPIT method performs more competitively.
The accuracy of MPIT method is even better than ADM-`2 when m/n = 0.1. Though
the optimal relative error of ADM-`2 is better than MPIT method, the corresponding
optimal iteration number or stopping tolerance is difficult to estimate in practice. The
TNIP method converges obviously faster than ADM-`2 and MPIT method. However, the
accuracy of the two algorithms is worse compared with ADM-`2 and MPIT method no
matter what value the m/n is.
Next, in order to test the stability of the MPIT for ill-conditioned problems, we use matrix
An×n(n=200) whose condition number is 255. This problem was discussed by Lorentz in
[10] where the ill-conditioned matrix is generated by Matlab code: ”A=tril(ones(200))”.
The signal is p-sparsity where p/n=0.1 and 0.2. We add 1% Gaussian noise to data.
As can be seen from Fig.2, MPIT converge obviously faster than the ADM-`2 method.
The relative error of MPIT method is also better than ADM-`2 method. It is shown
that MPIT method is stable even for large condition number matrices. In Table.1, data
contain Gaussian noise with corruption Rerr(δ)=0.1%,0.3%,0.5%,1%,3%,5%,10%. As can
be seen from Table.1, the quality of restoration improves as noise level δ decreasing.
Theoretically, ADM-`2 and MPIT method are adept to process Gaussian noise. However,
ADM-`2 method is sensitive to noise when the operators are ill-conditioned. In this case,
ADM-`2 cannot obtain reasonable restoration. MPIT methods are more stable to noise
level δ even if matrix K has large condition numbers. For low noise levels, MPIT methods
have advantage over the other two methods. For high noise levels, the restoration results
of ADM-`2 method are similar with TNIP methods. Restoration results of the MPIT
method are obviously better than the other two methods.
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Figure 1. Comparisons of MPIT with ADM-`2 and TNIP
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Figure 2. Comparisons of MPIT with ADM-`2 and TNIP

Gaussian Noise
δ

TNIP
Rerror PSNR

AMD-`2

Rerror PSNR
MPIT

Rerror PSNR

0.1% 0.590% 52.87 0.707% 51.85 0.374% 55.65
0.3% 1.562% 46.98 1.607% 46.13 0.648% 52.26
0.5% 2.275% 43.09 2.556% 42.63 0.956% 49.26
1.0% 3.208% 38.08 3.932% 37.02 2.955% 41.45
3.0% 4.609% 36.12 5.156% 34.65 4.973% 38.12
5.0% 8.598% 30.45 9.963% 29.96 6.325% 35.25
10% 18.80% 24.76 18.98% 24.32 13.68% 30.28

Table 1. Comparison of different algorithms

5.2.2. Image inpainting. We present the comparison results of multi-parameter iterative
threshold(MPIT) algorithm with soft iterative threshold(SIT) algorithm by 2D image
inpainting problems. The image is Lena(n=128; cf. Fig.3). We randomly remove 40%
pixels of Lena to create an incomplete image. In this case, the image inpainting is a
moderate ill-conditioned problem. The condition number of the matrix is around 4000.
For our purpose, we make use of Daubechies 4 wavelet basis as a dictionary. We use
four scales, for a total of 8192× 512 wavelet and scaling coefficients(cf.Figure 3). As seen
from Fig.3, the representation of the image with respect to Daubechies 4 basis is sparse.
We add Gaussian noise by Matlab code ”imnoise(image, ’gaussian’, m, v)” . In the first
example, m = 0 and v = 0.05, the restoration results are shown in Fig.3. In this case, the
operator K is moderate ill-conditioned, performance of MPIT is obviously better than
SIT due to fact that regularization β‖x‖2

`2 improve the stability. Restoration results of
four images with different noise levels v are given in Table.2. Restoration results show
that if images have a sparse representation with respect to an orthogonal basis, MPIT
method are competitive, which can obtain satisfactory results even if the image inpainting
are moderate ill-posed problems.

6. Conclusions. To extend sparsity regularization method to moderate ill-conditioned
problems, we applied multi-parameter optimization functional method to sparse inverse
problems. Well-posedness and convergence rate are given. For numerical solutions, we
have proposed a novel multi-parameter iterative threshold (MPIT) method for sparsity
regularization. Numerical results indicate that the proposed MPIT algorithm performs
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Figure 3. Restoration of Lena with Gaussian noise, m=0,v=0.01

competitively with several state-of-art algorithms such as ADM method. We remark
that for well-conditioned problems e.g. compressive sensing, optimal accuracy of ADM-
`2 is better than DSPG method. However, the optimal accuracy of ADM-`2 method is
strongly depended on stopping tolerance values which can be difficult to estimate in prac-
tice. On various classes of test problems with different condition numbers, the proposed
MPIT method is more stable with respect to noise levels compared with ADM-`2 and soft
threshold algorithm.
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Gaussian Noise
v

Boat
SIT MPIT

Babara
SIT MPIT

Goldhill
SIT MPIT

0.005 23.26 25.54 22.01 24.32 24.65 26.96
0.01 21.13 23.23 19.84 21.85 23.56 25.31
0.02 19.06 21.45 18.86 20.25 21.95 24.32
0.03 16.85 19.89 16.19 19.08 19.52 22.46
Table 2. Comparison of MPIT and SIT
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