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Abstract. The power grid is one of the most important real-world networks nowadays
and has been widely studied as a kind of complex network. It has been developed for
more than one century and becomes an extremely huge and seemingly robust system. But
it becomes extremely fragile as well because some unexpected minimal failures may lead
to sudden and massive blackouts. Many works have been carried out to investigate the
structural vulnerability of power grids from the topological point of view based on the
complex network theory. This paper focuses on the structural vulnerability of the power
grid under the effect of selective node removal. We test the effectiveness of the Laplacian
centrality in guiding the node removal based on several IEEE power grids. Simulation
results show that, compared with other node centralities such as degree centrality (DC),
betweenness centrality (BC) and closeness centrality (CC), Laplacian centrality (LAPC)
is effective to guide the node removal and can destroy the power grid in less steps.
Keywords: Power grids, Complex networks, Vulnerability, Centrality, Laplacian Cen-
trality.

1. Introduction. Outages of power systems affect a country severely in many respects,
and the catastrophic consequences of blackouts may remind terrorists to mount attacks
by exploiting the vulnerabilities of power systems. Many scholars have been interested in
this topic and carried out lots of works in this area [1, 2]. Unfortunately, these works are
mostly based on classical and detailed physical models which need complete information
including system operation data. In fact, neither attackers nor defenders can predict the
exact system operating states before the attacks are really preformed. Therefore, the
problem of malicious threat should be analyzed from statistical and general perspective
by a new theory.

In the past two decades, complex networks have received considerable attention, espe-
cially since the small-world [3] and scale-free [4] properties were discovered in many real
networks. Since power grids have been widely thought of as a typical type of complex
network, many works have utilized complex network concepts and properties to analyze
the structural vulnerabilities [5] or cascading failure mechanisms [6] of power grids. For
most real complex networks, they are considerably resilient against random removal or
failure of individual units. However, when the highly connected elements are the target
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of the removal, they may be very fragile. Such guided attacks have dramatic structural
effects, typically leading to network fragmentation for many small-world networks with
skewed power-law degree distributions [7, 8]. Power grids, having less skewed exponential
degree distributions and often without small-world topology, display similar patterns of
response to node loss [9].

From a topological viewpoint, various measures of the importance of a network element
(link or node), i.e. the relevance of its location in the network with respect to a given
network performance, can be introduced to guide the node removal. Typically, different
node centralities [10, 11, 12, 13], such as degree centrality (DC), betweenness centrality
(BC) and closeness centrality (CC), can be used to guide the node removal. In this paper,
we present using Laplacian centrality to guide the node removal. This centrality will
be compared with some existing centralities, as well as the random removal scheme, in
attacking several IEEE power grids.

2. Node Centralities.

2.1. Traditional Centralities. In this paper, we model a power grid as an undirected
and unweighted network. For a power grid with N nodes and M transmission lines, we
can describe it as a complex network G(V,E), where V is the set of nodes and E is the
set of links with |V | = N and |E| = M . Centrality measures are used to rank the relative
importance of nodes or links in a complex network. There are various centrality measures
for a node. Here, we introduce the definitions of three kinds of widely used centralities,
i.e., degree centrality (DC), betweenness centrality (BC), and closeness centrality (CC).

The simplest centrality for a node is its degree. This centrality represents the connec-
tivity of a node to the rest of the network and reflects the immediate chance for a node to
exert its influences to the rest of the network. For a power grid with N nodes, the degree
of Node vi(1 ≤ i ≤ N), denoted as ki, is defined as the number of links connected to it.
Then, the degree centrality of Node vi , which is a normalized value, can be defined as
follows:

CD
i =

ki
N − 1

(1)

Node betweenness is one of the most widely used centrality measure. This measure
reflects the influence of a node over the flow of information between other nodes, especially
in cases where the information flow over a network primarily follows the shortest available
path. Given an undirected graph G(V,E), the betweenness of Node vi, denoted as Bi,
is defined as the number of times the node vi acts as a bridge along the shortest path
between two other nodes:

Bi =
∑

allj,k,j 6=k 6=i

σjk(vi)

σjk
(2)

where σjk denotes the number of shortest paths from Node vj to Node vk and σjk(vi) is
the number of those paths that pass through Node vi. Then, the betweenness centrality
of Node vi, i.e., the normalized value of Bi, can be defined as follows:

CB
i =

Bi

(N − 1)(N − 2)/2
(3)

The closeness centrality of Node vi describes the level at which Node vi can on average
reach all other nodes in the network. It is the mean geodesic distance (i.e., the shortest
path length in hops) between Node vi and all the other nodes reachable from it:

CC
i =

∑
vj∈V,j 6=i dij

(N − 1)
(4)
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Table 1. The time complexity of four centralities

Centrality DC BC CC LAPC
Time Complexity O(n) O(n3) O(n3) O(m)

where dij is the shortest path distance between Node vi and Node vj.

2.2. Laplacian Centrality. Although the degree centrality is easy to calculate, using
the degree centrality to identify the node importance is incomplete because it only con-
siders the direct connections to a target node. That is, the degree centrality is hard to
characterize the global feature of the network. The betweenness centrality and closeness
centrality are effective, but they are computationally intensive for large-scale networks.
It may be more reasonable to use the information of a node itself and its neighbors to
better characterize the centrality. Thus, we propose a new kind of centrality called overall
information centrality, which can be described as follows.

Qi et al. [14] introduced Laplacian matrix and Laplacian energy for a graph and defined
the Laplacian centrality for a vertex. In particular, the Laplacian centrality of a vertex is
defined as the relative drop of Laplacian energy in the network caused by the deactivation
of this vertex from the network. Let G be an undirected simple (without graph loops or
multiple edges) graph, consisting of a set of n vertices V (G) = {v1, v2, . . . , vn} and a set
of m edges E(G) = {e1, e2, . . . , em}. The number of edges that are incident to a vertex
is called the degree of the vertex. Let A(G) = (ai,j)n×n be the adjacency matrix of the
graph G where the element ai,j equals 1 if there is an edge between vertices i and j , and
0 if there is not. And diagonal matrix is shown as follows

D(G) = diag(d1, d2, . . . , dn) (5)

where di is the degree of node i. Then the Laplacian matrix of the graph G is

L(G) = D(G)− A(G) (6)

Let λ1, λ2, . . . , λn are the eigenvalues of its Laplacian matrix L(G). The Laplacian
energy of G is defined as the following invariant:

EL(G) =
n∑

i=1

λ2i (7)

EL(G) =
n∑

i=1

{d2i + di} (8)

H is the graph obtained by removing vertex from G and the Laplacian centrality (LAPC)
CL

i of vertex i is defined as

CL
i = (∆E)i = EL(G)− EL(H) (9)

The time complexity of above centralities is shown in Table 1. From Table 1, we can see
that the Laplacian centrality offers substantial advantages to the other measures when
examining large scale networks. We admit that the degree centrality runs faster than
the Laplacian centrality, but it only supplies us very local information for each vertex,
which is less reliable. While the Laplacian centrality not only takes the local environment
around it into account but also the larger environment around its neighbors, making it
an intermediate between the global and local characterizations of the position of a vertex
in a network.
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3. Structural Vulnerability Analysis of Power Grids Guided by Centralities.
The basic idea for analysis of structural vulnerabilities of power grids based on complex
network theory is to compare the network performance before and after the attacks or
failures of some components. Thus, we need at least two indices, one is for the guidance of
element removal from the power grid, the other is to characterize the network completeness
of the remained graph after each step of attacking. In this paper, we call the former
index as the guidance index, while the latter as the vulnerability index. That is to say,
the centralities presented in Section 2 are used as guidance indices. For vulnerability
indices, several metrics have been proposed to evaluate the completeness of the network
in the literatures, the frequently used ones including the relative size of giant component,
efficiency, and the average geodesic distance [15, 16]. In this paper, we use the relative
size of giant component to measure the vulnerability of power grids. The relative size of
giant component R′ indicates the ratio of the size of the largest connected sub-graph Rt

to the size of the whole network R0 as follows:

R′ =
Rt

R0

(10)

where R0 is the size of giant component of the initial network (i.e., R0 = N if the original
network is connected), Rt is the size of giant component of the remained network after
the t-th step of node removal guided by the guidance index. The detailed process can be
described as follows:

Step 1: Calculate the centralities Ci(1 ≤ i ≤ N) of all the nodes in the original graph
G(V,E), and sort them in descending order with C1 ≥ C2 ≥ . . . ≥ CN . Set t = 0 and
f = 0, where t denotes the number of iterations performed while f means the fraction of
nodes removed. Set R0 = N for the connected network G(V,E).

Step 2: Let t = t+ 1, remove Node vt from the network (also all the links connected to
it), obtaining the resulting graph Gt(V,E).

Step 3. Calculate the size of giant component of Gt(V,E) denoted as Rt, let f = t/N ,
and then calculate the corresponding relative size of the giant component R′ based on Eq.
(10). Record the pair (f,R′) in the resulting data list.

Step 4. Repeat Steps 2 and 3 for at most N − 1 times until Rt = 1.
Step 5. Finally, based on the recorded data list, we draw the resulting chart to reflect

the relationship between f and R′.

4. Experimental Results. In this Section, we adopt five IEEE power grids as well as
the US power grid to test the effectiveness of the Laplacian centrality in analyzing the
structural vulnerability of power grids. These six power grids are with 14, 30, 39, 145,
162 and 4941 nodes respectively. Firstly, we show some basic topological features of
these power grids in Table 1, including the number of nodes N , the number of links M ,
the average degree < k >, the clustering coefficient C, the diameter D and the average
path length L and the degreeCdegree correlation coefficient rd, aiming at discover the
relationship between the Laplacian centrality and rd. From Table 2, we can see that
IEEE145 and IEEE162 are both assortative while other power grids are disassortative or
neutral, while in the reality normal power grid networks would be disassortative or neutral.
We also show the degree distributions of these power grids in Fig.1. From Fig.1, we can
see that the IEEE145 power grid obviously exhibits the small-world property because its
clustering coefficient is large and its average path length is short. From Fig.1, we can see
that for all power grids, the degree value 2 has the maximal occurrence probability, if we
remove the point of degree 1, all degree distributions are close to power-law distribution,
so these six power grids tend to be scale-free.
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Table 2. The topological features of six IEEE power grids

Network N M < k > C D L rd
IEEE14 14 20 2.857 0.367 5 2.374 −0.074
IEEE30 30 41 2.733 0.235 6 3.306 −0.087
IEEE39 39 46 2.359 0.038 10 4.749 −0.276
IEEE145 145 453 6.251 0.543 11 4.391 0.192
IEEE162 162 284 3.517 0.099 12 5.657 0.371
USPower 4941 6594 2.669 0.103 46 18.99 0.003
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F  1. Degree distributions of six power grids. 

Figure 1. Degree distributions of six power grids.

In order to show the superiority of the Laplacian centrality in guiding the network
attack, we compare Laplacian centrality (LAPC) with four schemes, i.e., random remove
(RR), degree centrality (DC) based, betweenness centrality (BC) based and closeness
centrality (CC) based schemes. The comparison results are shown in Fig. 2, where the
abscissa axis f means the fraction of removed nodes and the longitudinal axis R’ denotes
the relative size of giant component.

From Fig.2, we can see that, for all power grids, the random remove scheme is the
worst scheme to attack the power grid. For most power grids, LAPC can best guide
the node remove process to fragmentize the network as soon as possible. However, for
the IEEE145 power grid, the BC centrality is better than the Laplacian centrality at
the beginning. This may be related to the average degree, because the descending order
of the average degree is IEEE145>IEEE162>IEEE14>IEEE30>USPower>IEEE39, while the
performance is just opposite. That is, the less the average degree is, the more important
the mutual information tends to be, and thus the more effective the Laplacian centrality
is. Fortunately, nearly for all power grids, most nodes has the degree value 2, which makes
the Laplacian centrality more effective.

5. Conclusions. This paper investigates the structural vulnerability of power grids based
on centralities. According to our simulation tests, we find that some power grids are small-
world networks with relatively high coefficient and small average path length. And power
grids have a nearly power-law degree distribution, showing scale-free properties. Laplacian
centrality not only takes the local environment around it into account but also the larger
environment around its neighbors, making it an intermediate between the global and local
characterizations of the position of a vertex in a network. From the simulation results,
we can conclude that the attack based on Laplacian centrality causes a great damage at
the beginning of attacking process for power grids are disassortative or neutral while in
the reality normal power grid networks would be disassortative or neutral. So, Laplacian
centrality could be introduced to the research of power grids.
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Figure 2. Performance comparisons among different attacking strategies.
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[9] M. Rosas-Casals, S. Valverde, and R. V. Soĺ,Topological vulnerability of the European power grid
under errors and attacks, International Journal of Bifurcation and Chaos in Applied Sciences and
Engineering, vol. 17, no.7, pp. 2465-2475, 2007.

[10] S. Iyer, T. Killingback, B. Sundaram, and Z. Wang, Attack robustness and centrality of complex
networks, PloS One, vol. 8, no. 4, pp. 8-11, 2013.

[11] J. Hadidjojo and S. A. Cheong, Equal graph partitioning on estimated infection network as an
effective epidemic mitigation measure, PloS One, vol. 6, no. 7, p. e22124, 2011.

[12] Y. Chen, G. Paul, S. Havlin, F. Liljeros, and H. Stanley, Finding a Better Immunization Strategy,
Physical Review Letters, vol. 101, no. 5, pp. 2 C 5, 2008.

[13] C. M. Schneider, T. Mihaljev, and H. J. Herrmann, Inverse targetingAn effective immunization
strategy, Europhysics Letters, vol. 98, no. 4, p. 46002, 2012.

[14] X. Q. Qi, R. D. Duval, and K. Christensen, Terrorist Networks, Network Energy and Node Removal:
A New Measure of Centrality Based on Laplacian Energy, Social Networking, vol. 2, no. 1, p. 19-31,
2013.

[15] P. Holme, B. Kim, C. Yoon, and S. Han, Attack vulnerability of complex networks, Physical Review
E, vol. 65, no.5, pp.056109, 2002.

[16] P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda, Efficiency of scale-free networks: error and
attack tolerance, Physica A, vol. 320, no. 15, pp. 622-642, 2003.


