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Abstract. To reduce the probe cost and improve the accuracy of the link loss inference,
a novel algorithm under network tomography framework is proposed. The number of
end-to-end paths is reduced by using minimal cover set measurements. Meanwhile, the
accuracy of the link loss inference is improved by the implement of solving linear equations
and compressive sensing techniques. Taking into account the constraints in compressive
sensing theory, an approach for constructing a novel network tomography model that
obeys the constraints of compressive sensing is developed. Simulation results show that
this algorithm can obtain a higher accuracy with less end-to-end measurement paths.
Keywords: Network tomography, Loss rates, Minimal cover set, Compressive sensing

1. Introduction. With the growing scale of the Internet, the instability of the network is
also increasing. To manage and optimize the network, it is essential to obtain the network
performance parameters (e.g. loss rate and delay) accurately and timely[1, 2]. Network
tomography which can obtain the internal network parameters without the cooperation of
internal nodes, has become one of the focused research technologies in the field of network
measurement [3].

Under the network tomography framework, the number of end-to-end measurements
is not sufficient to determine the unique state of each link. Therefore, this problem
is generally under-determined. Many algorithms have been proposed to address above
problem. CLINK [4] uses multiple measurements to learn the probabilities of network
links congested. LIA [2] eliminates the least congested links (with the smallest variances)
from the system equations, and obtains a full column rank system. Netscope proposed in
[5] improves LIA by using l1-norms minimization with non-negativity constraints. How-
ever, both LIA and Netscope use 10-100 snapshots in their methods to infer the link loss
variances, which imposes too much additional traffic to the network. Moreover, the com-
plexity of those algorithms grows exponentially with the increasing number of available
end-to-end paths. ELIA [6] is composed of two phases. In the first phase, an approach is
developed to find all links that can be determined directly. In the second phase, loss rates
of rest links can be inferred with high accuracy by solving the utility maximization prob-
lem. NLPA [7] converts the link loss rate inference problem into the solution of non-linear
programming issue. In contrast to LIA, NLPA has no extra deployment costs.
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Selecting probing paths is the major issue of probe-based network link monitoring.
Generally, there are two important considerations, minimizing probing cost and achieving
identifiability. The probing cost is mainly defined as the number of selected probing paths
[8, 9, 10, 11]. For an overlay network with n end hosts, all existing systems require O(n2)
measurements. SPA which selectively monitors k linearly independent paths that can
fully describe all the O(n2) paths is proposed in [8], and the value of k is equal to the
rank of the routing matrix. The loss rates and latency of these k paths can be used
to estimate the loss rates and latency of all other paths. In [11], all network links are
classified into two types. If the performance parameter of a link can be uniquely inferred
by a set of probes, this link is identifiable. Otherwise, the link is unidentifiable. Given a
set of links to monitor, the objective is to select the minimum number of probing paths
that can uniquely determine all identifiable links and cover all unidentifiable links.

In this paper, an efficient loss inference algorithm is developed. With the implement of
minimal cover set measurement, the routing matrix which indicates both identifiable and
unidentifiable links of the network is simplified, which means loss inference problem can
be solved by utilizing less measurement paths. Meanwhile, link loss rates of the network
can also be achieved accurately with the combination of the solution of linear equations
and compressive sensing techniques.

The rest of this paper is organized as follows. Section 2 introduces the network model
and inference problems of the unicast network measurement. Section 3 shows the path
selection algorithm for end-to-end measurements with minimal cover set. Section 4 de-
scribes the process of link loss rate inference. Section 5 evaluates the performance of the
proposed algorithm. Finally, section 6 concludes the paper.

2. Network Model & Inference Problems.

2.1. Network Model. The network is modelled as a directed graph G = (V,E), where
the set of nodes V = {v1, v2, ..., vnv} denotes the network routers/hosts and the set of edges
E = {e1, e2, ..., ene} represents the communication links connecting them. The numbers of
nodes and edges are denoted by |V | and |E|, respectively. Let P = {p1, p2, ..., pnp} be the
set of all paths between the sources and the destinations, and |P | is the number of paths.
The routing matrix R of dimension np × ne is defined as follows. The entry Ri,j = 1 if
the path pi contains the link ej. Each row of R therefore corresponds to a path, whereas
a column corresponds to a link.

In the example of Figure.1, each of the two sources S1 and S2 sends probes to four
destinations D1, D2, D3 and D4. The routing topology contains 7 end-to-end paths and
10 directed links as shown in this figure. Any sequence of consecutive links without a
branching point cannot be distinguished from each other using end-to-end measurements,
so those links can be combined into one virtual link. As shown in Figure.1, links e7 and
e10 cannot be distinguished, they will be converted into a link e7.

The routing matrix can be expressed by Eq.(1):

R =



1 0 1 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 1


(1)

All paths in the network are listed in Table.1.
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Figure 1. Network model

Table 1. Paths in the network shown in Figure.1

Paths Path routes
p1 e1 → e3 → e8
p2 e1 → e3 → e9
p3 e1 → e4
p4 e2 → e5 → e8
p5 e2 → e5 → e9
p6 e2 → e6
p7 e2 → e7 → e10

2.2. Assumptions.

2.2.1. Time-Invariant Routing. The routing matrixR is assumed to be unchanged through-
out the measurement period. This assumption can be violated in the Internet where rout-
ing changes can happen at any time-scale. To overcome the influence of routing changes,
the network topologies should be measured frequently. However, this process is neglected
because it requires a significant amount of repeated traceroute measurements, which is
prohibitive in many networks.

2.2.2. Link Independence. The packet loss is assumed to be independent among links.

Let φ̂k be the random variable describing the fraction of probes traverses link ek in the

current round. The random variable φ̂k is assumed to be independent. This assumption
may also not apply to all links, however previous work [12] shows that the correlation of
network links is weak and does not significantly affect the accuracy of their diagnosis.

2.2.3. Identical Sampled Rates. This assumption means the characteristics of links in the

network are stable during the measurement process. For each path pj, let φ̂jk be the

fraction of probes that traverses link ek successfully, then we have φ̂k = φ̂jk.

2.3. Loss Rate Inference. For each path pj, Φ̂j is defined as the random variable
describing the fraction of probe packets that arrives the destination of the path pj. Its

transmission rate is defined as Φj = E(Φ̂j). Similarly, the transmission rate of link ek is

defined as φk = E(φ̂k).
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Let L = {e1, e2, ..., es}, e1, e2, ..., es ∈ E be links that path pj pass through, the relation-
ship between the transmission rates of path pj and links can be formulated as follows.

Φj =
s∏

k=1

φk (2)

Let Ψj be the loss rate of path pj, where Ψj = 1 − Φj. Similarly, the loss rate of link
ek can be defined as ϕk = 1− φk, then Eq.(2) can be expressed as follows.

1−Ψj =
s∏

k=1

(1− ϕk) (3)

Taking the logarithms on both sides of Eq.(3).

log(1−Ψj) =
s∑

k=1

log(1− ϕk) (4)

The routing matrix R represents the relationship between paths and links, so Eq.(4)
can be rewritten with R as follows.

log(1−Ψj) =
ne∑
k=1

Rjk log(1− ϕk) (5)

Let x = [log(1−ϕ1), ..., log(1−ϕne)]
T , y = [log(1−Ψ1), ..., log(1−Ψnp)]T . Then Eq.(5)

can be rewritten as follows.

y = Rx (6)

To identify loss rates of individual links, Eq.(6) has to be resolved. Normally, the
number of rows in R is much larger than the number of columns. Unfortunately, R is
still column-deficient in most cases. As a result, the unique solution cannot be obtained
without additional information on the system.

3. Path Selection based on Minimal Cover Set.

3.1. Simplification of the Routing Matrix. In the process of link loss inference based
on network tomography, the probing cost is mainly defined as the number of selected
probing paths. For an overlay network with n end hosts, all existing systems require O(n2)
measurements. Chen et al. [8] briefly proposed an algebraic approach that selectively
monitors k linearly independent paths that can fully describe all the O(n2) paths, and
the value of k is equal to the rank of the routing matrix. For a power-law networks, the
minimal number of probing paths is k = O(n log n). To select k linearly independent
paths from this network, they use the standard rank-revealing decomposition technique,
which is a variant of the QR decomposition with column pivoting.

With the conclusion of [8], the number of selected probing paths is limited by the rank
of the routing matrix, so it can be reduced by the simplification of the routing matrix.
All network links are classified into two types [11], if the performance of a link can be
uniquely inferred, this link is identifiable. Otherwise, the link is unidentifiable. If a path
is normal (which means the loss rate of this path is low), it is obvious that all links passed
through by this path are normal (uncongested links).

Ψj = 0⇒ ϕk = 0,∀Rjk = 1 (7)

Therefore, more identifiable links can be achieved when all columns that corresponding
to normal links are removed from the routing matrix. As the network shown in Figure.1,
Table.2 lists loss rates of end-to-end paths.
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Table 2. Loss rates of paths in Table.1

Paths Path routes Loss rates
p1 e1 → e3 → e8 0.71
p2 e1 → e3 → e9 0.48
p3 e1 → e4 0.56
p4 e2 → e5 → e8 0.44
p5 e2 → e5 → e9 0.0
p6 e2 → e6 0.05
p7 e2 → e7 → e10 0.08

In this network, links e7 and e10 cannot be distinguished, they will be converted into a
link e7. As the loss rates shown in Table.2, p5 : e2 → e5 → e9 is a normal path. Thus, links
e2, e5 and e9 are all normal links which can be removed from the routing matrix R. At the
same time, links e6, e7 and e8 come to be identifiable, that means loss rates of them can be
calculated uniquely. Through repeatedly removing above links, a simplification of routing
matrix can be achieved. After removing repeated and all zeros rows, the simplest routing
matrix which is composed of columns corresponding to unidentifiable links is determined.
The process of the simplification of the routing matrix is shown in Figure.2.
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Figure 2. The simplification of the routing matrix

Therefore, more identifiable links can be figured out if normal links are achieved as
many as possible. In addition, the rank of the routing matrix decreases greatly if more
columns (which corresponding to normal links and identifiable links) are removed. As
the conclusion of [8], the number of the probing paths is equal to the rank of the simple
routing matrix R

′
which is much smaller than the original routing matrix R. Therefore,

the key issue for reducing the number of probing paths is to obtain more normal links.

3.2. Minimal Cover Set Measurements. To achieve more normal links, a useful
method is to cover more links of a network. As is known to all, to cover each link with a
minimum number of measurements is the well-known ”minimum set cover” problem. This
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problem can be resolved by using group testing methods [13], and a greedy algorithm for
the minimal cover set problem will be described as follows.

Definition.1 (Minimal Cover Set) Given a universal set U of n elements, denote
S = {S1, S2, ..., Sk} and c : S → Q+ as the collection of subsets of U and the cost function,
respectively. Minimal cover set is defines as the sub-collection of S that covers all elements
of U and has the minimum cost.

For network tomography, the set U corresponds to the set of all links and the collection
of subsets S are all possible end-to-end measurement paths. The cost function is defined
as c : S → Q+ is c(Si) = 1,∀i ∈ {1, 2, ..., k}, which denotes the number of probes sent per
path. The objective is to seek the sub-collection of S that covers all elements of U and
has the minimum number of elements.

The greedy algorithm is very suitable for solving above problem [14]. Firstly, it searches
for a path that covers the largest number of links. Then all links covered by the selected
path are removed from the routing matrix. The algorithm iterates by searching for next
path that covers the largest number of uncovered links until all links in the network have
been covered. This set of all selected paths is the minimal cover set.

According to the condition of the research in this field [2, 4, 5, 6, 7], there are no more
than 20% congested links (links that have high loss rates) in a network. So it is possible
to acquire more normal links by minimal cover set measurements, the number of paths
need for end-to-end measurements can be reduced by the simplification of the routing
matrix R

′
. After minimal cover set measurements, all normal links are removed and a

simplification of routing matrix is achieved. Therefore, the number of paths for end-to-end
measurements can be reduced because of the decrease of the rank of the routing matrix.
According to the method proposed in [8], a set of rank(R

′
) paths is selected to deal with

end-to-end measurements.

4. Inference of Link Loss Rates based on Compressive Sensing.

4.1. Inference of Loss Rates for Identifiable Links. When the end-to-end measure-
ment data of rank(R

′
) paths are obtained, the problem of link loss rate inference can be

rewritten as follows.

Ỹ = R
′ × X̃ (8)

Here, Ỹ and X̃ are reduced vectors of Y and X, R
′

is simplification of routing matrix
by using minimal cover set measurements. Eq.(8) is a non-homogeneous linear equation,
and its solution x = [x1, x2, ..., xne ] can be expressed by the combination of the general
solution and the particular solution.

x = W × r + x0 =


W1,1 W1,2 ... W1,ne−r

R
′

W2,1 W2,2 ... W2,ne−r
R

′

... ... ... ...
Wne,1 Wne,2 ... Wne,ne−r

R
′

×


r1
r2
...

rne−rR̃

+


x01
x02
...
x0ne

 (9)

Here, W is a basis for the null space of the routing matrix R
′
, x0 is a particular solution

to Eq.(8). ne is the number of the links which should be calculated (both identifiable and
unidentifiable links), and rR′ is the rank of the routing matrix R

′
.

It is known that the value of xk depends on the particular solution whenWk,i = 0,∀i, 1 ≤
i ≤ ne − rR′ for 1 ≤ k ≤ ne. Therefore, the link corresponding to xk is an identifiable
link, otherwise, it is an unidentifiable link. Therefore, the value of xk corresponding to
each identifiable link can be calculated directly with the particular solution.
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4.2. Inference of Loss Rates for Unidentifiable Links. After all the columns that
corresponding to identifiable links are removed from the routing matrix, Eq.(8) can be
rewritten as follows.

y = R
′′
x (10)

Here, Y is achieved by subtracting the value of xk corresponding to the unidentifiable

links from Ỹ , X is composed of xk corresponding to the unidentifiable links. R
′′

is the
simplification of R

′
after all columns that corresponding to identifiable links are removed.

It is well-known there are a few congested links (with high loss rate) in a network. Most

values of xk (xk = log(1 − ϕk)) in X are zeros except those corresponding to congested

links, which means the vector X is sparse.
Compressive sensing techniques are regarded as efficient and precise means to figure

out the single solution from an ill-posed and under-constrained inference problem with

data sparsity. However, the measurement matrix X in Eq.(10) is a deterministic matrix,
it is difficult to make sure that it obeys RIP of compressive sensing theory. To construct
a measurement matrix meets RIP, an approach proposed in [15] is adopted to construct
the measurement matrix as follows.

M = GΣ(λ)R
′′

(11)

where G is a Gaussian random matrix whose entries are i.i.d asymptotically normally
distributed. Σ(λ) is a diagonal matrix whose entries are 1 or 0, and the number of zero
entries is λ. Σ(λ) is a sampling matrix in practice, it is used to delete λ rows of routing
matrix R

′′
with λ-largest l1-norms. Eq.(10) can be converted into

L = GΣ(λ)y = GΣ(λ)R
′′
x = Mx (12)

Generally speaking, the orthogonal match pursuit algorithm (OMP) can be adopted
to solve Eq.(12). It is known that the link loss rate ranges from 0 to 1, so the value of
xk : xk = log(1−ϕk) in vector x ranges in (-∞, 0]. However, the l1-minimization problem
is unable to make sure the solutions x are negative. To solve this problem, the iterative
proportional fitting algorithm [16] is utilized to revise the estimation results by setting all
non-negative entries to zero.

5. Simulations Results and Analysis. To validate the performance of the proposed
link loss inference algorithm with minimal cover set and compressive sensing (MCSA for
short), a series of experiments are conducted. SPA [8] and ELIA algorithms [6] are used
to compare with the proposed MCSA algorithm.

5.1. Experiment Setup.

5.1.1. Network Topologies. The network topology influences the correlations among end-
to-end paths. There are two typical network topologies: classical random networks and
power-law networks [17]. The random network was popular in the past several years, and
it was considered as a baseline model. However, in recent years, more and more attention
has been paid to power-law networks because many real-life networks, both artificial
(Internet, world wide web, peer-to-peer systems, etc.) and natural (ecological, biological,
social, etc.) are revealed to follow power-law degree distributions [18]. In this paper,
power-law networks used in each experiment are generated by the BRITE generator [19].
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5.1.2. Loss Rates. In each experiment, each link is set to be congested with a probability
p. Since p affects the diagnostic accuracy, its value varies in a range to evaluate the
performance of the proposed algorithm under different congestion levels. Moreover, two
different loss rates models LLRD1 and LLRD2 of [20] are adopted for assigning loss rates
to links. In the LLRD1 model, congested links have loss rates uniformly distributed in
[0.05, 0.2], and normal links have the loss rates in [0, 0.002]. In LLRD2 model, the loss
rate ranges for congested and normal links are [0.002, 1] and [0, 0.002], respectively. Since
the results of those two models are not very different, we only present our results for the
LLRD1 model. After assigning a loss rate for each link, the actual loss on each link follows
a Gilbert process. The link in the Gilbert model fluctuates between normal and congested
states. Links do not drop any packet when in a normal state, and drop all packets when
in a congested state.

5.1.3. End-to-end Measurements. Leaf-nodes in the network topologies are defined as the
end hosts, which make up about 30% of the network nodes. Each end host sends probe
packets to the rest of the hosts to estimate the loss rates of paths. All paths between
any two hosts are generated following the shortest-path rule in order to simulate the QoS
mechanism.

5.2. Metrics. To illustrate the experiment results more intuitively, the following well-
known metrics are considered for the evaluation of the proposed MCSA algorithm.

(1) Detection rate (DR)

DR =
|F ∩X|
|F |

(13)

(2) False positive detection rate (FPR)

FPR =
|X\F |
|X|

(14)

where F denotes the set of the actual congested links, and X denotes the set of links
identified as congested by the inference algorithms.

Suppose q is the real loss rate on a link and q̂ is the inferred loss rate of that link. Given
some error margin δ > 0, the error factor is defined as follows.

(3) Error factor (EF)

fδ(q, q̂) = max

{
q(δ)

q̂(δ)
,
q̂(δ)

q(δ)

}
(15)

where q(δ) = max{q, δ} and q̂(δ) = max{q̂, δ}. The value of δ is set to 10−3 for all
experiments.

5.3. Simulation Results.

5.3.1. Number of Paths for Measurements. Figure.3 and Figure.4 show the number of
paths required by SPA and MCSA algorithms in different scales of networks for Waxman
and BA topologies. The percentage of congested links is fixed to 10%. As shown, the
number of paths required by MCSA algorithm is less than SPA algorithm under the same
network size. As the network size grows, the gap between those two curves becomes even
larger.

For Waxman topologies in Figure.3, the number of paths required by MCSA algorithm
(1261.6) is 64.4% percent of SPA algorithm (1959.1) when the number of the links is about
2000. For BA topologies in Figure.4, the number of paths required by MCSA algorithm
(1219.2) is 64.7% percent of SPA algorithm (1885.2) at the same size of the network.
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Figure 3. The number of measurement paths under the Waxman topology
model versus the number of links
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Figure 4. The number of measurement paths under the BA topology
model versus the number of links
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Figure 5. The number of measurement paths under the Waxman topology
model versus the percentage of normal links
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Figure 6. The number of measurement paths under the BA topology
model versus the percentage of normal links

Figure.5 and Figure.6 show the number of paths required by SPA and MCSA algorithms
under different congestion probabilities for Waxman and BA topologies. The network size
is set to 1,000 links. As shown, the number of paths required by MCSA algorithm is less
than SPA algorithm at the same congestion probability. As the congestion probability
decreases, the gap between those two curves becomes even larger.

For Waxman topologies in Figure.5, the number of paths required by MCSA algorithm
(326.9) is 34.2% percent of SPA algorithm (955.2) when the congestion probability is 0.02.
For BA topologies in Figure.6, the number of paths required by MCSA algorithm (356.8)
is 42.6% percent of SPA algorithm (858.6) at the same congestion probability.
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Figure 7. Detection rate versus the percentage of congested links
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In the network with the low congestion probability, MCSA algorithm can find normal
paths and normal links by using minimal cover set measurements. When columns corre-
sponding to normal links are removed, the rank of the routing matrix which is equal to
the number of paths required by end-to-end measurements will decrease greatly.

5.3.2. Diagnostic Ability. Figure.7 and Figure.8 show the network fault diagnostic ability
of SPA and MCSA algorithms under different congestion probabilities for Waxman and
BA topologies. The network size here is set to 1000 links. As shown, the proposed
MCSA algorithm performs well for all topologies, while the accuracy of ELIA drops as
the percentage of congested links goes up. For the reason that, in the network with high
congestion probability, Gauss model cannot describe the transmission rates of links in a
network accurately.
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Figure 8. False positive detection rate versus the percentage of congested links

In Figure.7, MCSA algorithm’s DR (99.2%) is 2.0% higher than ELIA algorithm (97.2%)
for Waxman topologies when the congestion probability is 0.25. For BA topologies, MCSA
algorithm’s DR (98.8%) is 3.3% higher than ELIA algorithm (95.5%) at the same conges-
tion probability.

5.3.3. Accuracy of Link Loss Inference. Figure.9 and Figure.10 compare mean absolute
errors and mean error factors of SPA and MCSA algorithms for Waxman and BA topolo-
gies. The network size here is set to 1,000 links. As shown, both errors of those two
algorithms are small. With the increase of the congestion probability, the gap between
those two curves becomes even larger. However, the result of MCSA algorithm is 1/3
percent of that of ELIA algorithm when the congestion probability is 0.25, so MCSA
algorithm can identify most of the link loss rates precisely.

Figure.11-Figure.14 show the cumulative distribution function of absolute errors (the
difference between the actual and the inferred loss rates) and error factors for the lossy
links for the particular case where 15% of links in the network are lossy. For MCSA
algorithm, 80% of the lossy links have an absolute error of less than 0.02, which means



1624 J. L. Yang, K. X. Zheng and Z. Sun, and N. Qi

0.05 0.1 0.15 0.2 0.25

0.01

0.02

0.03

0.04

0.05

Percentage of Congested Links
M

ea
n 

A
bs

ol
ut

e 
E

rr
or

 o
f 

L
os

sy
 L

in
ks

 

 

ELIA(Waxman)
MCSA(Waxman)

0.05 0.1 0.15 0.2 0.25

0.01

0.02

0.03

0.04

0.05

Percentage of Congested Links

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 o

f 
L

os
sy

 L
in

ks

 

 

ELIA(BA)
MCSA(BA)

Figure 9. Absolute errors of lossy links versus the percentage of congested links
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Figure 10. Error factors of lossy links versus the percentage of congested links

that, if a link has X% loss, we infer that it has a loss in the range X ± 2%, while ELIA
algorithm infers that it has a loss in the range X ± 4%, so it is 2% worse in identifying
the actual link loss rates. Similarly, for 80% of the lossy links, MCSA has an error factor
of less than 10, while ELIA algorithm achieves an error factor of less than 30.
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Figure 11. Cumulative distribution of absolute errors for lossy links under
the Waxman topology model
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Figure 12. Cumulative distribution of absolute errors for lossy links under
the BA topology model
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Figure 13. Cumulative distribution of error factors for lossy links under
the Waxman topology model
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Figure 14. Cumulative distribution of error factors for lossy links under
the BA topology model

6. Conclusions. In this paper, a link loss inference algorithm named MCSA is proposed
to make an improvement on the probing cost and accuracy. To reduce the number of
paths required for end-to-end measurements, the minimal cover set of grouping test is
employed to achieve more normal links, and simply the routing matrix by removing the
columns corresponding to normal links. Then, all network links are classified into identi-
fiable links and unidentifiable links, and loss rates of identifiable links are estimated using
the particular solution of linear equations. Finally, loss rates of unidentifiable links are
achieved by compressive sensing techniques. The proposed MCSA algorithm is evaluated
by experiments, the results show that it has good performance on both accuracy and
efficiency.
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