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ABSTRACT. The traditional FP-Growth frequent itemset mining algorithm and some im-
proved algorithms are faced with a problem of being unable to store the huge FP-tree
in standalone memory. Therefore, a parallel mining algorithm is raised in this paper.
Transaction databases are extracted according to each frequent 1-item, and a correspond-
ing projection database is generated for each frequent 1-item; then, projection databases
are respectively distributed to a node machine, and the improved algorithm is used in
each mode machine to generate partial frequent itemsets by parallel mining; finally, all
frequent itemsets are obtained by summarization. This algorithm has mo need to gen-
erate a FP-tree for transaction databases, and solves the storage problem of standalone
memory. Besides, the use of the MapReduce programming model and parallel processing
technology increases the efficiency of frequent itemset mining.
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1. Introduction. The Frequent Pattern means a pattern that occurs frequently in a
dataset. A set of data items that occurs frequently in a dataset is known as a frequent
itemset. Frequent itemset mining on datasets can further derive the association rules
among data items so as to help us find out the association between transactions [1].

R.Agrawal put forward the classic Apriori algorithm to dig the frequent pattern in
datasets [2]. Han et al. put forward a FP-Growth algorithm based on the frequent pattern
tree (FP-tree) for frequent pattern mining [3]. By comparison, the Apriori algorithm has
two defects. First, it needs to scan the transaction database repeatedly, resulting in huge
network load or I/O load; second, it may produce a huge candidate set, and take up a lot
of memory space. However, the FP-Growth algorithm only needs to scan the transaction
database twice to generate a FP-tree, then adopt the recursive algorithm to dig the FP-
tree and generate all frequent itemsets, without any candidate set. Thus, the algorithm
is more efficient[4].

However, faced with massive data in the era of big data, the storage and comput-
ing ability in the standalone environment will become the bottleneck of data mining][5].
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Therefore, improving the traditional algorithm and utilizing big data, parallel computing
technologies and so on for frequent itemset mining becomes a research focus. For example,
parallel FP-Growth algorithm based on multithreading[6]. Though the algorithm effec-
tively shows the parallelism of the FP-Growth algorithm and makes full use of processor
resources, it still shares a single memory space. As a result, it fails to solve the defect
of insufficient standalone memory. Another example is the parallel FP-Growth mining
algorithm on general PC cluster [7]. By comparison with the algorithm in Literature [6],
this algorithm has a large improvement, truly realizes distributed parallel computation,
and makes full use of the computing and storage resources of multiple nodes. But it fails
to consider the communication load among cluster machines, resulting in low performance
on the whole. Parallel computing based on MapReduce programming model is used in
Literature [8], [9] ,[10],[11],[12] and [13].

It effectively solves a computing bottleneck, but still needs to construct a FP-tree and
recursively construct a conditional pattern tree, failing to truly solve the problem of the
traditional FP-Growth algorithm in storing a huge FP-tree in the context of big data.
Motivated by this, in this paper, we propose an improved parallel partitioning method
based on FP-Growth, and realized by means of the MapReduce programming model and
parallel processing technology.

The rest of this paper is organized as follows. A brief description and limitation of
traditional FP-Growth algorithm is introduced in Section 2. The improved partitioning
method based on FP-Growth is proposed in Section 3. The improved parallel frequent
itemset mining with two stages is provided in Section 4. Section 5 describes the experi-
mental results and their analysis of the improved FP-Growth algorithm performance, and
finally, the conclusion of the research is shown in Section 6.

2. Traditional FP-Growth Algorithm. The FP-Growth algorithm uses a data struc-
ture known as the frequent pattern tree (FP-tree), which is a special prefix tree composed
of a frequent item header table and an item prefix tree. It compresses the entire trans-
action database into a frequent pattern tree. In the process of FP-tree construction and
frequent itemset mining, it only needs to scan the transaction database twice, thereby,
greatly reducing 1/0 load and improving mining efficiency.

The transaction database is shown in Table 1, with the minimum support count min-
support=2.

TABLE 1. Transaction Database D

TID | Transaction ID List
T100 Ii, Iy, Iy
T200 I, I

T300 Iy, I3

T400 I, I, I
T500 I, I, I
T600 I, I3

T700 Iy, I3

T800 Iy, I, I3, I5
T900 I, Iy, I, I

The main steps of the algorithm are described as follows:
(1) The transaction database D is scanned for the first time to obtain all frequent
1-itemsets, and the collection of frequent 1-items is sorted in a descending sequence of
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support count. In this way, the frequent 1-item header table L (as shown in Table 2) is
obtained. The support count of Is and I; is 1, below the min-support. They belong to
non-frequent items, so they will not occur in the frequent 1-itemset.

TABLE 2. Frequent 1-Itemset L

Item | Support Count
Iy 7
I 6
I3 6
Iy 2
I5 2

(2) FP-tree construction: First, the root node of the tree is created, tagged with null.
Then, the transaction database D is scanned for the second time. A branch is created
for each transaction in the FP-tree, and each node in a branch corresponds to each item
in the transaction (deleting non-frequent items) and is linked according to the sequence
of Table L. Besides, the count of each item in the branch increases by 1. At last, the
association between the frequent 1-itemset header table and the FP-tree is established,
and the FP-tree as shown in Figurel is obtained.
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FIGURE 1. FP-Tree for transaction database D

(3) A conditional pattern base and a conditional pattern tree are generated for each
frequent 1-item. For each item in the header table, the FP-tree is traversed from bottom
to top to obtain the conditional pattern base corresponding to each item. The conditional
pattern bases of all items are shown in Table 3.

TABLE 3. Conditional Pattern Base

Item | Conditional Pattern Base
15 {<IQ, 11:1>, <12, 11, 13;1>}
1, {<12, 11;1>,<12;1>}

Ig {<12;2>,<11;2>, <12, 11;2>}
Il {<12:4>}

(4) The conditional FP-tree of each item is constructed according to the conditional
pattern base thereof obtained in (3). At last, frequent itemset mining is conducted by the
conditional FP-tree.
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For example, the conditional pattern base of I5 comprises two prefix paths, <Io, I;.;>
and <y, I, I3.1>; the conditional FP-free of I5 obtained therefrom only includes a single
path <lIs., I1.9>, and does not contain I3, because its support count is 1, below the
minimum support count. The single path generates the following frequent itemsets: { Io,
15:2}, { Iy, 15:2}&11(1 { L, 15:2}-

In another example, the conditional pattern base of I3 only contains three prefix paths
< Ino>, < 19> and < Iy, I;.0>. Its conditional FP-tree has two branches, < Is.4, I1.0>
and < Ij.5>. The conditional FP-tree generates the following frequent itemsets: { I,

13:2}, { 12, 13:2} and { 12, 117 13:2}'

3. Improved FP-Growth Algorithm. The FP-Growth algorithm builds a FP-tree by
scanning a transaction database. It comprises the information of all frequent itemsets.
Then, based on the FP-tree, it builds the corresponding conditional FP-tree for each fre-
quent 1-item, and digs the frequent itemset in each conditional FP-tree. At last, the set
of frequent items dug from all conditional FP-trees is the set of all frequent items corre-
sponding to the entire transaction database. This approach is effective in the event that
the transaction database is not large in size and the FP-tree can be stored in standalone
memory. However, in the context of big data, faced with massive databases, the FP-tree
constructed cannot be stored in standalone memory. In this case, this approach loses
effectiveness.

Therefore, we improved the traditional FP-Growth algorithm. We still take the afore-
said transaction database D as an example to expound the specific improvement method.

(1) The transaction database D is scanned for the first time to obtain all frequent
1-itemsets, and the collection of frequent 1-items is sorted in a descending sequence of
support count. In this way, the frequent 1-item item header table L (as shown in Table
2) is obtained. This step is the same as that of the traditional FP-Growth algorithm.

(2) First, data cleaning is conducted for the transaction database D, and all non-
frequent 1-items in D are deleted. Then, D is extracted according to each frequent 1-
item (excluding the first item I in Table L); a projection database for each frequent
1-item is created, in which, all transactions contain such item; each projection database
is distributed to a node machine. The corresponding projection databases of 11, I3, I and
I5 are respectively shown in Tables 4-7.

TABLE 4. Corresponding TABLE 5. Corresponding
Projection Database of 1; Projection Database of I3
TID | Transaction ID List TID | Transaction ID List
T100 I, I, I5 T300 I, I3

T400 I,I, Iy T500 I, I3

T500 I, I3 T600 Iy, I

T700 I, I3 T700 I, I3

T800 I, I, I3, I5 T800 I, I, I3, I5
T900 I, Iy, I3 T900 I, Is, I3

(3) Each node machine first scans the distributed projection database to construct
the FP-tree of the corresponding item. We need to improve the traditional FP-Growth
algorithm for FP-tree construction. We assume that the k;, node machine processes the
frequent 1-item I, and the corresponding projection database is D;. During transaction
processing of Dy, the items in transactions are sorted according to the sequence of Table
L; I, and all subsequent items are deleted; branches are generated for the remaining items
in the FP-tree to be constructed. The specific algorithm is described as follows:
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TABLE 6. Corresponding TABLE 7. Corresponding
Projection Database of I Projection Database of I5
TID | Transaction ID List TID | Transaction ID List
T200 Iy, 1y T100 I, I, I5
T400 I, I, Iy T800 I, I, I3, I5

(D Create the root node of the FP-tree, tagged with null.

(@ Scan the database Dy, and execute the following steps for each transaction therein:

a. The items in the transaction are sorted according to the sequence of L, I, and
all subsequent items are deleted; the formed transaction item list is denoted as [p | P],
wherein, p is the first item element, and P is the list of remaining item elements.

b. Call insert tree ([p | P], T). The executing process of insert tree ([p | P], T) is
as follows: if T has a child N, with N.item-name=p. item-name, then, the count of
N increases by 1, and the support count of the corresponding item in the header table
increases by 1; or create a new node N, set its count as 1, and link it to its parent node
T. In addition, add an item to the header table, and set the support count as 1. If P is
non-null, recursively call insert_tree (P, T).

The FP-tree generated by the improved algorithm will be much smaller than that
generated by the traditional algorithm, which is called projection FP-tree. The projection
FP-trees constructed for Iy, I3, I; and I5 are respectively displayed in Figures 2-5.
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(4) Pruning. Each node machine prunes the projection FP-tree constructed, deletes
the items with support count below the minimum support count (min-support=2) in the
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header table, and removes the nodes thereof in the FP-tree. In the above four projection
FP-trees, only the FP-trees of I and I5 need to be pruned. The pruned projection FP-
trees are shown in Figure 6 and Figure 7.
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The FP-tree generated upon pruning is actually the corresponding conditional FP-tree
of each frequent 1-item.

(5) Each node machine digs the conditional FP-tree constructed to generate the corre-
sponding frequent itemset. We assume that the processing item of a node machine is Iy,
and its corresponding conditional FP-tree is T}, then, the algorithm of frequent itemset
mining by the conditional FP-tree is described as follows:

FOR Each path starting from null root node of T} is denoted as R;

FOR Each node in R is denoted as p;
Frequent pattern = pUI,

FOR Each node combination in R is denoted as P;
Frequent pattern = P
Frequent pattern = PUI,

(6) At last, combining the frequent items generated by each node machine, we can
obtain all frequent itemsets.

4. Parallel Frequent Itemset Mining. The improved frequent itemset mining includes
two stages. In Stage 1, it generates all frequent 1-itemsets, and creates the frequent 1-item
header table L. We can use the MapReduce programming model for parallel realization
[14,15]. In Stage 2, pluralities of node machines execute frequent itemset mining in a
parallel way. Finally, all frequent itemsets are summarized.

(1) Stage 1: First, the transactions in the transaction database are divided into n identi-
cal data blocks. Then, n data blocks are sent to n Map nodes with parallel processing; the
partial 1-itemset and the support count thereof are calculated in each Map node. At the
end of Map node processing, the identical items are combined by the function Combiner.
The results are sent to a Reduce node to calculate the global frequent 1-itemset and the
support count thereof, and the frequent 1-itemset is sorted in a descending sequence of
support count. Finally, the sorted result set L is obtained (as shown in Table 2). The
algorithm procedures in the Map and Reduce process in Stage 1 are shown in Figure 8.

(2) Stage 2: To improve the traditional FP-Growth algorithm, we do not construct the
entire FP-tree, but extract the transaction database according to each frequent 1-item
to generate the corresponding projection database for each frequent 1-item. Then, we
distribute the projection database to each node machine, and enable them to respectively
generate a partial frequent itemset. Finally, the entire frequent itemset is obtained by
summarization. The mining process in Stage 2 is shown in Figure 9.

In practical application, the number of items in a transaction database is often much
more than that of actually distributable node machines. In this case, to balance the
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processing workload of node machines, when distributing processing items to each node
machine, we first distribute node machines according to the ascending sequence of Table
L. After completing a round of distribution, we will distribute node machines according
to the descending sequence of Table L.

For some commercial applications, records in transaction databases will continue to
increase dynamically, the transaction database will also continue to expand. Although this
algorithm can solve the problem of expanding database mining by adding node machine,
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but the resources that they use will also continue to expand. Therefore, the actual practice
is to set a certain time interval to mine.Of course, the longer the time interval, the higher
the accuracy for data mining.

5. Experimental Analysis and Summary of the Algorithm. To verify availability
and efficiency of the parallel frequent itemset mining algorithm based on MapReduce pro-
posed in this paper, we adopted the java language to realize the traditional FP-Growth
algorithm and the proposed improved algorithm, and carried out experiments and anal-
yses. In the experiments, 6 nodes are configured in the Hadoop cluster environment, and
the client-server architecture is applied, including 1 control node and 5 data nodes. Each
node is configured with Intel core i5-2450M CPU 2.50 GHz, 4GB memory.

First of all, we need to verify a problem of the traditional FP-Growth algorithm, i.e.,
being unable to store a huge FP-tree in standalone memory. We first selected the data
set T1014D100K.dat in Frequent Itemset Mining Data Repository [16]. The data set is
3.84MB, including 100,000 records. We set the minimum support as 20%, 10% and 5%
respectively, and used the traditional FP-Growth algorithm for mining. The algorithm
routine could be executed smoothly. Then, we selected a 10-million-level database, 345MB
in size. The algorithm routine still could be executed smoothly under the support of
20%, 10% and 5%. When we selected a 100-million-level database, the algorithm routine
could be executed smoothly under the support of 20% and 10%; but insufficient memory
occurred under the support of 5%, resulting in a failure to complete normal data mining.
Thus, we used the proposed algorithm, and performed it in 5 node environments. In this
way, the algorithm routine could smoothly complete data mining.We find that the larger
the database and the smaller the support, the more the frequent 1-items it contains, so
the bigger the FP tree is.

We further verified the efficiency of the improved algorithm proposed in this study,
selected a 100 thousand records transaction database, with the support of 5%, and per-
formed the FP-Growth algorithm in a standalone machine, and the improved algorithm
on 2, 3, 4 and 5 node machines respectively. Their running time is respectively shown in
Fig.10. Then, we selected a 10 million records transaction database with the support of
5%, and performed the FP-Growth algorithm in a standalone machine and the improved
algorithm on 2, 3, 4 and 5 node machines respectively. Their running time is respectively
shown in Fig.11.
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As shown in Figure 10, the algorithm adopts the MapReduce parallel computing mode
and the divide-and-conquer strategy, and uses a plurality of node machines to conduct
improved frequent itemset mining for the projection database in a parallel way. Thereby,
the efficiency of mining is improved, but the time is not proportionally reduced along



An Improved FP-Growth Algorithm Based on Projection Database Mining in Big Data 89

with the number of nodes increases, the reason for this is that, when there is not enough
data in the transaction database, the time required for the improved algorithm used to
generate a projection database for each frequent item and to distribute to each node is
relatively large, it affects the time that is reduced.

When the records of the transaction database reached 10 million level, the FP tree
generated by the traditional FP-Growth algorithm is very large, and so recursive mining
of frequent items by FP trees will also be more time-consuming. Thereby, the time
required for the improved algorithm used to generate a projection database for each
frequent item and to distribute to each node is relatively reduced, so the time that is
reduced is becoming more obviously. It can be seen that the improved algorithm is more
efficient for the frequent item mining of the massive transaction database in the big data
environment.

6. Conclusion. To solve the problem that the traditional FP-Growth frequent itemset
mining algorithms are faced with a problem of being unable to store the huge FP-tree
in standalone memory, in this paper, we propose an improved parallel mining method
based on FP-growth, and realized by means of the MapReduce programming model and
parallel processing technology. According to the research focus of the proposed algorithm,
it fundamentally solves the problem of the traditional FP-Growth algorithm and some
improved FP-Growth parallel algorithms, i.e., being unable to store the FP-tree in stan-
dalone memory and unable to realize frequent itemset mining for a massive transaction
database. However, as the proposed algorithm requires extracting the transaction data-
base based on each frequent 1-item, generating a corresponding projection database for
each frequent 1-item, and distributing the projection database to each node machine, it
increases 1/0 load to some extent.
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