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Abstract. Currently, image de-noising has become a hot topic for image classical
solution of the estimation problem. The effectiveness of wavelet-based threshold func-
tions for image de-noising is taken into consideration. Therefore, many wavelet thresh-
old functions are proposed to improve the effectiveness of image de-noising, such as
hard?threshold, soft threshold and semi-soft threshold function etc,. Nevertheless, these
methods are with some demerits including function discontinuity, image edge missing,
edge fog, poor smoothness and parameters determined by trial and error. To perfect
these shortcomings, a new wavelet threshold function based on Gaussian kernel function
is proposed in this paper. First, the existing threshold functions and their problems are
introduced. Second, we detailed explain the new threshold function to offset the short-
comings by combining Gaussian kernel function with soft threshold function. Meanwhile,
its new properties are proofed. Third, threshold parameter λ is optimized. Finally, ex-
perimental results validate that the new method sometimes surpasses recently published
leading alternative de-noising methods and achieves a better performance.
Keywords: Image de-noising, Gaussian kernel function, Wavelet Threshold Function

1. Introduction. In the process of image formation, transmission and processing, image
can be interfered by noise. Thus the quality of image will decrease. To remove or suppress
the noise in image and improve the quality of image, many de-noising methods are gen-
erated. Wavelet analysis, a very effective image de-noising method, in time domain and
frequency domain has good localization properties and the multi-resolution analysis char-
acteristics [1], it can effectively distinguish useful signal and noise. At present, wavelet
de-noising mainly includes three models [2]. 1) Adopting the wavelets singularity detection
features to separate signal and noise [3]; 2) Using wavelet coefficient threshold function
to reduce the image noise [4]; 3) Bayesian criterion coefficient of wavelet domain method
[5] is used for image noise reduction. Where the wavelet threshold shrinkage method is
the most widely used in image de-noising due to its simple and effective attribute. The
idea of wavelet threshold processing is derived from the Donoho theory [6]. Donoho first
gave the general threshold de-noising formula based on orthogonal wavelet transform, it
made the complex de-noising problem become easily to solve. However, due to lack of the
adaptability of scale space, it is difficult to determine the threshold. The result can lead to
fuzzy image edge and poor de-noising performance. So many scholars have put forward
different wavelet coefficients scales and their corresponding thresholds to reduce image
noise, such as hard threshold [7], soft threshold [8], VisuShrink threshold [9], improved
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sub-band adaptive SureShrink threshold [10] and NormalShrink threshold [11]. Although
these de-noising algorithms can obtain better de-noising performance, more detail infor-
mation is eliminated. The image quality is seriously declined, even generating pseudo
Gibbs phenomenon. To date, Wang et al. [12] proposed an optimized shape parameter
method for image de-noising. Kadhim [13] presented an Particle Swarm Optimization
(PSO) algorithm developed to estimate the value of threshold without any priority of
knowledge for these distributions. This was done by implementing the PSO algorithm
for kurtosis measuring of the residual noise signal to find an optimum threshold value at
which the kurtosis function be maximum. Ji et al. [14] employed a de-noising algorithm
utilizing wavelet threshold method and exponential adaptive window width-fitting. His
method was divided into three parts. First, wavelet threshold method was used to filter
the white noise. Second, the data were segmented using data window. Eventually, an ex-
ponential fitting algorithm was adopted to fit the attenuation curve of each window, and
the data polluted by non-stationary electromagnetic noise were replaced with their fitting
results. The above methods have obtained some effect for image de-noising. However,
less works aims to improve the threshold function. Therefor, we propose a new wavelet
threshold function based on Gaussian kernel function for image de-noising. We optimize
wavelet threshold function from two aspects: improving threshold function and shape
parameter λ, that significantly improves de-noising and provides clearer implementation
compared to state-of-the-art methods. It can be reliably used for de-noising experimental
images. Furthermore, new function can enhance the efficiency of image de-noising without
the effect of layers number of image decomposition.

The reminder of this paper is organized as follows. Preliminaries are displayed in
section 2. Section 3 illustrates the detailed new threshold function and Section 4 presents
experimental results. Section 5 concludes this paper.

2. Preliminaries.

2.1. Wavelet threshold function and existing problems. Usually, noise is with
high frequencies, wavelet threshold de-noising method can deal with threshold for the
corresponding wavelet coefficients’ high frequency parts, then it reconstructs image and
achieves the goal of de-noising. Assuming that image signal with added Gaussian white
noise can be described as:

f(p, q) = s(p, q) + n(p, q)(p, q = 0, 1, 2, · · · , N − 1). (1)

Where s(p, q) is original image, the mean of n(p, q) is zero. f(p, q) is the noisy image.
White Gaussian noisy with variance of δ2 obeys N(0, δ2) distribution. After wavelet
transforming, its signal energy mainly focuses on low frequency coefficient. However, the
energy of noise mainly distributes in high frequency coefficient. And the coefficient of
wavelet decomposition is very small. Principle of threshold de-noising is that it selects
appropriate threshold in different scales and makes threshold quantization process for
wavelet coefficient. Thereby, the noise is effectively suppressed. Finally, it reconstructs
the processed wavelet coefficients and gets the reconstructed de-noising image.

The wavelet threshold de-noising method mainly contains hard and soft threshold de-
noising method. Nevertheless, hard threshold function is discontinuous in a certain range.
So it may cause some shakeups (such as ringing and Pseudo-Gibbs phenomena etc,.)
for the reconstruction signal. Although the soft threshold function is continuous in its
domain, there are still some deviations and edge fuzziness phenomenons. To solve the
disadvantages of these two methods, semi-soft threshold function [15], interpolation semi-
soft threshold function [16] and asymptotic semi-soft threshold function [17] are proposed.
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In the above methods, there are still some shortcomings. When wi,j = λ, ŵi,j is
discontinuous in hard threshold function. Though soft threshold function is continuous,
there are some deviations between ŵi,j and the wavelet coefficient wi,j. When image
reconstructing, some details will be lost, image precision will decrease. Using semi-soft
threshold function de-noising, SNR of image is improved, but λ1 and λ2 are complex. It has
little utility. There are spots and deviation in interpolation semi-soft threshold function
and asymptotic semi-soft threshold function. Therefore, we propose a new threshold
function in this paper.

3. New Wavelet Threshold Method.

3.1. Improved wavelet threshold function. In order to overcome the shortcomings of
the traditional threshold function and based on the principle of Gaussian kernel function.
A new threshold function is proposed in this paper described as formula (2), additionally,
the optimized λ is explained in 3.2.

f(newx) = ŵi,j = sign(wi,j)(|wi,j| − λe−
[α((wi,j−λ)/λ)−µ]

2

2σ2 ), |wi,j| > λ. (2)

Where parameter λ is the representation of threshold. ŵi,j is the representation of
estimated wavelet coefficients, wi,j denotes the representation of the wavelet coefficients
and sign(∗) is the symbolic piecewise function. When |wi,j| < λ, f(newx) = ŵi,j = 0.
On the basis of soft and hard threshold function, α, the shape parameter of the threshold
function, is taken between 0 and 1. Due to a complex exponential function (i.e. Gaussian

kernel function model) e−
[α((wi,j−λ)/λ)−µ]

2

2σ2 in the improved function, so the new function is
more adaptability which is different from other threshold functions. When the value of α
is changed, the new function is adjusted flexibly. Figure 1 is the curve with different α in
new function, where λ = 0.6, µ = 0, σ = 1.

Figure 1. New function with different α.

New function is with the following good properties.
Theorem 1. Continuity: there is no break-point, so f(newx) is a continuous function

in its domain.
Remark. From its curve, the domain and its range of the function is (−∞,+∞).
Proof. When x > λ
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f(newx) = sign(wi,j)(|wi,j| − λe−
[α((wi,j−λ)/λ)−µ]

2

2σ2 ). (3)

Therefore, right-hand limit of the function is given by:

lim f(newx)x→λ+ = limxx→λ+(x− λe−
[α((wi,j−λ)/λ)−µ]

2

2σ2 )

= (x− λe0)
= 0.

(4)

When x < −λ

f(newx) = sign(wi,j)(−wi,j − λe−
[α((wi,j−λ)/λ)−µ]

2

2σ2 ). (5)

Therefore, left-hand limit of the function is abbreviated to:

lim f(newx)x→λ− = limxx→λ−(−x− λe−
[α((wi,j−λ)/λ)−µ]

2

2σ2 )

= (−x− λe0)
= 0.

(6)

When −λ ≤ x ≤ λ

f(newx) = 0. (7)

Considering (5), (6), (7), lim f(newx)x→λ+ = lim f(newx)x→λ− = lim f(0).
Therefore, the new function is a continuous curve in its domain. And it makes up the

shortcomings of hard threshold function.
Theorem 2. Monotonicity: f(newx) is a monofonically increasing function in (−∞,+∞),

so f(newx) is an increasing function in its domain.
Proof. When x > λ

f(newx) = sign(wi,j)(x− λe−
[α((wi,j−λ)/λ)−µ]

2

2σ2 ). (8)

The first derivative of f(newx) is:

f ′(newx) = 1 +
2xα2

eα2x2
. (9)

When α ∈ R, f ′(newx) > 0. Similarly, when x < −λ, f ′(newx) > 0.
When −λ ≤ x ≤ λ

f ′(newx) ≡ 0. (10)

Therefore, f(newx), a monofonically increasing function, is proofed.
Theorem 3. Differentiability: f(newx) is differentiable.
Proof. Because the new function is continuous and monofonically, also its right and

left limit are equal. Thus, it is differentiable.
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3.2. Improved threshold parameter λ. Completely, parameter λ plays an important
role in wavelet threshold function. Ye [18] proposed a common threshold formula:

λ = ε
√

2 log(N). (11)

Where ε and N are noise variance and signal’s sampling length respectively.
Through analyzing multiple wavelet decomposition for image, the amplitude of noise

becomes smaller with the increasing of image layer. However, the amplitude of image
information becomes bigger. Therefore, this paper proposes an optimized threshold pa-
rameter λ as shown in (12):

λ = ε
√

2 log(N)/ log(1 + ej). (12)

Where j denotes the layer of image decomposition. In this formula, it can be seen that
if j is increasing, the optimized λ is gradually decreased. The improved λ is superior to
that in [16]. For example, when N = 30, ε = 0.6, j = 5, λ[21] = 1.5649, our λnew = 0.3126,
which is a good choice for new wavelet threshold function.

Then we study the effect of j on new wavelet threshold function. Supposing N = 30,
ε = 0.6. Figure 2 shows the difference, when j = 2, j = 3, j = 5. When j is bigger, the
influence of α is very small, which can reduce noise turbulence. So our new function is
effective.

Figure 2. Comparison of new function with j = 2, 3, 5.

4. Experiments and results. In this section, experiments are conducted to demon-
strate the effectiveness of the new threshold function with MATLAB R2014b, Core i7
CPU, 8 GB memory and Windows 10 platform. In section 4.1, evaluation criterion for
our new method are introduced. Section 4.2 studies the effect of different parameters on
new function for image de-noising. Section 4.3 makes comparison with state-of-the-art
threshold functions to verify the effectiveness of our new method. All the experiments are
conducted on the same software, hardware and laptop.

4.1. Evaluation criterion. In this subsection, we mainly evaluate the new function
with objective evaluation. In the new function, shape parameter is adjusted to improve
the influence on image de-noising. Two indicators used widely are employed to indicate
the effect of image de-noising including signal-to-noise-ratio (SNR) and MSE. Considering
SNR can accurately reflect the deviation between the reconstructed image and the original
image, we adopt SNR as evaluation criterion:

SNR = 10 lg

∑N
k=1 S(k)2∑N

k=1[X(k)− S(k)]2
. (13)



96 Y. Sun, S. L. Yin, and H. Li

In this formula, N is the length of signal. X(k) and S(k) are noisy and original signal
respectively. According to the value of SNR, we could conclude a range of shape parameter
(or its fixed value) playing a better influence on image de-noising.

4.2. Performance evaluation of different parameters for image de-noising. Tra-
ditionally, shape parameter has a big effect on image de-noising. Thus, the selection of
shape parameter is very important.

According to the principle of Gaussian kernel function, α is with a better curve. First,
we study the effect of µ and σ on the image de-noising. Assuming that N = 30, ε = 0.6,
j = 0.2. In actual experiments process, 785 images are to test the performance of the
algorithm. Because this paper space is limited, we only select ”Lena, Barbara, Baboon”
in international standard test images as the testing data shown in Figure3.

Figure 3. Original images. (a) Lena; (b) Barbara; (c) Baboon. Noisy
images. (c) Lena; (d) Barbara; (e) Baboon.

Meanwhile, Tables 1-3 are the SNRs (better results with Bold Font) with different σ
and µ to deeply illustrate the effectiveness of our method. Where SNR1 and SNR2 denote
the signal-to-noise ratio of original image and de-noising image respectively.

Table 1. SNR value of Lena with different σ and µ.

Number Parameter SNR1 SNR2
1 σ2

1 = 0.1, µ1 = 0 14.3802 21.7439
2 σ2

2 = 0.3, µ1 = 0 14.4087 21.1119
3 σ2

3 = 0.6, µ1 = 0 14.3965 20.5175
4 σ2

1 = 0.1, µ1 = 2 14.4273 21.4741
5 σ2

2 = 0.3, µ1 = 2 14.4174 19.5411
6 σ2

3 = 0.6, µ1 = 2 14.4080 18.5556
7 σ2

1 = 0.1, µ1 = 5 14.4138 18.6694
8 σ2

2 = 0.3, µ1 = 5 14.4074 21.0585
9 σ2

3 = 0.6, µ1 = 5 14.4049 19.7357

To explore the influence of each parameter, we choose different values of σ and µ to
discuss. We conduct experiments on Lena, Barbara and Baboon. The noise we use
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Table 2. SNR value of Barbara with different σ and µ.

Number Parameter SNR1 SNR2
1 σ2

1 = 0.1, µ1 = 0 13.6973 17.2129
2 σ2

2 = 0.3, µ1 = 0 13.6909 17.0624
3 σ2

3 = 0.6, µ1 = 0 13.6843 17.0355
4 σ2

1 = 0.1, µ1 = 2 13.6792 17.1461
5 σ2

2 = 0.3, µ1 = 2 13.6664 17.0439
6 σ2

3 = 0.6, µ1 = 2 13.6779 17.1425
7 σ2

1 = 0.1, µ1 = 5 13.6768 16.9140
8 σ2

2 = 0.3, µ1 = 5 13.6958 16.8567
9 σ2

3 = 0.6, µ1 = 5 13.6625 16.1687

Table 3. SNR value of Baboon with different σ and µ.

Number Parameter SNR1 SNR2
1 σ2

1 = 0.1, µ1 = 0 14.5849 15.8694
2 σ2

2 = 0.3, µ1 = 0 14.5648 15.8683
3 σ2

3 = 0.6, µ1 = 0 14.5765 15.2038
4 σ2

1 = 0.1, µ1 = 2 14.5691 15.2581
5 σ2

2 = 0.3, µ1 = 2 14.6053 15.0424
6 σ2

3 = 0.6, µ1 = 2 14.5698 15.6188
7 σ2

1 = 0.1, µ1 = 5 14.5696 14.7447
8 σ2

2 = 0.3, µ1 = 5 14.5739 15.5586
9 σ2

3 = 0.6, µ1 = 5 14.5721 15.1356

is predominantly normal Gaussian noise 0.01. We list the de-noising results of Lena,
Barbara and Baboon as Tables 1-3, different SNRs are obtained. From Table 1, we can
know that if σ and µ are selected different values, SNRs of image with new threshold
function are different. When σ2

2 = 0.1, µ1 = 0, SNR2 is 21.7439 exceeding the value that
when σ2

2 = 0.3 and µ2 = 5. Similarly, when σ2
2 = 0.1, µ2 = 2, the SNR2 is the biggest with

21.4741 than σ2
2 = 0.3 and σ2

2 = 0.6 with 19.5411 and 18.5556 respectively. Furthermore,
when µ2 = 0 and µ2 = 2, the average value of SNR is bigger than µ2 = 5. When σ2

2 = 0.1,
µ2 = 0, the value of SNR is 21.7439 over the value when σ2

2 = 0.1, µ2 = 2 with 21.4741.
Similarly, the results are better with our method presented in table 2 and table 3.

4.3. Discussion for parameter ε. Through the above analysis on µ, σ, j, let µ = 0,
j = 5, σ2

1 = 0.1, N = 30 and α = 1 in this subsection. We make six experiments to study
the effect of shape parameter ε on the image de-noising for Lena, Barbara and Baboon.
Results are listed in tables 4-6.

Table 4. SNR value of Lena with different ε.

Number Parameter SNR1 SNR2
1 ε1 = 0.1 14.3957 21.8106
2 ε1 = 0.2 14.3677 21.5676
3 ε1 = 0.4 14.4052 21.5144
4 ε1 = 0.6 14.4083 21.3922
5 ε1 = 0.8 14.4200 20.9781
6 ε1 = 0.9 19.9188 14.4240
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Table 5. SNR value of Barbara with different ε.

Number Parameter SNR1 SNR2
1 ε1 = 0.1 13.6689 17.3208
2 ε1 = 0.2 13.6811 17.2746
3 ε1 = 0.4 13.6825 17.1159
4 ε1 = 0.6 13.6797 17.1400
5 ε1 = 0.8 13.6728 17.1285
6 ε1 = 0.9 13.6926 16.5752

Table 6. SNR value of Barboon with different ε.

Number Parameter SNR1 SNR2
1 ε1 = 0.1 14.5826 16.0097
2 ε1 = 0.2 14.5654 15.8767
3 ε1 = 0.4 14.5916 15.4120
4 ε1 = 0.6 14.5698 15.3762
5 ε1 = 0.8 14.5647 15.0478
6 ε1 = 0.9 14.5934 14.9780

4.4. Comparison experiments. In our experiments, we compare the performances of
six different algorithms: soft threshold function, Lu [19], Han [20], Li [21], Srivastava
[22] and the proposed method. In order to demonstrate the comparison fairness, the
parameters are set as µ = 0, j = 5, σ2

1 = 0.1, N = 30, ε = 0.1 and α = 1 due to the
familiar de-noising model.

We repeat the experimental process 30 times. The performances of different algorithms
are measured quantitatively using SNR. Figures 4-6 give the de-noising results of different
algorithms for Lena, Barbara and Baboon. Tables 7-9 list de-noising results of different
methods in terms of SNR and SSIM (structural similarity). From these tables we can see
that our algorithm outperforms the traditional soft threshold function and the method
in [16-19] in the same Gaussian noise. The result of our algorithm is slight better than
those in [19-22] in quantitative comparison. In each such we highlighted the best result.
From the discussion above, we know that our new method has a good performance and
better than these state-of-art techniques in most situations.

Table 7. SNR comparison of Lena with different methods.

Method Soft Lu Han Li Srivastava New
SNR1 14.4317 14.4201 14.3878 14.4261 14.3962 14.3978
SNR2 20.3449 20.7895 21.5429 20.6744 21.7421 22.6259
SSIM 0.8052 0.8419 0.8758 0.9173 0.9451 0.9746

Table 8. SNR comparison of Barbara with different methods.

Method Soft Lu Han Li Srivastava New
SNR1 14.5844 13.6808 13.6706 13.6807 13.6851 13.6923
SNR2 14.8547 16.1256 17.3611 16.6059 16.2282 17.4083
SSIM 0.7935 0.8152 0.8466 0.8793 0.9258 0.9477
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Figure 4. Lena comparison of New Method with other de-noising meth-
ods. (a) De-noising with Soft threshold function; (b) Lu method; (c) Han
method; (d) Li method; (e) Srivastava method; (f) Our new method.

Figure 5. Barbara comparison of New Method with other de-noising
methods. (a) De-noising with Soft threshold function; (b) Lu method; (c)
Han method; (d) Li method; (e) Srivastava method; (f) Our new method.

Table 9. SNR comparison of Baboon with different methods.

Method Soft Lu Han Li Srivastava New
SNR1 14.4316 14.5606 14.6007 14.5647 14.3862 14.5739
SNR2 14.8547 14.8330 16.0908 15.8385 15.4820 17.2237
SSIM 0.8579 0.8861 0.9214 0.9357 0.9411 0.9652

According to table 7, SNR2 21.6419 of our new method is the biggest value among
all the functions, then next is Srivastava method with 21.7421, followed by Han method,
reaching to 21.5429; and finally come Lu method, Li method, soft threshold function at
20.7895, 20.6744 and 20.3449 respectively. Overall, what is noticeable from the table is
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Figure 6. Baboon comparison of New Method with other de-noising meth-
ods. (a) De-noising with Soft threshold function; (b) Lu method; (c) Han
method; (d) Li method; (e) Srivastava method; (f) Our new method.

that our new method has better effect, similarly as presented in tables 8,9. There are
some spots in soft threshold function. Lu method indicates that the de-noising effect has
better smooth, but the image is fuzzy. In these test images, similarity among neighboring
blocks is easy to perceive in the uniform regions and along the regular-shaped structures.
The de-noising performance of new algorithm is highlighted. We find that various image
details are well preserved and at the same time very few artifacts are introduced with new
method. The computation time is given in table 10. From the table, we can know that
the proposed method only takes approximately 1.36s, 1.38s and 1.39s for Lena, Barbara
and Baboon respectively, which is better than other methods.

Table 10. Computation time comparison with different methods(s).

Method Soft Lu Han Li Srivastava New
Lena 1.68 1.74 1.65 1.59 1.61 1.36

Barbara 1.66 1.73 1.61 1.58 1.58 1.38
Baboon 1.72 1.75 1.66 1.62 1.53 1.39

5. Conclusions. This paper proposed a new wavelet threshold function based on Gauss-
ian kernel function for image de-noising for the first time. The new idea was embedded in
two aspects: introducing Gaussian kernel function into soft threshold function; improving
the shape parameter λ. In this paper, we detailed discussed our new function including
the relation between j and α, effect of ε. Furthermore, the proof was given to demon-
strate its good properties. Finally, experiments were conducted to show the good effect
of our method. It could be clearly seen that image de-noising with new wavelet threshold
function was more closely to original image. To be more special, the new method made
up some demerits in recent threshold functions and it could achieve effective de-noising
results.
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