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Abstract. Over the recent years, the biomedical ontologies have been developed to sup-
port a variety of applications. However, the subjectivity of different biomedical ontology
designers leads to the generation of heterogeneous biomedical ontologies. In order to
support the cooperations among the heterogeneous biomedical ontologies, it’s necessary
to identify the correspondences out of semantically identical entities of them, so-called
biomedical ontology matching. In this paper, we propose a compact hybrid Evolution-
ary Algorithm (chEA), which utilizes a probabilistic representation of the population to
perform the optimization process, and introduces a local search strategy to improve the
efficiency. The Anatomy track and Large Biomed track, which are provided by the On-
tology Alignment Evaluation Initiative (OAEI 2017), are utilized to test the performance
of chEA. The experimental results show the effectiveness of our approach.
Keywords: Biomedical ontology matching, Compact hybrid Evolutionary Algorithm,
OAEI

1. Introduction. Over the recent years, the biomedical ontologies have been developed
to support a variety of applications, such as the annotation of medical records [1], stan-
dardization of medical data formats [2], medical knowledge representation and sharing
[3] and medical decision-making [4]. These vast usages of ontologies in the biomedical
field have compelled researchers to develop more biomedical ontologies. However, the
subjectivity of different biomedical ontology designers leads to the generation of hetero-
geneous biomedical ontologies. For example, the National Cancer Institute’s thesaurus
and ontology (NCI) [5] defines the entity “Myocardium”, whereas the Foundation Model
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of Anatomy (FMA) [6] uses the entity “Cardiac Muscle Tissue” to describe the muscles
that surround and power the human heart. In order to support the semantic among the
heterogeneous biomedical ontologies, it’s necessary to identify the correspondences out of
semantically identical entities of them, so-called biomedical ontology matching.

We can describe an biomedical ontology through its architecture graph (the nodes rep-
resent concepts and instances, while the edges stand for the relationship between them),
and the problem of biomedical ontology matching is the determination of the largest iso-
morphic sub graph out of the two architecture graphs of two ontologies to be matched.
Since the problem of modeling ontology matching is a complex (nonlinear with many local
optimal solutions) and time-consuming task (large scale), particularly when the number of
ontology entities is significantly large, Evolutionary Algorithm (EA) could be an efficient
approach to address this problem [7]. However, existing EA based ontology matching
techniques fail to match biomedical ontologies due to huge memory consumption and
long runtime. Therefore, besides the quality of alignments, main memory consumption
and runtime needed by the ontology matcher is of prime importance when matching the
biomedical ontologies. In this paper, we propose a compact hybrid Evolutionary Algo-
rithm (chEA), which utilizes a probabilistic representation of the population to perform
the optimization process, and introduces a local search strategy to improve the efficiency.
The contributions of this paper are listed as follows:

• An optimal model is constructed for biomedical ontology matching problem,
• A biomedical concept similarity measure is presented to calculate the similarity value

of two biomedical concepts,
• A compact hybrid Evolutionary Algorithm is proposed to efficiently solve the biomed-

ical ontology matching problem, and determine the high-quality biomedical ontology
alignment.

The rest of the paper is organized as follows: Section 2 describes definition of ontology,
ontology alignment, and the concept similarity measure; Section 3 presents the optimal
model of biomedical ontology matching problem and the details of the compact hybrid
Evolutionary Algorithm; Section 4 gives the experimental results and relevant analysis;
finally, Section 5 draws the conclusions.

2. Preliminaries.

2.1. Ontology, Ontology Alignment and Ontology Matching Process. In this
work, an ontology is defined as a 3-tuples (C,P,A), where C is the set of classes, i.e. the
set of concepts that populate the domain of interest; P is the set of properties, i.e. the
set of relations existing between the concepts of domain; A is a set of axioms, i.e. the
statements that say what is true about the modeled domain, such as subclass, equivalent
classes and disjoint classes.

An alignment A between two ontologies is defined as a set of correspondences, and each
correspondence is a 4-tuples (e, e′, n,=), where e and e′ are the entities of two ontology
respectively, n ∈ [0, 1] is a confidence value holding for the correspondence between the
entities e and e′, = means the equivalence relationship between two entities.

The ontology matching process can be defined as a function θ which, from a pair
of ontologies O and O′ to align, an input alignment AI , a set of parameters p, a set of
resources r, returns a new alignment AN between these ontologies: AN = θ(O,O′, AI , p, r)
[8]. The output alignment AN is a set of semantic matchings, and each one of them is
used for linking an entity belonging to the first ontology with a similar entity belonging
to the second ontology.
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2.2. Biomedical Concept Similarity Measure. Biomedical concept similarity mea-
sure is the foundation of biomedical ontology matching [9]. In this work, we utilize an
asymmetrical concept similarity measure to calculate similarity value between two biomed-
ical concepts. First, for each biomedical concept, we construct a profile for it by collecting
the label, comment, and property information such as label, domain and range, from itself
and all its direct descendants. Then, the similarity of two biomedical concepts c1 and c2
is measured based on the similarity of their profiles p1 and p2, which can be calculated by
the following two asymmetrical measures:

sim1(p1, p2) =
|p1
⋂
p2|

|p1|
(1)

sim2(p1, p2) =
|p1
⋂
p2|

|p2|
(2)

where |p1| and |p2| are the cardinality of the profile p1 and p2 respectively, |p1
⋂
p2| is the

number of identical elements in p1 and p2, and the similarity of e1 and e2 is calculated
through the following formulas:

sim(e1, e2) =

{
sim1(p1,p2)+sim2(p1,p2)

2
, if |sim1(p1, p2)− sim2(p1, p2)| ≤ δ

0, otherwise
(3)

In this work, δ = 0.06 is the threshold to measure the extent of the semantic equiv-
alence between sim1(p1, p2) and sim2(p1, p2). When the similarity value between two
profile elements is above the threshold, they’re identified as semantically similar. More-
over, the similarity value of two profile elements is calculated by N-gram distance [10],
which is the most performing string-based similarity measure for the biological ontology
matching problem, and a linguistic measure, which calculate a synonymy-based distance
through Unified Medical Language System (UMLS) [11]. Given two words w1 and w2,
their similarity sim(w1, w2) is calculated according to the following formula:

sim(w1, w2) =

{
1, if two words are synonymous
N − gram(w1, w2), otherwise

(4)

3. Compact Hybrid Evolutionary Algorithm.

3.1. The Optimal Model for Biomedical Ontology Matching Problem. Based
on the observations that the more correspondences found and the higher mean similarity
values of the correspondences are, the better the alignment quality is, we utilize the
following metric to measure the quality of a biomedical ontology alignment:

I(A) = 2×
φ(A)×

∑|A|
i=1 δi
|A|

φ(A) +
∑|A|

i=1 δi
|A|

(5)

where |A| is the number of correspondences in A, φ is a function of normalization in [0,1],
δi is the similarity value of the ith correspondence in A, and α is a parameter used to
tradeoff the ontology alignments characterized by high recall (with the decreasing of α)
or high precision (with the increase of α). On this basis, the optimal model of biomedical
ontology matching problem is defined as follows:

max I(X)
s.t. X = (x1, x2, ..., x|O1|, x|O1|+1)

T

xi = 1, 2, · · · , |O2|
x|O1|+1 ∈ [0, 1]

(6)
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where the decision variable X represents an alignment between ontologies O1 and O2,
xi represent the ith correspondence between ith concept in O1 and xith concept in O2,
|O1| and |O2| are the cardinalities of the concept set in O1 and O2 respectively, and
x|O1|+1 ∈ [0, 1] is the threshold to filter the final alignment.

In the next, we utilize chEA to solve the biomedical onology matching problem, which
can save memory consumption and runtime without sacrificing alignment’s quality. In the
following, we present two main components of chEA, i.e. chromosome encoding mecha-
nism and local search strategy, as well as the algorithm’s pseudo-code.

3.2. Chromosome Encoding Mechanism. In this work, we utilize the Probability
Vector (PV), a binary vector with each gene’s value in [0,1], to characterize the entire
population in population-based EA. The information in PV can be divided into two parts:
one stands for the correspondences in the alignment, and the other for a threshold. We
represent both the correspondences and threshold through the binary coding mechanism
in the field of computer science according to the number of target activities and the
numerical accuracy of threshold. When decoding, we calculate the corresponding decimal
numbers. In the first part, the numbers obtained represent the indexes of the target
activities, and in particular, the value 0 means corresponding source activity does not
map to any target activities. While in the second part, the decimal number should be
plus the numerical accuracy. This is because given the number accuracy acc, the threshold
value will be expressed by an integer in [0, 1

acc
] with a binary code.

3.3. Local Search Strategy. Local search strategy dedicates to generate various indi-
viduals to search the vicinity range of the elite solution indelite. In this work, by referring
to the work in [13], a C × D matrix M is constructed and we use it to generate neigh-
bour individuals of the indelite, where C is the scale of neighbour population and D is
the number of dimensions. With respect to C, a larger value of it may perform better
exploitation and especially for the multi-modal problem, but increase the computation
complexity. Here, we empirically set C = 5. For the sake of clarity, given a permutation
possibility pp, the pseudo-code of generating M is shown as follows:

//Initialize M
1. for(int i = 0; i < C; i+ +)
2. for(int j = 0; j < D; j + +)
3. Mij = 0;
4. end for
5. end for

//Permutate M
6. for(int i = 0; i < C; i+ +)
7. generate j = round(rand(0, D));
8. while (rand(0, 1) < pp)
9. Mij = 1;
10. j = j + 1;
11. if (j == D)
12. j = 0;
13. end if
14. end while
15. end for
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By flipping the value in M , i.e. converting the zero elements in M into one and non-
zero elements into zero, we can obtain M . On this basis, the neighbour population of the
indelite can generate through the following formula:

−−−−−−→
indneighbor = M ⊗

−−−−→
indelite +M ⊗

−→
X (7)

where
−−−−→
indelite =


indelite
indelite
· · ·

indelite


C×D

,
−→
X =


ind1
ind2
· · ·
indC


C×D

and indi, i = 1, 2, · · · , C, is gener-

ated by PV, and the operator ⊗ is multiplication of corresponding matrix elements.
Finally, we obtain the best individual in the neighbor population

indlocalBest = opti{
−−−−−−→
indneighbor(i)}, i = 1, 2, · · · , C.

3.4. The Pseudo-code of Compact Hybrid Evolutionary Algorithm. Input:

• num: the length of chromosome;
• maxGen: maximum number of generations;
• cro: exponential crossover probability;
• sl: step length when updating PV.

Output: indelite: the solution with best fitness value.

Step 1) Initialization:

1. generation=0;
2. for(i = 0; i < num; i++)
3. PV [i] = 0.5;
4. end for
5. generate an individual indelite by means of PV ;

Step 2) Update PV:

6. generate inds by means of PV ;
7. indnew = localSearch(indelite, inds);
8. [winner, loser] = compete(indelite, indnew);
9. if (winner == indnew)
10. indelite = indnew;
11. end if
12. for(i = 0; i < num; i++)
13. if (winner[i]==1)
14. PV [i] = PV [i] + sl;
15. else
16. PV [i] = PV [i]− sl;
17. end if
18. end for

Step 3) Stopping Criteria:

19. if (maxGen is reached or each bit of PV is either 1 or 0)
20. stop and output indelite;
21. else



Matching Biomedical Ontologies Through Compact Hybrid Evolutionary Algorithm 115

Table 1. Comparison of our approach with the participants in OAEI 2017
on Anatomy track

Systems R P F runtime

AML 0.93 0.95 0.94 47
YAM-BIO 0.92 0.94 0.93 70
POMap 0.90 0.94 0.93 808
LogMapBio 0.89 0.88 0.89 820
XMap 0.86 0.92 0.89 37
LogMap 0.84 0.91 0.88 22
KEPLER 0.74 0.95 0.83 234
LogMapLite 0.72 0.96 0.82 19
SANOM 0.77 0.89 0.82 295
Wiki2 0.73 0.88 0.80 2204
ALIN 0.33 0.99 0.50 836
QUATRE 0.93 0.96 0.94 293

chEA 0.93 0.98 0.95 34

22. generation=generation+1;
23. go to Step 2);
24. end if

4. Experimental Results and Analysis. In order to study the effectiveness of our
approach, we exploit the Anatomy 1 and Large Biomed 2 track, which are provided by the
Ontology Alignment Evaluation Initiative (OAEI 2017) 3. The Anatomy track includes
two ontologies (1 task), i.e. the Adult Mouse Anatomy (AMA) ontology (2,744 classes)
and a part of NCI describing the human anatomy (3,304 classes). Large Biomed track (3
tasks) aims at finding alignments between FMA, SNOMED CT, and NCI, which respec-
tively contains 78,989, 122,464 and 66,724 classes. Particularly, Large Biomedic track is
split into three matching problems: FMA-NCI, FMA-SNOMED and SNOMED-NCI, and
each matching problem in these tasks involving different fragments of the input ontologies.

In this work, step length sl = 0.01, scale of neighbour population C = 10, local search’s
permutation possibility pp = 0.6, and the algorithm terminates when it runs up to 3000
generations. These parameters are set in an empirical way to achieve the highest average
alignment quality on all test cases of exploited datasets. In order to compare the quality
of our proposal with other process model matchers, we evaluate the obtained alignments
with the traditional recall, precision and f-measure [12], and the experimental results in
the tables are the average values over thirty independent runs.

4.1. Results and analysis. In order to compare the quality of our proposal with the
participants of OAEI 2017 4 and a state-of-the-art EA, i.e. QUasi-Affine TRansformation
Evolutionary (QUATRE) algorithm [14]. We evaluate the obtained alignments with tra-
ditional recall, precision and f-measure, and our approach’s results in Table 1 and Table
2 are the mean values in thirty time independent executions. The symbols P , R and F
in tables stand for precision, recall and f-measure, respectively.

1http://oaei.ontologymatching.org/2017/anatomy/index.html
2http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017/
3http://oaei.ontologymatching.org/2017
4http://oaei.ontologymatching.org/2017/results/index.html
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Table 2. Comparison of our approach with the participants in OAEI 2017
on Large Biomed track

Task1: whole FMA and NCI ontologies

Systems R P F Runtime(s)

XMap* 0.85 0.88 0.87 130
AML 0.87 0.84 0.86 77
YAM-BIO 0.89 0.82 0.85 279
LogMap 0.81 0.86 0.83 92
LogMapBio 0.83 0.82 0.83 1552
LogMapLite 0.82 0.67 0.74 10
Tool1 0.74 0.69 0.71 1650
QUATRE 0.85 0.91 0.87 393

chEA 0.86 0.91 0.88 68

Task2: whole FMA and SNOMED ontologies

XMap* 0.84 0.77 0.81 625
YAM-BIO 0.73 0.89 0.80 468
AML 0.69 0.88 0.77 177
LogMap 0.65 0.84 0.73 477
LogMapBio 0.65 0.81 0.72 2951
LogMapLite 0.21 0.85 0.34 18
Tool1 0.13 0.87 0.23 2140
QUATRE 0.83 0.87 0.84 862

chEA 0.83 0.90 0.86 139

Task3: whole SNOMED and NCI ontologies

AML 0.67 0.90 0.77 312
YAM-BIO 0.70 0.83 0.76 490
LogMapBio 0.64 0.84 0.73 4728
LogMap 0.60 0.87 0.71 652
LogMapLite 0.57 0.80 0.66 22
XMap* 0.55 0.82 0.66 563
Tool1 0.22 0.81 0.34 1150
QUATRE 0.72 0.88 0.79 862

chEA 0.75 0.92 0.82 286

As can be seen from Table 1, our approach’s f-measure is the best among all the
participants in OAEI 2017, and the runtime taken by our approach is is in the third
place. In Table 2, in terms of f-measure, our approach’s results are ranked the first in
task1, task2 and task3. With respect to the running time, in task1, task2 and task3, our
approach is in the second place. In two tracks, our approach outperforms AML, which is
the top ontology matcher and developed primarily for the biomedical ontology matching,
in all tasks in terms of f-measure and runtime. Comparing with QUATRE in all testing
cases, although it can obtain quite similar results, the runtime needed is much longer than
chEA. To conclude, chEA can efficiently match the biomedical ontologies.

5. Conclusion. In this work, in order to overcome the drawbacks in traditional EA based
ontology matching techniques, we propose a compact hybrid Evolutionary Algorithm to
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efficiently match the biomedical ontologies. In particular, we utilize one PV to character-
ize the entire population in population-based EA, which can significantly save the memory
consumption; and then we introduce the local search strategy into the evolving process
to reduce the runtime. Moreover, we construct an optimal model for biomedical ontol-
ogy matching problem, and present a biomedical concept similarity measure to ensure
the quality of ontology alignment. In the experiment, OAEI 2017’s Anatomy track and
Large Biomed track are utilized to test our approach’s performance, and the results show
that our approach can efficiently determine the biomedical ontology alignments with high
quality.
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