
Journal of Information Hiding and Multimedia Signal Processing ©2023 ISSN 2073-4212

Ubiquitous International Volume 14, Number 3, September 2023

Operator-N Layer Construction for Optimizing
Capsule Network Methods in Image Classification

Problems

Ridho Nur Rohman Wijaya1, Budi Setiyono2, Mahmud Yunus3,
Dwi Ratna Sulistyaningrum4

Departement of Mathematics
Institut Teknologi Sepuluh Nopember Surabaya, Indonesia

1ridhonurrohmanwijaya@gmail.com, 2masbudisetiyono@gmail.com, 3yunusm@matematika.its.ac.id,
4dwratna@gmail.com

Correspond Author : masbudisetiyono@gmail.com
Received June 2023; revised August 2023

Abstract. Capsule Network (CapsNet) is an image classification method that has
successfully demonstrated excellent performance in Deep Learning. The main concept of
CapsNet is to change image features into capsules and create entities that better
represent information from these features. However, capsule formation causes an
increase in the number of training parameters and makes the computation time longer.
Moreover, the CapsNet method is less effective in processing images with complex
backgrounds because it has limitations in feature extraction. We propose a mathematical
approach by introducing an operator-N layer to improve CapsNet performance. The
operator-N is an operator constructed using Euclidean norms, which functions to shrink
dimensions and speed up the process of translation equivariance from a capsule.
According to experimental results on MNIST, Fashion MNIST, and Kuzushiji MNIST
datasets, the proposed operator-N layer significantly improves accuracy up to 1.72%
with 2.91 times faster computation time than the original CapsNet. Furthermore, the
total parameters used during the training process have been reduced to 15.7%. Our
research provides valuable insights for overcoming the challenges posed by feature
extraction limitations and paves the way for more efficient image classification methods
in the future.
Keywords: Capsule Network, Deep Learning, Feature Extraction, Norm, Operator.

1. Introduction. Deep Learning has been growing in recent years. Deep learning has
become an invaluable tool for various applications in our daily lives, including medical
image processing [1], sentiment analysis [2], voice recognition [3], and others. Deep
learning popularity began with the Convolutional Neural Networks (CNN) method to
solve the image classification problem [4]. At its inception, CNN architecture is designed
with a simple network, starting with a few layers and growing to thousands of layers.
This development gave birth to new methods such as VGGNet [5], GoogleNet [6],
ResNet [7], and CapsNet [8]. The Capsule Network (CapsNet) method is a new method
whose main motivation is removing the pooling layer and adding a component known as
a capsule. Based on the statement of Sabour et al [8], the pooling technique retrieves
translation equivariance with a rough working mechanism. An example is Max pooling
which only picks neurons with the highest activation, not those with the most relevant
information to the problem at hand. The pooling process can reduce information from

90

Operator-N Layer Construction for Optimizing Capsule Network Methods 91

the image so that it cannot recognize the spatial relations between specific components
of the objects in the image. Therefore, the CapsNet method emerged with a better
translation equivariance mechanism, which is ”dynamic routing”. Based on this routing
process, the CapsNet method is produced which improves CNN performance to
recognize spatial relations such as slope, position, and thickness in images. CapsNet
performance results have been proven on [8], and it has also been proven that for a
limited amount of training data, the CapsNet method is better than CNN in terms of [9]
accuracy. One of the problems with the CapsNet method is the large and long
computation [10]. CapsNet requires significant computational resources to obtain more
optimal results. Hence, some studies that focus on efficient computing time with
optimal accuracy, such as [11] which accelerates dynamic routing by up to three times.
There is also development that focuses on the efficiency of the routing process, several
routing alternatives that can be used to make the CapsNet method even better are
EMCaps [12], OptimCaps [13], GroupCaps [14], and AttnCaps [15].

An interesting concept in the routing process is using Euclidean norms that do not
exist in the CNN method. The utilization of norms in the routing process is facilitated
by the fundamental concept of capsules in CapsNet. This capsule is a vector consisting
of a group of neurons representing several parameters and the length of the vector
indicates the possibility of a specific entity [16]. Therefore the capsule can store
important information such as position, tilt, and thickness. However, we realize that
making capsules in the CapsNet method is very simple: taking each neuron in a
different layer and turning it into a vector. Even though the information on the neurons
in each layer is not necessarily needed in every condition, a better method of retrieving
neurons is needed so to form capsules that better represent the specific entities that
exist. Hence, our proposed approach involves incorporating the operator-N, constructed
from Euclidean norms, to effectively reduce image dimensions. This operator-N plays a
crucial role in shrinking dimensions and accelerating translation equivariance at each
layer, leading to the generation of capsules that better capture the relevant information.
By introducing this dimension reduction technique as an additional layer in the CapsNet
method, we achieve a modified CapsNet model that offers enhanced accuracy and faster
computation capabilities.

2. The Proposed Method. This work is to optimize the performance of CapsNet
method by proposing a new layer using operator-N operation, which is constructed using
a norm. First, we define the input and output in this method. Let D denote a dataset
consisting of pairs of images and labels, D =

{
(Xi, yi) |Xi ∈ Rr×c×d, yi ∈ R,

i =
¯
n = 1, 2, . . . , n}, then we get set of X = {Xi | Xi ∈ Rr×c×d, i =

¯
n} and

Y = {yi | yi ∈ R, i =
¯
n} as the CapsNet model inputs (CN). Therefore, the output is a

label prediction ŷ = CN(X̂) ∈ R when the model CN is used to predict test data

X̂ ∈ Rr×c×d. The next step for proposed CapsNet was formed with the architecture
shown in FIGURE 1.

2.1. Proposed Capsule Network.

2.1.1. The architecture. The modified CapsNet architecture consists of a convolutional
layer, primary capsule layer, operator-N layer, digital capsule layer, and fully connected
layer as reconstruction regularization. To simplify it, we denoted a convolution layer and
a dense layer with functions fconv and fdense without explaining their process. Hence, the

result in convolutional layer for X as the input is X(1) = {X(1)
i |X

(1)
i ∈ Rr1×c1×d1 , i =

¯
n}

92 N.R.W. Ridho, S. Budi, Y. Mahmud, R.S. Dwi

Figure 1. The architecture of the proposed CapsNet with Operator-N Layer.

with

X
(1)
i = fconv(Xi, dk(1) , (k(1), k(1)), (s(1), s(1))), ∀Xi ∈ X, (1)

for (k(1), k(1)) and (s(1), s(1)) is kernel size of dk(1) kernels and stride at the convolutional

layer. Furthermore, we get X(2) = {X(2)
i | X

(2)
i ∈ Rr2×c2×d2 , i =

¯
n} as result in primary

capsule layer with dk(2) kernels of (k(2), k(2)) and stride (s(2), s(2)),

X
(2)
i = fconv(X

(1)
i , dk(2) , (k(2), k(2)), (s(2), s(2))),∀X

(1)
i ∈ X(1). (2)

For the next stage, X(2) as input at the operator-N layer and has an output X(3) =

{X(3)
i | X

(3)
i ∈ Rr3×c3×d3 , i =

¯
n}, the complete process will be explained in Proposed

Operator-N Layer section.
The next step is to create the digital capsule layer. At this point, the information from

previous stage, X(3), is turned into a collection of vectors that hold specific data, which
is commonly referred to as capsules in this method. The extraction of this information
employs a routing mechanism known as Dynamic Routing. The routing process is a
translation equivariance mechanism from the collection of capsules in a specific layer to
a subsequent layer. Therefore, before the routing process is carried out, the value of

X(3) must be reformed into a set of capsule collections, i.e. V(1) = {V (1)
i | i = ¯

n} with
V

(1)
i = {ui,k | ui,k ∈ Rn1 , k =

¯
m1} such that it can be the input of the routing process.

In this case, , the variable n1 denotes the length of the capsule vector, while the value of

V
(1)
i can be determined using the algorithm provided in Algorithm 1, ensuring that

V
(1)
i = fvec(X

(3)
i , n1). (3)

2.1.2. Routing Process. The routing process is a translation equivariance mechanism from
the collection of capsules in a specific layer to a subsequent layer. In this case, the retrieved

information spans from V(1) to a set of capsule collections V(2) = {V (2)
i | i = ¯

n} with

V
(2)
i = {vi,κ |vi,κ ∈ Rn2 , k =

¯
m2}. There exists a weight matrix from capsule k to capsule

κ denoted as Wkκ ∈ Rn2×n1 such that for every i image, we get the prediction vector
ûκ|k ∈ Rn2 follows the following equation:

ûκ|k = Wkκui,k, (4)

Operator-N Layer Construction for Optimizing Capsule Network Methods 93

Algorithm 1 Vector Building

Input: The input image X
(3)
i ∈ Rr3×c3×d3 , vector length n1

Output: The set of capsules V
(1)
i

1: procedure fvec(X
(3)
i , n1)

2: V
(1)
i ← ∅

3: for k = 1→ d3/n1 do
4: k = n1(k − 1) + 1
5: for l = 1 to r3, j = 1 to c3 do

6: ui,k ← X[l, j, k : k + n1], V
(1)
i ← V

(1)
i

⋃
{ui,k}

7: end for
8: end for
9: return V

(1)
i

10: end procedure

hence, we get the vector sκ ∈ Rn2 as the weighted sum of the vectors ûκ|k, which are

sκ =

m1∑
k=1

ckκûκ|k, (5)

where ckκ ∈ R is the coupling coefficient obtained from dynamic routing process for weight
wkκ ∈ R, in other words for each capsule k and capsule j are obtained

ckκ =
ewkκ∑m2

l=1 e
wkκ

. (6)

Based on this explanation, the vector value for the i-th image on capsule κ can be obtained
by applying the squashing function fsquash : Rn2 → Rn2 with

vi,κ = fsquash(sκ) =
∥sκ∥2

1 + ∥sκ∥2
· sκ
∥sκ∥

. (7)

The routing process for each element inV(1) toV(2) is further demonstrated in Algorithm
2.

2.1.3. Reconstruction Regularization. The final outcome of the routing process is a set
of capsules that encapsulate the characteristic values of the given input image. At this
point, we can calculate loss value of the training results. However, to enhance the
classification accuracy, the CapsNet method incorporates a fully connected layer that
reconstructs capsule collection based on the routing outputs. This reconstruction
process is a regularization technique to assess performance of the prior stage’s routing
outputs. The reconstruction is accomplished through three dense layers, each containing
a specific number of neurons ñ1, ñ2, and ñ3 with ñ3 = r × c × d. For example, if we

denote the reconstructed outputs at ñ1, ñ2, and ñ3 as X̃(1) = {X̃(1)
i | i =

¯
n},

X̃(2) = {X̃(2)
i | i = ¯

n}, and X̃(3) = {X̃(3)
i | i = ¯

n}, then

X̃
(1)
i = fdense(V

(2)
i , ñ1), X̃

(2)
i = fdense(X̃

(1)
i , ñ2), X̃

(3)
i = fdense(X̃

(2)
i , ñ3). (8)

Based on this, we calculate two losses: the margin loss from the routing process and the
reconstruction loss from the reconstruction regularization process.

94 N.R.W. Ridho, S. Budi, Y. Mahmud, R.S. Dwi

Algorithm 2 Routing Mechanism

Input: The set of capsules V
(1)
i , r routing

Output: The set of capsules V
(2)
i

1: procedure Routing(V
(1)
i , rn)

2: V
(2)
i ← ∅ ▷ initialization

3: for i = 1 to n do
4: for k = 1 to m1, κ = 1 to m2 do
5: Wkκ ← Random(n2, n1), wkκ ← 0, ûκ|k ←Wkκui,k

6: end for
7: for r = 1 to r do ▷ routing process
8: for k = 1 to m1, κ = 1 to m2 do
9: ckκ ← ewkκ/

∑m2
l=1 e

wkκ

10: end for
11: for κ = 1 to m2 do
12: sκ ←

∑m1
k=1 ckκûκ|k, vi,κ ← fsquash(sκ)

13: end for
14: for k = 1 to m1, κ = 1 to m2 do
15: wkκ ← wkκ + ûκ|k · vi,κ

16: end for
17: end for
18: V

(2)
i ← V

(2)
i

⋃
{vi,κ}

19: end for
20: return V

(2)
i

21: end procedure

2.1.4. Loss Function. The value of the loss Li for the i-th image is calculated for each
capsule in the DigitCaps layer. As mentioned earlier, there are two loss components in
the CapsNet method: the margin loss Mi and the reconstruction loss Ri. The margin
lossMi =

∑m2

κ=1Mκ represents the cumulative loss of each capsule κ, and it is calculated
using the equation:

Mκ = Tκ
(
max

{
0, v+ − ∥vi,κ∥

})2
+ λ(1− Tκ)

(
max

{
0, ∥vi,κ∥ − v−

})2
, (9)

where Tk is 1 if capsule κ is the label of the actual target and 0 otherwise, v+ = 0.9,
v− = 0.1, and λ parameters reduce the effect of loss on labels that are not actual targets.
The calculation of the reconstruction loss value involves using the mean square error,

which is as follows: Ri = MSE(Xi − X̃
(3)
i). Hence, the loss value is obtained.

Li =Mi + αRi, (10)

where α is a parameter that determines the relative impact of the reconstruction loss.

2.2. Proposed Operator-N Layer. The operator-N is a mapping operator that
transforms a finite-dimensional vector into a real value using operations based on
Euclidean norms. Euclidean norms are chosen for this purpose because they are widely
used and there exists a norm equivalence theorem, which states that all norms are
equivalent. This means that the choice of norm does not significantly affect the
magnitude of the result.

Operator-N Layer Construction for Optimizing Capsule Network Methods 95

2.2.1. Operator-N. We constructed multiple operator-Ns as variations of operators built
using Euclidean norms.

∥x∥ =

(
n∑

k=1

|xk|2
)1/2

, x = (x1, x2, . . . , xp) ∈ Rp. (11)

Three variations were constructed, denoted as N1 : Rp → [0, 1), N2 : Rp → (0, 1], and
N3 : Rp → [1

2
, 1), which is as follows:

N1 =
∥x∥

1 + ∥x∥
, (12)

N2 = e
−
∥x∥2

2 , (13)

N3 =
1

1 + e−∥x∥ . (14)

The formation of the three norms refers to the normalization, exponential, and sigmoid
functions. As explained earlier, the operator-N layer is employed to obtain X(3) from the
input X(2). This process is carried out by taking the image value at a certain depth and
transforming it into a new real value using the operator-N. We call this term dimension
shrinking, which means we shrink s dimensions to get better information. This process
involves taking the image value at a specific depth and transforming it into a new real
value using the operator-N. We refer to this process as ”dimension shrinking,” as it aims
to reduce s dimensions of the vectors to capture more informative features. In theory,
the CapsNet method imitates the functioning of the human brain by utilizing capsules,
which are vectors capable of representing spatial relations in images, such as position,
slope, thickness, and more. Incorporating an operator-N layer can enhance and accelerate
the extraction of spatial relation information compared to the absence of this layer. More
details are shown in Algorithm 3.

2.2.2. Theoretical Analysis. We conduct a theoretical analysis to establish the existence
and well-defined nature of the operator-N. First, we show the theory of norm equivalence.

Theorem 2.1. [17] Every two norms in a finite-dimensional vector space are equivalent.

Algorithm 3 Operator-N Layer

Input: The input image X
(2)
i ∈ Rr2×c2×d2 , shrink size s, operator N

Output: The output image X
(3)
i

1: procedure fopN (X
(2)
i , s, N)

2: X
(3)
i ← 0

3: for k = 1→ d2/s do
4: k = s(k − 1) + 1
5: for l = 1 to r2, j = 1 to c2 do

6: x← X[l, j, k : k + s], X
(3)
i [l, j, k]← N(x)

7: end for
8: end for
9: return X

(3)
i

10: end procedure

96 N.R.W. Ridho, S. Budi, Y. Mahmud, R.S. Dwi

We know that any norms ϕ and ψ in a vector space with finite dimensions V are said
to be equivalent if there are constants A > 0 and B > 0 such that Aϕ(v) ≤ ψ(v) ≤
Bϕ(v) for each v ∈ V. Hence, we have the flexibility to select any norm as the basis
for constructing the operator-N. In our research, we choose the Euclidean norm. It’s
important to mention that the Euclidean norm is already an established and well-defined
concept in mathematics. As a result, the operators constructed from this norm will also
be well defined. Consequently, we can confidently assert that the operator-N is indeed
well defined. Considering that Euclidean norms are continuous, it follows that dividing
two continuous functions also yields a continuous function. Additionally, the exponential
function is known to be continuous. Hence, we can conclude that the operators N1(·),
N2(·), and N3(·) are all continuous operators. Next, we determine the Supremum and
Infimum of each operator. Let x = (x1, x2, . . . , xp) ∈ Rp, then

inf
x∈Rn

N1(x) = inf
x∈Rn

∥x∥2
1 + ∥x∥2

, sup
x∈Rn

N1(x) = sup
x∈Rn

∥x∥2
1 + ∥x∥2

= 0 = min
x∈Rn

N1(x) = 1 ̸= max
x∈Rn

N1(x) (15)

inf
x∈Rn

N3(x) = inf
x∈Rn

exp

(
−∥x∥

2
2

2

)
, sup

x∈Rn

N3(x) = sup
x∈Rn

exp

(
−∥x∥

2
2

2

)
= 0 ̸= min

x∈Rn
N3(x) = 1 = max

x∈Rn
N3(x) (16)

inf
x∈Rn

N4(x) = inf
x∈Rn

1

1 + exp(−∥x∥2)
, sup

x∈Rn

N4(x) = sup
x∈Rn

1

1 + exp(−∥x∥2)

=
1

2
= min

x∈Rn
N4(x) = 1 ̸= max

x∈Rn
N4(x) (17)

Thus, we can conclude that N1 : Rp → [0, 1), N2 : Rp → (0, 1], and N3 : Rp → [1
2
, 1). The

performance of operator-N is evaluated based on the achieved accuracy and the
computation time. Suppose the modified CapsNet method demonstrates improved
accuracy with reduced computation time. In that case, the inclusion of operator-N has
effectively enhanced the performance of the original CapsNet method. Mathematically,
the performance of a computation can be quantified by the number of parameters.

2.3. Parameter Analysis. The performance of an algorithm can be measured by
calculating its computational complexity or the number of operations. External factors
such as memory capacity and GPU usage also play a role. However, in the context of
deep learning methods, calculating the complexity using Big O notation is often
unnecessary. Instead, we can evaluate the performance based on the total number of
parameters used in the model. Let P(A,B) represents the total parameters required to
pass neuron information from A to B, then we get the theorem as follows:

Theorem 2.2. The total number of parameters used in the modified CapsNet method,
including the operator-N, is lower than that of the original method.

Proof. We take X
(2)
i ∈ Rr2×c2×d2 and X

(3)
i ∈ Rr3×c3×d3 for comparison, the original

CapsNet calculates total parameter as P(X
(2)
i ,V

(2)
i) and our CapsNet as

P(X
(2)
i ,X

(3)
i) + P(X

(3)
i ,V

(2)
i), Our goal is to demonstrate that the sum of all parameters

P(X
(2)
i ,X

(3)
i) + P(X

(3)
i ,V

(2)
i) < P(X

(2)
i ,V

(2)
i). Note that X

(3)
i is the convolution result

from X
(2)
i , then r2 ≥ r3, c2 ≥ c3 , and d2 > d3. Accordingly, a set of weight matrices is

formed to transform vectors of size n1 × 1 from X
(2)
i , which has a total of r2 × c2 × d2/n1

capsules, to a set of vectors of size n2 × 1 in V
(2)
i , which has m2 capsules. Therefore, the

Operator-N Layer Construction for Optimizing Capsule Network Methods 97

total parameter P(X
(2)
i ,V

(2)
i) = r2 × c2 × d2 × n2 × m2. Similarly, we have

P(X
(3)
i ,V

(2)
i) = r3 × c3 × d3 × n2 ×m2. Mention that the process from X

(2)
i to X

(3)
i does

not require any additional independent variables to use, As a result, we obtain

P(X
(2)
i ,X

(3)
i) = 0. Hence, it can be proven that

P(X
(2)
i ,X

(3)
i) + P(X

(3)
i ,V

(2)
i) = 0 + r3 × c3 × d3 × n2 ×m2 < r2 × c2 × d2 × n2 ×m2

The modified approach utilizing operator-N layers boasts a reduced total parameter count
compared to the original method.

3. Experiments.

3.1. Datasets and System Setup. To evaluate the performance of our method, we
achieved experiments using three benchmark datasets: MNIST [18], Fashion MNIST [19],
and Kuzushiji-MNIST [20]. All datasets contain 70K grayscale images with size (28×28),
60K images are training data and 10K images are test data which have been divided into
ten classes. We aim to evaluate the performance of the modified CapsNet method, referred
to as ”Our-CapsNet,” by incorporating an operator-N layer in comparison to the original
method, which we refer to as ”Original-CapsNet”. Therefore we use the same architecture
for Original-CapsNet: two convolution layers, one digital capsule layer (DigitCaps), and
a reconstruction layer. The first convolution layer has 256 convolution kernels with size
(9×9), stride of 1, no padding, and the ReLU activation function. The second convolution
layer, or primary capsule layer has 256 convolution kernels with size (9 × 9), a stride of
2, no padding, and ReLU activation function. This layer can be reshaped into a capsule
layer which has 32 capsules with a size of 8 dimensions. The DigitCaps layer has ten
capsules with 16 dimensions representing each class. The reconstruction layer contains
three dense layers with neuron sizes of 512, 1024, and 784, respectively.

Our method shares a similar architecture with Original-CapsNet but includes
additional components before the DigitCaps step. One of the key additions is the
operator-N layer, which uses different depreciation operators and hyperparameters. We
conducted a preliminary experiment to determine the optimal hyperparameters and
operators. This preliminary experiment involved 16 training batches, the Adam
optimizer function, and ten epochs. The training process was repeated three times, and
the average accuracy from three separate tests was taken as the final result.
Subsequently, we proceeded with 100 training epochs using the best hyperparameters
identified in the preliminary experiment. Our method was implemented using
TensorFlow and Python, with Tesla T4 GPU.

3.2. Experimental Results.

Table 1. Comparison of results for preliminary experiments on MNIST
Dataset. (M:millions, s/E:seconds/Epoch)

Benchmarks Original-CapsNet
Our-CapsNet

s

8 16 32
Params (M) 8,21 6.92 6.83 6.78
Time (s/E) 464 170 151 128
Accuracy 97.79% 98.55% 98.38% 98.47%

98 N.R.W. Ridho, S. Budi, Y. Mahmud, R.S. Dwi

Table 2. Comparison of performance improvement for preliminary
experiments on Fashion MNIST and Kuzushiji MNIST Dataset.

Dataset
Our-CapsNet

s

8 16 32
Fashion MNIST (+)1.70% (+)1.34% (+)1.31%
Kuzushiji MNIST (+)2.92% (+)1.85% (+)1.72%

Table 3. Comparison of test accuracy after applying different operators.

Dataset
Our-CapsNet

∥·∥ N1(·) N2(·) N3(·)
MNIST 98.60% 98.79% 97.70% 95.20%

Fashion MNIST 88.36% 89.05% 88.54% 85.12%
Kuzushiji MNIST 92.78% 91.31% 91.13% 87.66%

3.2.1. Shrinkage Hyperparameter Selection. We use three distinct hyperparameters for the
s dimension shrinking at the operator-N layer step. In this experiment, we sampled 8, 16,
and 32 dimensions. The corresponding results are presented in TABLE 1. Based on the
results in TABLE 1, it is evident that shrinking the dimensions for all hyperparameters can
improve the performance of the Original-CapsNet. The total parameters used decreased
by 15.70%-17.39%, which is reasonable considering the reduction in dimensions. This
reduction in parameters also leads to a decrease in the total training time. The table
shows that the training time reduced from 464 s/E to 128 s/E, indicating a significant
improvement in efficiency, with a reduction of up to 70% in the total time used. Regarding
accuracy, the results demonstrate an increase of up to 78%. This increase is aligned
with the theory that shrinking dimensions using the operator-N can enhance translation
equivariance within each capsule. The performance improvement results for other datasets
are presented in TABLE 2, showing an accuracy increase of around 1.81%. From these
experiments, we can conclude that the optimal shrink size hyperparameter is s = 8. It
is observed that larger shrinkage sizes result in faster training times, but at the cost of
slightly lower accuracy. Therefore, based on multiple experiments, we recommend using
s = 8 as the hyperparameter for achieving optimal performance in the modified CapsNet
with the addition of the operator-N layer.

3.2.2. Operator-N Selection. We have determined that the optimal hyperparameter for
dimensional shrinkage is s = 8, using the Euclidean norm as the operator. Next, we
conducted experiments on various operator-Ns, including N1(·) (12), N2(·) (13), and N3(·)
(14). The comparison of test accuracy for these operators is presented in TABLE 3. Based
on the obtained results, it can be concluded that the N1 operator generally exhibits higher
test accuracy compared to the other operators, except for the Kuzushiji MNIST dataset.
This could be attributed to the fact that the N1 operator normalizes the values using the
Euclidean norm, resulting in a more consistent range of values within the interval [0, 1).
In terms of training time, all operators have similar times, ranging from 158-167 s/E,
which represents an approximately 11% increase compared to the baseline operator, the
Euclidean norm. Consequently, it can be concluded that the most optimal operator to be
used as the activation function at the operator-N layer is N1.

Operator-N Layer Construction for Optimizing Capsule Network Methods 99

Table 4. Final Comparison of results on MNIST Dataset. (M:millions,
s/E:seconds/Epoch)

Model Params
Bencmarks

Time (s/E) Loss Accuracy
Original-CapsNet 8.21M 469 0.02730 96.99%
Our-CapsNet 6.92M 161 0.02243 98.66%

Figure 2. Curve of Training Accuracy on MNIST Dataset.

3.2.3. Analysis of Performance. We have determined that the optimal hyperparameter
for the modified CapsNet method is dimension shrinkage with s = 8, using the N1
operator. We conducted additional training for 100 epochs to further analyze the
performance while keeping other hyperparameters the same as before. FIGURE 2
illustrates the accuracy curves for both the Original-CapsNet and Our-CapsNet models
during the training process. It is evident that Our-CapsNet exhibits a faster
convergence rate and requires fewer epochs to reach convergence compared to
Original-CapsNet. TABLE 4 illustrates the superior performance of Our-CapsNet
compared to Original-CapsNet in all aspects. These findings align with the conclusions
from the previous preliminary experiments, where Our-CapsNet achieved a reduction of
15.7% in parameters used, a decrease in the loss by 17.84%, and an increase in accuracy
of 1.72%. One of the most notable improvements is observed in the total training time.
Original-CapsNet required 469 s/E, equivalent to approximately 13.02 hours of training
in real-time. On the other hand, Our-CapsNet only required 161 s/E, which is
approximately 4.47 hours of training. This significant reduction in training time
showcases the efficiency of Our-CapsNet. It achieves better accuracy and trains 2.91
times faster than Original-CapsNet, providing a substantial advantage. In conclusion,
the experimental results depicted in FIGURE 3 demonstrate the superior performance
of Our-CapsNet. It achieves a remarkable accuracy improvement of up to 2.15% while
significantly reducing the computation time by approximately 2.88 times compared to
the baseline method. This outcome highlights the effectiveness and efficiency of
Our-CapsNet in enhancing accuracy and optimizing computational resources.

100 N.R.W. Ridho, S. Budi, Y. Mahmud, R.S. Dwi

Figure 3. Increasing Accuracy with Computation Time on the Kuzushiji
MNIST Dataset.

4. Conclusion. This paper presents a novel approach to enhance the Capsule Network
method by incorporating an operator-N layer. The operator-N is an operator
constructed using Euclidean norms, which functions to shrink dimensions and speed up
the process of translation equivariance from a capsule. Through this modification, we
observed significant improvements in various performance metrics. Specifically, the total
parameters used were reduced by up to 15.7%, accompanied by a 17.84% decrease in
loss and a 1.72% increase in accuracy. Furthermore, the training time was reduced by
2.91 times its original duration. The experimental results, conducted on the MNIST,
Fashion MNIST, and Kuzushiji MNIST datasets, consistently demonstrated the
effectiveness of integrating operator-N layer in enhancing the original Capsule Network’s
performance. In future work, we aim to extend the application of the operator-N layer
to other deep learning methods to enhance their performance further.

Acknowledgment. This work was supported by Direktorat Riset, Teknologi, dan
Pengabdian kepada Masyarakat, Kementerian Pendidikan, Kebudayaan, Riset dan
Teknologi, in accordance Kontrak Induk Pelaksanaan Program Bantuan Operasional
Perguruan Tinggi Negeri Penelitian Fundamental - Reguler Nomor Kontrak Induk:
112/E5/PG.02.00.PL/2023, dated June 19, 2023, Nomor Kontrak Peneliti:
1932/PKS/ITS/2023, dated June 20, 2023.

REFERENCES

[1] Y. Zhang and Z. Dong, Medical imaging and image processing, 2023.
[2] X. Li, J. Zhang, Y. Du, J. Zhu, Y. Fan, and X. Chen, A novel deep learning-based sentiment analysis

method enhanced with emojis in microblog social networks, Enterprise Information Systems, vol. 17,
no. 5, p. 2037160, 2023.

[3] S. Suparatpinyo and N. Soonthornphisaj, Smart voice recognition based on deep learning for
depression diagnosis, Artificial Life and Robotics, pp. 1–11, 2023.

[4] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel, Handwritten
digit recognition with a back-propagation network, Advances in neural information processing
systems, vol. 2, 1989.

[5] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition,
arXiv preprint arXiv:1409.1556, 2014.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1–9, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

[8] S. Sabour, N. Frosst, and G. E. Hinton, Dynamic routing between capsules, Advances in neural
information processing systems, vol. 30, 2017.

Operator-N Layer Construction for Optimizing Capsule Network Methods 101

[9] P. Peng, Z. He, L. Wang, and Y. Jiang, Microseismic records classification using capsule network
with limited training samples in underground mining, Scientific Reports, vol. 10, no. 1, pp. 1–16,
2020.

[10] R. Mukhometzianov and J. Carrillo, Capsnet comparative performance evaluation for image
classification, arXiv preprint arXiv:1805.11195, 2018.

[11] A. Mobiny and H. Van Nguyen, Fast capsnet for lung cancer screening, in Medical Image Computing
and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain,
September 16-20, 2018, Proceedings, Part II 11, pp. 741–749, Springer, 2018.

[12] G. E. Hinton, S. Sabour, and N. Frosst, Matrix capsules with em routing, in International conference
on learning representations, 2018.

[13] D. Wang and Q. Liu, An optimization view on dynamic routing between capsules, 2018.
[14] J. E. Lenssen, M. Fey, and P. Libuschewski, Group equivariant capsule networks, Advances in neural

information processing systems, vol. 31, 2018.
[15] Y. Zhou, R. Ji, J. Su, X. Sun, and W. Chen, Dynamic capsule attention for visual question answering,

in Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 9324–9331, 2019.
[16] K. N. R. Suyanto and S. Mandala, Deep learning modernisasi machine learning untuk big data,

Informatika, 2019.
[17] K. Conrad, Equivalence of norms, Expository Paper, University of Connecticut, Storrs,

heruntergeladen von, vol. 17, no. 2018, 2018.
[18] L. Deng, The mnist database of handwritten digit images for machine learning research, IEEE Signal

Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.
[19] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: a novel image dataset for benchmarking machine

learning algorithms, 2017.
[20] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha, Deep learning for

classical japanese literature, 2018.

